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Many econometric evaluation problems involve treatments which may vary over time. Con-
sider a researcher interested in the relationship between measured teacher ‘quality’ in ele-
mentary school and long run life outcomes (e.g., adult earnings). Each year a student is
assigned to a new teacher. Different sequences of teacher quality during elementary school
may influence adult outcomes differently. For example teacher assignments in kindergarten
may be more consequential, than those in a later grades. It may be that consecutive years
of assignment to low quality teachers is especially detrimental, while intermittent exposure
to poor teachers is not. Assessing hypotheses likes these requires methods for evaluating the
effects of sequences of treatments. Developing such methods raises new conceptual issues
relative to those encountered in the more familiar ‘point in time’, or static, econometric
evaluation problem.

In dynamic settings the econometrician may observe intermediate variables which are (i)
influenced by past treatment assignments, (ii) influence future treatment assignment and
(iii) predict the final outcome of interest. Continuing with our example, the econometrician
may observe an end-of-grade test score for each student. A student’s test score likely varies
with the quality of her past teachers, likewise her current performance may influence which
type of teacher she is assigned to in the future. Test scores may also help to predict the final
outcome of interest. Test score is both a confounder and an intermediate outcome (since it
is influenced by prior teacher assignments).

Our intuitions from the static program evaluation problem do not provide directly useful
guidance on how to incorporate test scores into an analysis of the effects of different sequences
of teacher qualities for, say, adult earnings. A test score has characteristics of a confounder,
suggesting that adjustment for it is warranted (Rubin, 1977), as well as of a concomitant
variable, suggesting that such adjustment is not advisable (Rosenbaum, 1984). In what
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follows I will call variables like test scores time varying confounders. Properly controlling
for time varying confounders is not straightforward.

Robins (1986) extends the basic theory of covariate adjustment for static program evaluation
problems to dynamic settings. The development in this note will be based on Robins (1997)
and Robins (2000). Dynamic methods of covariate adjustment are used with some (albeit
modest) frequency in biostatistics; their application within economics is unusual (e.g., Lech-
ner, 2009). Imbens and Wooldridge’s (2009) recent survey of program evaluation methods
devotes only a few paragraphs to dynamic program evaluation problems (while also noting
that the area is understudied within econometrics). The growing availability for research
use of administrative educational databases, population registers, and other large datasets
with longitudinal structure, in conjunction with the intrinsically dynamic nature of many
economic policies, suggests that economists could benefit from a better understanding of
how to undertake covariate adjustment in longitudinal settings.

Average structural function

Assume the availability of a random sample of N units from the study population of interest.
In each of t = 0, 1, . . . , T periods we observe a unit’s treatment assignment Xt ∈ Xt, and
a vector of time-varying confounders, Wt ∈ Wt. Also observed are a vector of baseline
covariates V ∈ V and a final outcome of interest Y ∈ Y. In what follows, for the purposes
of exposition, I will often assume that Xt is a measure of teacher quality in grade t, Wt an
end-of-school year test score in grade t − 1 (with W0 equaling measured achievement prior
to kindergarten entry), V a vector of background controls (such as parental education, race
and gender), and Y an adult outcome of interest.

A unit’s treatment history from baseline through period t is denoted byX t
0 = (X ′0, X

′
1, . . . , X

′
t)
′,

with the convention that X−10 = �. The history of time-varying confounders is denoted by
W t

0 = (W ′
0,W

′
1, . . . ,W

′
t)
′ (with W−1

0 = �).
Let Xt

0 = X0 × X1 × . . . × Xt so that the number of possible treatment sequences coincides
with the cardinality of the set XT

0 , which we will take to be finite. Even with a simple
binary treatment there will be 2T+1 possible treatment sequences; a fact which complicates
identification.

For each unit we posit the existence of a potential response function

Y
(
xT0
)

= m
(
xT0 , U

)
. (1)

The function Y (xt0) gives the outcome that an individual would have experienced if assigned
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to, possibly contrary to fact, treatment sequence xT0 ∈ XT
0 . The expression to the right of

the equality in (1) provides a structural equation representation of the potential outcome
response. The equality in (1) is without loss of generality: we are free to conceptualize U as
a (potentially very high dimensional) vector of all attributes which generate individual-level
variation in treatment response. In my own work I have sometimes found the potential
outcome representation most convenient, while at other times the structural function repre-
sentation more so. We will work mostly with the structural function in what follows.

Each individual’s observed outcome is given by their potential response function (1) evaluated
at their actual treatment sequence, a so-called ‘consistency’ condition,

Y = Y
(
XT

0

)
= m

(
XT

0 , U
)
. (2)

The average structural function (ASF) (cf., Blundell and Powell, 2003; Wooldridge, 2005) is
given by

E
[
Y
(
xT0
)]

= E
[
m
(
xT0 , U

)] def
≡ mASF

(
xT0
)
. (3)

The ASF is an average of m
(
xT0 , U

)
over the marginal distribution of U ; it coincides with

the expected response of a randomly sampled individual to treatment regime xT0 . Our goal
will be to identify the ASF, at different logically feasible treatment sequences, from the joint
distribution of the observed data Z =

(
V,W T

0 , X
T
0 , Y

)
.

