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Abstract.

Graham, Pinto and Egel (forthcoming) introduce a new inverse probability
weighting type estimator for general moment condition models with data missing
at random. Estimation of the Average Treatment E¤ect (ATE) under exogenous
treatment assignment is included in their framework. In this paper we describe a
Stata implementation of their method for ATE estimation: the iptATE command.
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When comparing subpopulations of �treated�and �control�units it is generally desir-
able to adjust for di¤erences in observed baseline characteristics. Under strong condi-
tions Rubin (1977) showed that such comparisons have a causal interpretation, however
they may be of interest even in settings where this interpretation is untenable (cf., Im-
bens, 2004). In recent years a large literature has emerged proposing various methods
of covariate adjustment. Imbens and Wooldridge (2011) provide a recent and compre-
hensive review.

When the sample size is small, and/or the number of observed baseline characteristics
large, it is common for di¤erent methods of covariate adjustment to result in di¤erent
average treatment e¤ect (ATE) estimates. Furthermore, researcher chosen tuning pa-
rameters, such as the number of matches to use per unit in matching procedures, may
nontrivially a¤ect the location and estimated precision of point estimates (Abadie et
al., 2004). Angrist and Pischke (2009), in reaction to the perceived sensitivity of ATE
point estimates to researcher chosen implementation details, advocate for simple linear
regression-based methods of covariate adjustment (pp. 80 - 91). A di¤erent response
to this perception is embodied in the work of Kalyanaraman (2008), who develops au-
tomated tuning parameter choice procedures for a particular ATE estimator.

Graham, Pinto and Egel (forthcoming) propose a semiparametric method of covari-
ate adjustment called Inverse Probability Tilting (IPT). Implementing their method
requires the researcher to formulate two models. The �rst is for the probability of as-
signment to treatment conditional on characteristics or the propensity score. The second
is actually a pair of models: for the conditional expectation functions (CEFs) of the
potential outcomes under active and control treatment given characteristics. While the
IPT point estimate of the ATE will be sensitive to them, these modelling decisions are
arguably less abstract than that of, say, tuning parameter choice in the context of a
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2 Inverse Probability Tilting

fully nonparametric method of covariate adjustment.

In addition to its conceptual simplicity the IPT estimator has a number of desirable
theoretical properties. First, to use the language of Bang and Robins (2005), it is
locally e¢ cient and doubly robust. Second, relative to other estimators with similar
�rst order asymptotic properties, such as the class of augmented inverse probability
weighting (AIPW) estimators introduced by Robins, Rotnitzky and Zhao (1994), IPT
has low higher order asymptotic bias.1 Third, it provides a operational extension of
methods of �direct adjustment�or post-strati�cation from discretely- to continuously-
valued covariates.

To understand this last feature consider a setting with a single baseline covariate,
gender. If men and women di¤erentially select into treatment, the gender composition
of both the treated and control subsamples will depart from that of the full sample.
In such a situation it is straightforward to reweight the two subsamples such that the
distribution of gender in them mirrors that in the full sample (i.e., to restore �balance�;
cf., Rosenbaum, 1987).

When covariates are continuously-valued reweighting to restore balance is consider-
ably more complex. IPT uses a reweighting of the data that balances a �nite number of
sample moments across treatment and control units. If, for example, units di¤erentially
select into treatment on the basis of their baseline earnings, then IPT can reweight the
data such that the mean and variance of baseline earnings is identical across treatment
and control units. IPT implements the idea that reweighting should make the treat-
ment and control subsamples more comparable �in terms of the distribution of baseline
characteristics �in a very concrete and aesthetically attractive way.

The underlying theory of IPT for general moment condition problems is developed in
Graham, Pinto and Egel (forthcoming). The appendix to that paper also provides com-
putational details. Other variants of inverse probability weighting (IPW) are discussed
by Rosenbaum (1987), Wooldridge (2007) and Hirano, Imbens and Ridder (2003). This
article presumes familiarity with the notation and language of the econometric program
evaluation literature. Imbens and Wooldridge (2011) is a convenient reference for this
material.

1 Review of inverse probability tilting
We seek to estimate the average e¤ect of a binary treatment, D, on the scalar outcome
Y . We let Y1 denote a randomly sampled unit�s potential outcome given assignment to
the active treatment (D = 1) and Y0 the corresponding potential outcome under control
(D = 0). The average treatment e¤ect (ATE) is

ATE0 = E [Y1 � Y0] : (1)

1. For an implementation of AIPW in Stata see Emsley, Lunt, Pickles and Dunn (2008).
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If both Y1 and Y0 were observed for all sampled units, then an analog estimate of (1)
would be straightforward to construct. In practice we only observe

Y = (1�D)Y0 +DY1;

or Y1 for treated units and Y0 for control units.

Let X denote a vector of baseline characteristics and p0 (x) = Pr (D = 1jX = x)
the propensity score or probability of assignment to the active treatment given charac-
teristics. We assume the availability of the random sample f(Di; Xi; Yi)gNi=1 from the
population of interest and use N1 and N0 to respectively denote the number of treated
and control units.

If (i) D is independent of (Y0; Y1) conditional on X = x for all x 2 X � Rdim(X) and
(ii) � < p0 (x) < 1 � � for some � > 0, then it is straightforward to show that 0 is
identi�ed (e.g., Rosenbaum and Rubin, 1983) and estimable at parametric rates (e.g.,
Robins, Rotnitzky and Zhao, 1994).

The following approach to identi�cation is useful for our purposes. Rewriting (1) in
integral form we have

ATE0 =

Z Z
y1fY1;X (y1; x) dy1dx�

Z Z
y0fY0;Xf (y0; x) dy0dx: (2)

From condition (i) above we have the equalities

fY1jX (y1jx) = fY jX;D (yjx; d = 1) ; fY0jX (y0jx) = fY jX;D (yjx; d = 0) : (3)

Bayes�Law gives the additional pair of equalities

fX (x) = fXjD (xj d = 1)
Q0
p0 (x)

= fXjD (xj d = 0)
1�Q0
1� p0 (x)

; (4)

where Q0 = E [D] is the marginal frequency of treatment.

Substituting (3) and (4) into (2) and consolidating terms we get the following rep-
resentation of the ATE

ATE0 =

Z Z
yfY;XjD (y; xj d = 1)

Q0
p0 (x)

dydx

�
Z Z

yfY;XjD (y; xj d = 0)
1�Q0
1� p0 (x)

dydx:

Each component on the right-hand-side of the above expression is identi�ed by the joint
distribution of the observed data (D;X; Y ).

To construct an analog estimator based on the above representation we replace
fY;XjD (y; xj d = 1) and fY;XjD (y; xj d = 0) with the empirical measures of the treated
and control subsamples. These measures, which may be viewed as nonparametric max-
imum likelihood estimates (NPMLEs), place weight N�1

1 and N�1
0 on each treated and
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control unit (Owen, 2001). Replacing Q0 and p0 (x) with the estimates bQ and bp (x) we
get

bATE( bQ;bp) =

N1X
i=N0+1

bQ
N1

1bp (Xi)Yi �
N0X
i=1

1� bQ
N0

1

1� bp (Xi)Yi (5)

=

N1X
i=N0+1

b�1Yi � N0X
i=1

b�0Yi;
where

b�0i =
1� bQ
N0

1

1� bp (Xi) ; i = 1; : : : ; N0 (6)

b�1i =
bQ
N1

1bp (Xi) ; i = N0 + 1; : : : ; N:

Observe that, assuming bQ and bp (x) are consistent estimates,
bFY0;X (y0; x) =

N0X
i=1

b�01 (Xi � x)1 (Yi � y0)
bFY1;X (y1; x) =

N1X
i=N0+1

b�11 (Xi � x)1 (Yi � y1)
are consistent estimates of FY0;X (y0; x) and FY1;X (y1; x). These estimates, and conse-
quently the ultimate ATE point estimate, bATE( bQ;bp), vary with the choice of bQ and bp (x).
In practice it is common to replace bQ and bp (Xi) with maximum likelihood estimates
(MLEs). This approach requires the propensity score to be parametrically speci�ed.
Assume that G

�
t (x)

0
�0
�
= p0 (x) for all x 2 X and some �0 where t (X) is a 1 +M

column vector of known functions of X with a constant as its �rst element and G (�)
a known, strictly increasing, and di¤erentiable, function which maps the real line onto
the unit interval (e.g., the logit function G (v) = 1= (1 + exp (�v))).