The econometrician faces a selection problem because the average outcome among those
actually assigned to protocol XT

0 = xT0

E
[
Y |XT

0 = xT0
]

= E
[
m
(
xT0 , U

)∣∣XT
0 = xT0

]
,

does not, in general, equal mASF
(
xT0
)
. This is because the distribution of U among individu-

als experiencing treatment regime XT
0 = xT0 will typically differ from that in the population

as a whole. For example the unobserved (time-invariant) determinants of adult earnings
among individuals who attended schools staffed by high quality teachers will generally differ
from those who did not attend such schools.

Assumptions

Robins (1986) extends the standard notion of exogeneity (Rubin, 1977) to the dynamic
setting.
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Assumption 1. (Sequential Exogeneity) For t = 0, 1, . . . , T

U ⊥ Xt|X t−1
0 ,W t

0, V

for all X t−1
0 ∈ Xt−1

0 , W t
0 ∈Wt

0 and V ∈ V.

Assumption 1 implies that – conditional on past treatment assignments, X t−1
0 , current and

past time-varying controls, W t
0, and baseline characteristics, V – current period treatment

assignment varies independently of U (or equivalently potential outcomes). Assumption 1
implies that the econometrician observes all joint predictors of the treatment and outcome at
each point in time. To understand the implications of this assumption it is helpful to consider
an alternative identification condition. Specifically, instead of maintaining Assumption 1 we
might have instead conceptualized the dynamic treatment regime as a static, but multi-
valued, one. In that case the appropriate extension of Rubin’s (1977) exogeneity condition
was shown by Imbens (2000) to be

U ⊥ XT
0

∣∣V (4)

for all XT
0 ∈ XT

0 and V ∈ V. Condition (4) asserts ‘as if’ random assignment of the entire
treatment sequence conditional on baseline characteristics alone. This is much stronger
than what is implied by Assumption 1, which asserts ‘as if’ sequential random assignment,
conditional on an information set which grows with time.

Under Assumption 1 we have the following joint density factorization

f (u, v, w0, . . . , wT , x0, . . . , xT ) = f
(
xT |u, v, wT

0 , x
T−1
0

)
f
(
u, v, wT

0 , x
T−1
0

)
= f

(
xT | v, wT

0 , x
T−1
0

)
f
(
wT |u, v, wT−1

0 , xT−10

)
×f
(
u, v, wT−1

0 , xT−10

)
=

{
T∏
t=1

f
(
xt| v, wt

0, x
t−1
0

)
f
(
wt|u, v, wt−1

0 , xt−10

)}
×f (u, v, w0, x0)

=

{
T∏
t=1

f
(
xt| v, wt

0, x
t−1
0

)
f
(
wt|u, v, wt−1

0 , xt−10

)}
×f (x0| v, w0) f (u, v, w0) ,

with the second and fourth equalities following from Assumption 1.

A key implication of Assumption 1 is that the density of Wt

f
(
wt|u, v, wt−1

0 , xt−10

)
(5)
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may vary with u and past treatment assignment xt−10 .

Assumption 1 implies that conditional on background, V , prior achievement, W t
0, and prior

teacher quality, X t−1
0 , current teacher quality, Xt, is ‘as good as’ randomly assigned. The

condition does allow, for example, students with low quality teachers in period t − 1 to be
systematically assigned to higher equality teachers in period t (on average). Likewise it allows
for current period teacher assignments to depend on past test scores. Furthermore, by (5)
above, it allows test scores,Wt, to depend on unobserved ability, U , past achievement,W t−1

0 ,
and past teacher assignments, X t

0. Test scores are both a confounder and an intermediate
outcome (or concomitant variable).

Condition (4), in contrast to Assumption 1, requires that the entire sequence of teacher
assignments is as good as random given baseline characteristics (V ). Specifically it does
not allow period t assignments to be influenced by time-varying prognostic variables. In
the static program evaluation setting, conditioning on intermediate outcomes is known to
generate bias (e.g., Rosenbaum, 1984). A key contribution of Robins (1986, 1997, 2000) is
to show how to control for such confounders.

Identification of the ASF also requires a support condition. To state this condition consider
the set of values for the baseline attribute, V , and time-varying confounders through period t,
W t

0 that are observed in the subpopulation of units receiving treatment sequenceX t−1
0 = xt−10

from baseline to period t− 1:

S
(
xt−10

)
=
{
v, wt

0 : f
(
v, wt

0, x
t−1
0

)
> 0
}
. (6)

Let xt0 be some sequence of treatments from baseline to period t. Set (6) defines a subpopu-
lation of units that has followed protocol xt0 through period t−1 and thus could, in principle,
continue on with the protocol in period t.