Let b�ML and bQ = N1=N denotes the MLEs of, respectively, �0 and Q0.2 Using these
estimates we have, plugging into (5),

bATE(N1N ;bpML)
=
1

N

NX
i=1

8<: Di

G
�
t (Xi)

0 b�ML

� � 1�Di
1�G

�
t (Xi)

0 b�ML

�
9=;Yi; (7)

which is the inverse probability weighting ATE estimator discussed by Imbens (2004)
and Wooldridge (2007).

2. In the present setting the MLE of Q0 is actually
PN
i=1G

�
t (Xi)

0 b�ML

�
=N . In the most common

situation, where G (�) is assumed to take the logit form, we have, by the estimating equations of
the logit MLE, the equality

PN
i=1G

�
t (Xi)

0 b�ML

�
=N = N1=N:
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While it is intuitive to replace bQ and bp (x) in (5) with their MLEs, it turns out that
this choice has some undesirable consequences. First, in this case, bFY0;X (y0; x) andbFY1;X (y1; x) need not integrate to one (i.e., the IPWweights do not sum to one). Second,
the resulting ATE point estimate is ine¢ cient. Speci�cally its asymptotic sampling
variance is generally greater than the semiparametric variance bound derived by Hahn
(1998).

Wooldridge (2007) shows that the asymptotic sampling variance of (7) can be re-
duced by over�tting the propensity score (i.e., by including terms in t (X) that don�t
enter the true selection probability). Hirano, Imbens and Ridder (2003) generalize this
result, showing that if the dimension of t (X) grows with the sample size in a speci�c
way and G (�) takes the logit form, then IPW is semiparametrically e¢ cient.

Graham, Pinto and Egel (forthcoming) propose an alternative variant of (5) which
they term inverse probability tilting (IPT). The key di¤erence between their approach
and (7) is that they replace the maximum likelihood estimate of the propensity score
with a particular method of moments one. In fact they utilize two propensity score
estimates, which we now describe.

Let b�1IPT be the solution (if it exists, see below) to
1

N

NX
i=1

8<: Di

G
�
t (Xi)

0 b�1IPT� � 1
9=; t (Xi) = 0: (8)

Plugging G
�
t (Xi)

0 b�1IPT� and bQ = N1=N into (6) we get

b�1i = 1

N

1

G
�
t (Xi)

0 b�1IPT� : (9)

Rearranging (8) then yields

N1X
i=N0+1

b�1it (Xi) = 1

N

NX
i=1

t (Xi) : (10)

Equation (10) indicates that IPT chooses the propensity score parameter so that,
after reweighting, the mean of t (Xi) across treated individuals (

PN1

i=N0+1
b�1it (Xi))

is numerically identically to the full sample mean ( 1N
PN

i=1 t (Xi)). This is intuitively
attractive: the goal of reweighting is to make the treated units �more like�the population
as a whole. IPT ensures exact comparability in terms of a �nite number of moments
of X: For example if t (X) includes, in addition to a constant, X and its square, then,
after reweighting, the mean and variance of X across treated units will be identical to
the corresponding objects calculated using the full sample.

We refer to fb�1igNi=N0+1
as the inverse probability tilt of the treated subsample.

This tilt can be given an information theoretic interpretation. Speci�cally, it represents
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a reweighting that satis�es (10), while being �closest�to the empirical measure of the
treated subsample (which places weight N�1

1 on all units). The discrepancy metric by
which �closest�is de�ned is related to the presumed form of the propensity score (see the
Appendix of Graham, Pinto and Egel (forthcoming) and also Hirano, Imbens, Ridder
and Rubin, 2001).

We also compute an inverse probability tilt of the control subsample (fb�0igN0

i=1). Letb�0IPT be the solution to
1

N

NX
i=1

8<: 1�Di
1�G

�
t (Xi)

0 b�0IPT� � 1
9=; t (Xi) = 0: (11)

Plugging G
�
t (Xi)

0 b�0IPT� and bQ = N1=N into (6) we get

b�0i = 1

N

1

1�G
�
t (Xi)

0 b�1IPT� (12)

Rearranging (11) we get a control subsample analog of (10):

N0X
i=1

b�0it (Xi) = 1

N

NX
i=1

t (Xi) : (13)

Equating (10) and (13) we have

N0X
i=1

b�0it (Xi) = N1X
i=N0+1

b�1it (Xi) = 1

N

NX
i=1

t (Xi) :

The IPT tilts, fb�0igN0

i=1 and fb�1igNi=N0+1
, are constructed such that the reweighted treat-

ment and control subsample means of t (Xi) are numerically identical to the unweighted
full sample mean.

The IPT average treatment e¤ect estimate is given by (5) with bQ = N1=N and

the �rst and second instances of bp (Xi) respectively replaced by G�t (Xi)0 b�1IPT� and
G
�
t (Xi)

0 b�0IPT�:
bATEIPT =

1

N

NX
i=1

8<: Di

G
�
t (Xi)

0 b�1IPT� �
1�Di

1�G
�
t (Xi)

0 b�0IPT�
9=;Yi (14)

=

N1X
i=N0+1

b�1iYi � N0X
i=1

b�0iYi;
where b�1i and b�0i are as de�ned by (9) and (12).
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The �rst line of (14) indicates that IPT is a inverse probability weighting type
estimator, albeit based on distinctive propensity score estimates. The second line shows
that IPT estimates the ATE by a di¤erence between a weighted average outcome across
the treated minus a weighted average outcome across controls. The precise weighting
used in this computation is chosen so that, after reweighting, the two subsamples share
identical means of t (X) :

A concrete example helps to illustrate the main idea. Say X equals years of com-
pleted schooling, setting

t (X) = (1;1 (X < 12) ;1 (X = 12) ;1 (12 < X < 16) ;1 (X = 16))0

will generate reweightings that ensure that the (weighted) sample fractions of high school
dropouts, high school graduates, those with some college, those with a 4-year degree,
and those with at least some graduate education are identical across treated and control
units. Alternatively we might choose

t (X) = (1; X;X2)0;

which would ensure equality of the average and variance of years of completed schooling.

An interesting feature of bATEIPT is that it is based on two separate propensity score
estimates. This feature suggests a simple speci�cation test. If the propensity score

model is correctly speci�ed, then the probability limits of b�1IPT and b�0IPT will coincide.
If the model is misspeci�ed, then this need not be true. Let �1� and �

0
� denote the

possibility di¤erent plims of b�1IPT and b�0IPT . A Wald test of the null hypothesis of
equality of these two vectors is test of correct speci�cation of the propensity score.
iptATE reports this test statistics as part of its default output.

Choosing t (X) : To use the IPT estimator the researcher must choose which functions
of X to include in t (X). It is obvious that t (X) should be rich enough to ensure that
G
�
t (x)

0
�0
�
= p0 (x) for all x 2 X and some �0. Less obviously, the choice of t (X)

should also be guided by researcher beliefs regarding the forms of the potential outcome
regression functions. Speci�cally assume that t (X) is rich enough such that

E [Y1jX] = �1t (X) ; E [Y0jX] = �0t (X) ; (15)

for some �1 and �0. Graham, Pinto and Egel (forthcoming) show that, under the main-
tained assumption that the propensity score model is correctly speci�ed, the asymptotic

sampling variance of
p
N
�bATEIPT � 0

�
coincides with the bound derived by Hahn (1998)

for all data generating processes which satisfy (15). This is a �local�e¢ ciency property.
Their result suggests that the precision of bATEIPT will be greatest when, in addition to
being rich enough to provide a good approximation of the propensity score, t (X) also
includes enough elements such that a linear combination of them closely approximates
both E [Y1jX = x] and E [Y0jX = x].

Graham, Pinto and Egel (forthcoming) also show that bATEIPT remains consistent for
ATE0 even if the propensity score model is misspeci�ed as long as (15) holds. This
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is a double robustness property. While other locally e¢ cient and doubly robust ATE
estimators are available, Graham, Pinto and Egel (forthcoming) show that bATEIPT has
lower higher order bias than a large class of them. Bang and Robins (2005) and Tsiatis
(2006) provide a recent and accessible introductions to double robust ATE estimation.

A more heuristic suggestion for choosing t (X) is as follows. First, transform any
continuously-valued components of X such that they are approximately Gaussian. For
example we might take the log-transform of an earnings variable. Include the trans-
formed X and its square as elements of t (X). For discretely-valued variables include
a dummy variable for each point of support (if the variable has many points of sup-
port some aggregation may be required). Finally include all pairwise interactions of the
above variables (cf., Anderson, 1982).

Convex hull condition: For a solution to (8) to exist the full sample mean of t (Xi)
must lie inside the convex hull of the treated subsample data (cf., Owen, 2001). If
the propensity score is strictly bounded between zero and one this condition will be
satis�ed in large enough samples. However, it may fail in small samples, particularly
if overlap is weak. When

PN
i=1 t (Xi) =N lies near the boundary of the convex hull

of the treated subsample data, the computation of b�1IPT may become di¢ cult. While
Graham, Pinto and Egel (forthcoming) develop a reliable computational algorithm,

which is implemented in iptATE, users should be aware that the existence of b�1IPT is
not automatic. The inability of iptATE is solve for b�1IPT , is generally indicative of a
weak research design with poor overlap. Users should be mindful that the convex hull
condition will impose practical limitations on the richness of t (Xi) in �nite samples.
For example, if baseline earnings are highly predictive of treatment status and only a
few hundred units are available, it is unlikely that an inverse probability tilt of the data
which balances the �rst eight moments of baseline earnings exists. If may be possible,
however, to balance the �rst two moments of baseline earnings in such a situation.

Analogous considerations apply to b�0IPT :
Consistent variance estimation: Graham, Pinto and Egel (forthcoming) show that bATEIPT

is a sequential method of moments estimate. Consequently the sampling variance ofbATEIPT may be consistently estimated using standard results (e.g., Newey and McFadden,
1994). The relevant sample moments are

NX
i=1

smplwgti �

0BBBBBB@

�
Di

G
�
t(Xi)

0b�1IPT� � 1
�
t (Xi)�

1�Di

1�G
�
t(Xi)

0b�0IPT� � 1
�
t (Xi)

Di

G
�
t(Xi)

0b�1IPT� � 1�Di

1�G
�
t(Xi)

0b�0IPT�
�
Yi + bATEIPT

�

1CCCCCCA = 0: (16)

Where smplwgt is a user-speci�ed sampling weight (i.e., a �pweight�in Stata terminol-
ogy). If no weights are speci�ed iptATE replaces smplwgti by 1

N in (16).
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Stata�s built in robust and �clustered�robust variance estimators automatically im-
plement a degrees of freedom correction (see the regress entry in the Stata 11 Reference
Q - Z ). Similar degrees of freedom corrections are not implemented by iptATE.The de-
fault standard errors reported by iptATE allow for heteroscedasticity (speci�cally the
conditional variances of Y1 and Y0 can vary across subpopulations de�ned in terms of
X = x). When the primary sampling unit is not a single unit, iptATE provides a
�clustered�variance-covariance estimator option.

2 A simple empirical example
In this section we use the dataset constructed by Graham and Powell (2008) to illustrate
the use of IPT in practice. The data were collected in conjunction with an external eval-
uation of the Nicaraguan conditional cash transfer program Red de Protección Social
(RPS) (see IFPRI, 2005). The RPS evaluation sample is a panel of 1,581 households
from 42 rural communities in the departments of Madriz and Matagalpa, located in
the northern part of the Central Region of Nicaragua. Each sampled household was
�rst interviewed in August/September 2000 with follow-ups attempted in October of
both 2001 and 2002. Here we analyze a balanced panel of 1,358 households from all
three waves. The dataset includes a measure of total calories available per capita for
each household, total real expenditure per capita, measures of household size and demo-
graphic structure, as well as a binary indicator for whether the household was located
in a treatment or control village. Graham and Powell (2008) provide full details of the
sample and variable construction. The data �le used here, RPSPolicyEvalData.dta,
is available online at https://files.nyu.edu/bsg1/public/. A Stata Do �le which
replicates the results reported below is also available.

We study the e¤ect of RPS participation on calorie availability per capita in 2002.
In the dataset the variable log_calories_pc2002 equals the logarithm of calorie avail-
ability per capita in 2002 and RPS denotes whether the household resides in a treatment
village. Because the RPS was a randomly assigned to communities the coe¢ cient on the
treatment indicator in a least squares �t of log_calories_pc2002 onto a constant and
RPS provides a consistent estimate of the ATE.

. use "$BASE\RPSPolicyEvalData", clear
(LdB 2000 : Annual food consumption -- components)

. reg log_calories_pc2002 RPS, cluster(village)

[Output removed]
(Std. Err. adjusted for 42 clusters in village)

------------------------------------------------------------------------------
| Robust

log_cal~2002 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

RPS | .2080808 .0644476 3.23 0.002 .0779262 .3382354
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_cons | 7.62022 .05181 147.08 0.000 7.515588 7.724853
------------------------------------------------------------------------------

The simple treatment versus control di¤erence suggests that the RPS program in-
creased calorie availability per capita by about 20 percent. This is a very large program
e¤ect. We could increase the precision of this estimate by including various pretreatment
household characteristics in our regression model, instead we illustrate how to estimate
the ATE using the Stata command: iptATE. The syntax of the iptATE command is

iptATE outcomevar treatmentvar controlvars [weight] [if exp] [in range] [, cluster(clustervar)
optroutine({e1je2}) balance]

where outcomevar is the variable name for the scalar outcome of interest, treatmentvar
the variable name for the treatment indicator (treatmentvar = 1 denotes treatment, 0
control) and controlvars is a list of variable names which de�ne t (X); a constant is
automatically included. Sampling weights or pweights are allowed; see the Stata 11
User�s Guide for more information ([U] 20.18).

Options

cluster(clustervar) speci�es the relevant sampling unit. If this option is omitted each
observation is assumed to be an independent random draw from the population of
interest. When the program of interest is �assigned�at a group or aggregate level (e.g.,
at the village level in the case of the RPS program) then this option should be speci�ed
with clustervar the name of a group-identifying variable.

optroutine({e1je2}) speci�es the optimization algorithm used to compute b�0IPT andb�1IPT . The default is e1, which means that b�0IPT and b�1IPT are computed using a
quasi-Newton procedure with analytic �rst derivatives. Speci�cally iptATE uses the
implementation of the Broyden-Fletcher-Goldfarb-Shanno algorithm found in Mata�s
moptimize() command (see Stata 11 Mata Matrix Programming). If e2 is speci�ed a
modi�ed Newton-Raphson procedure is used. This procedures uses both analytic �rst
and second derivatives. This second method is generally quicker and more accurate,
particularly for problems where the convex hull condition is amply satis�ed. The crite-
rion function used by iptATE is described in the Appendix to Graham, Pinto and Egel
(forthcoming).

balance when invoked iptATE will produce a table with the (unweighted) means of
controlvars by treatment status as well as the treatment versus control di¤erence. If
pweights are also speci�ed, then these means will be appropriately weighted.

As an initial illustration we include in t (X) total household size as well as the
logarithm per capita calorie availability and expenditure in 2000:

. iptATE log_calories_pc2002 RPS log_calories_pc2000 log_real_exp_pc2000 HHSize2000,
cluster(village) optroutine(e2) balance
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Mean covariate values by treatment status
----------------------------------------------------------------------------------------
- Variable T = 0 T = 1 Diff p-value -
----------------------------------------------------------------------------------------

log_calories_pc2000 7.485 7.498 0.013
( 0.057) ( 0.053) ( 0.078) 0.868

log_real_exp_pc2000 8.115 8.205 0.089
( 0.069) ( 0.059) ( 0.091) 0.330

HHSize2000 6.135 5.916 -0.218
( 0.078) ( 0.132) ( 0.154) 0.162

----------------------------------------------------------------------------------------

Computing treated subsample tilt
initial: f(p) = -754.35262
rescale: f(p) = -702.39165
Iteration 0: f(p) = -702.39165
Iteration 1: f(p) = -691.96712
Iteration 2: f(p) = -691.85999
Iteration 3: f(p) = -691.85996

Computing control subsample tilt
initial: f(p) = -738.4736
rescale: f(p) = -653
Iteration 0: f(p) = -653
Iteration 1: f(p) = -638.89437
Iteration 2: f(p) = -638.5741
Iteration 3: f(p) = -638.57396
Iteration 4: f(p) = -638.57396

Inverse probability tilting propensity score & ATE estimates
Outcome variable : log_calories_pc2002
Treatment indicator : RPS
Control variables : log_calories_pc2000 log_real_exp_pc2000 HHSize2000
------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
delta1 |
log_cal~2000 | -.3093419 .2788068 -1.11 0.267 -.8557933 .2371094
log_rea~2000 | .4153759 .2982215 1.39 0.164 -.1691276 .9998794
HHSize2000 | -.0063623 .0223771 -0.28 0.776 -.0502207 .0374961

_cons | -.9568784 2.215386 -0.43 0.666 -5.298954 3.385197
-------------+----------------------------------------------------------------
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delta0 |
log_cal~2000 | -.3044234 .245151 -1.24 0.214 -.7849106 .1760637
log_rea~2000 | .3993781 .2611813 1.53 0.126 -.1125278 .911284
HHSize2000 | -.0148753 .024551 -0.61 0.545 -.0629944 .0332437

_cons | -.8119363 2.139014 -0.38 0.704 -5.004327 3.380455
-------------+----------------------------------------------------------------
ate |

gamma | .1854696 .0486575 3.81 0.000 .0901025 .2808366
------------------------------------------------------------------------------
Total number of primary sampling units: 42
Total number of observations: 1358

Test of equality of two tilting coefficient vectors

( 1) [delta1]_cons - [delta0]_cons = 0
( 2) [delta1]log_calories_pc2000 - [delta0]log_calories_pc2000 = 0
( 3) [delta1]log_real_exp_pc2000 - [delta0]log_real_exp_pc2000 = 0
( 4) [delta1]HHSize2000 - [delta0]HHSize2000 = 0

chi2( 4) = 0.06
Prob > chi2 = 0.9995

The initial part of the above output gives the means of log_calories_pc2000,
log_real_exp_pc2000 and HHSize2000 by treatment status. The second-to-last col-
umn reports the treatment versus control di¤erence (standard errors are in parentheses).
As would be expected in the context of a social experiment, there is no evidence of sig-
ni�cant average di¤erences in these variables by treatment status (see the last column
of the table for p-values).

The next portion of the output shows that Stata was able to compute b�1IPT and b�0IPT
in, respectively, 3 and 4 Newton-Raphson iterations (optroutine(e2) was speci�ed).3

The next part of the output reports the IPT estimates b�1IPT and b�0IPT , along with stan-
dard errors. These standard errors are robust to arbitrary patterns of dependence across
households residing in the same village (cluster(village) was speci�ed). Finally the
IPT point estimate of the ATE is reported. The IPT point estimate is similar to the
raw treatment versus control di¤erence in means reported above, as one would expect
given random assignment of RPS to communities, but its estimated standard error is
about 10 percent smaller.

The �nal part of the output gives a �2 statistics for the null that �1� and �
0
� coincide.

We accept, by a wide margin, the null that the propensity score model is correctly
speci�ed. This is unsurprising since we know that the true score is a constant.

Next we consider a richer speci�cation for t (X). Since the underlying data are
from an experiment, the main potential advantage of including more elements in t (X)

3. Choosing optroutine(e1) instead requires, respectively, 9 and 8 iterations.
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Figure 1. Histograms of N1b�1i and N0b�0i
is improved precision. We created 5 dummy variables for log_calories_pc2000 ly-
ing in the regions (�1; 7:00] ; (7:00; 7:25] ; (7:25; 7:50] ; (7:50; 7:75] ; (7:75; 8:00]. This
grid of points was chosen to span the support of baseline calorie availability. We cre-
ated a similar set of dummy variables based on log_real_exp_pc2002 lying in the
regions (�1; 7:0] ; (7:0; 7:5] ; (7:5; 8:0] ; (8:0; 8:5] ; (8:5; 9:0] and HHSize2000 lying in the
regions (0; 2] ; (2; 6] ; (6; 9] : Finally we added the square of log_calories_pc2000 and
log_real_exp_pc2002 to t (X). This resulted in a speci�cation of t (X) with nineteen
elements. This choice of t (X) ensures, after reweighting, exact balance of the mean and
variance of baseline calorie availability and expenditure across treatment and controls.
It also ensures that the fraction of households in di¤erent regions of calorie availability
and expenditure are the same. Finally it ensures average household size, as well as its
general distribution, is the same across the two groups.

. iptATE log_calories_pc2002 RPS log_calories_pc2000 lc00_sq lc00_g1-lc00_g5
> log_real_exp_pc2000 lre00_sq lre00_g1-lre00_g5
> HHSize2000 hhs00_g1-hhs00_g3,

cluster(village) optroutine(e2)

[Output removed]

-------------+----------------------------------------------------------------
ate |

gamma | .1841529 .048632 3.79 0.000 .088836 .2794699
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------------------------------------------------------------------------------

[Output removed]

While iptATE has no trouble computing the IPT tilts based on the enriched speci�-
cation of t (X), neither the ATE point estimate nor its estimated precision is appreciably
a¤ected.

Post estimation features

iptATE saves in e():

Scalars:

e(N) - number of observations

Matrices:

e(b) - coe¢ cient vector

e(V) - variance-covariance matrix

Functions:

e(sample) - marks estimation sample

iptATE stores the estimated coe¢ cient vector and variance-covariance matrix in mul-
tiple equation form. The �rst equation is called delta1, corresponding to the coe¢ cients
indexing the treated subsample tilt, the second equation is called delta0, corresponding
to the coe¢ cients indexing the control subsample tilt, the �nal equation is called ate,
corresponding to the average treatment e¤ect.

A useful postestimation diagnostic is to inspect the two tilts (fb�0igN0

i=1 and fb�1igNi=N0+1
).

One way to do this is to plot histograms of N0b�0i and N1b�1i. If N1b�1i = 4, then this
indicates that the IPT upweights the ith treated unit by a factor of four relative to the
empirical measure of the treated subsample. A downweighting by a factor of four occurs
if N1b�1i = 1=4:
Since both of the inverse probability tilts sum to one, and attach positive weight to all

units in the appropriate subsample, we know that 0 < N0b�0i < N0 for i = 1; : : : ; N0 and
0 < N1b�1i < N1 for i = N0+1; : : : ; N: Boundedness and positivity of the IPT weights is
an important feature of the estimator (Graham, Pinto and Egel, forthcoming). Settings
where large weight is attached to a handful of units, and very small weight to the
remaining units, are indicative of poor overlap. To plot these histograms we use Stata�s
predict and hist commands. The following commands calculate N0b�0i and N1b�1i for,
respectively, all control and treated units.
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predict pi_1 if RPS==1, equation(delta1) xb
replace pi_1 = (1/e(N))*(1/invlogit(pi_1)) if RPS==1

predict pi_0 if RPS==0, equation(delta0) xb
replace pi_0 = (1/e(N))*(1/(1-invlogit(pi_0))) if RPS==0

quietly reg RPS if RPS==1
g N1Xpi_1 = e(N)*pi_1 if RPS==1

quietly reg RPS if RPS==0
g N0Xpi_0 = e(N)*pi_0 if RPS==0

Histograms of N1Xpi_1 and N0Xpi_0 are given in Figure 1.
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