Assumption 2. (Overlap) Given the specific treatment regime xT0 ∈ XT
0 ,

f
(
xt| v, wt

0, x
t−1
0

)
≥ κ > 0

for all v, wt
0 ∈ S

(
xt−10

)
and t = 0, 1, . . . , T .

Assumption 2 implies that in order to learn about the distribution of potential outcomes at
XT

0 = xT0 is must be the case that, for any set of units following the xT0 protocol for t − 1

periods, a positive fraction will continue to follow the protocol in period t

Begin with t = 0. Assumption 2 implies that the probability of the initial assignment
X0 = x0 is bounded away from zero for all values of V and W0 observed in the population.
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Consequently at least some units experience treatment X0 = x0 within all subpopulations
defined in terms of W0 and V . In the next period, for all subpopulations defined in terms
of V , W0, W1 that were also previously assigned X0 = x0, a positive fraction will receive
assignment X1 = x1. Hence among any subpopulation of units that can logically continue
from assignment X0 = x0 to X1 = x1 at least some positive mass will do so. For a generic t
the probability of the assignment Xt = xt is bounded away from zero for all values of V and
W t

0 observed in the subpopulation that was previously assigned treatments X t−1
0 = xt−10 .

Assumption 2 is thus a sequential generalization of the usual overlap condition from the
static program evaluation problem.

If the cardinality of XT
0 is large we might expect Assumption 2 to hold for only a subset of

logically feasible treatment regimes. Without further assumptions we will only be able to
identify mASF

(
xT0
)
at sequences xT0 which satisfy Assumption 2.

To understand the implications of the assumption for empirical work it is helpful to consider
some examples. Consider the average impact of living in a high poverty neighborhood in all
t = 0, 1, . . . , T years of childhood. If there is some subpopulation of units defined in terms of
W0 and V that are never assigned to a high poverty neighborhood in period 0, then clearly
we will be unable to learn about the population average effect of living in high poverty
neighborhood in all years of childhood. Identification will also fail if, conditional on initial
assignment to a high poverty neighborhood, the transition rate out in subsequent periods is
“nearly” one hundred period for some sub-group. For example, even if some children whose
parents’ have completed a graduate degree begin their lives in high poverty environments, if
they all eventually move out of such neighborhoods, then the average structural function at
the sequence “high poverty neighborhood in all years of childhood” is not identified.

G-Computation Formula

Robins (1986) develops a method of covariate adjustment for environments characterized
by Assumptions 1 and 2. Central to his method is the so-called G-Computation formula.
To understand this formula it is helpful to recall some basic results for the static program
evaluation problem under exogeneity (e.g., Imbens, 2004). In that problem the structural
function is, setting T = 0,

Y (x0) = m (x0, U)

with x0 scalar-valued. With T = 0 Assumption 1 simplifies to to the point-in-time exogeneity
condition

U ⊥ X0|V,W0
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and Assumption 2 to the requirement that

f (x0| v, w0) ≥ κ > 0

for all v ∈ V and w0 ∈W0.

Let q (v, w0, x0) = E [Y |V = v,W0 = w0, X0 = x0] be the proxy variable regression (PVR)
function. In the static case (T = 0), using the law of iterated expectations, we can express
the ASF at X0 = x0 as

E [Y (x0)] = E [m (x0, U)]

= E [E [m (x0, U)|W0, V ]]

=

ˆ ˆ
E [m (x0, U)|V = v,W0 = w0] f (v, w0) dvdw0

=

ˆ ˆ
E [m (x0, U)|V = v,W0 = w0, X0 = x0] f (v, w0) dvdw0

=

ˆ ˆ
q (v, w0, x0) f (v, w0) dvdw0

= E [q (V,W0, x0)]

The second equality follows from the law of iterated expectations and the third by re-writing
the outer expectation in integral form. The fourth equality is an implication of conditional
independence of U and X0 given (V,W0). Since the distribution of U given (V,W0) does
not vary with treatment assignment, we are free to additionally condition on X0 = x0 in
the integrand. The fifth equality follows because the observed outcome for units assigned to
treatment X0 = x0, coincides with m (x0, U).

In the static case the ASF is identified by a partial mean: compute the mean outcome given
covariates and treatment and then average this over the marginal distribution of covariates.
Under the overlap condition f (x0| v, w0) ≥ κ > 0 for all v ∈ V and w0 ∈ W0 this outer
average is well-defined (cf., Newey, 1994).

It is tempting to naively apply the same logic to evaluate a sequence of treatments under
Assumptions 1 and 2. Specific, in the dynamic case, we can let

q
(
v, wT

0 , x
T
0

)
= E

[
Y |V = v,W T

0 = wT
0 , X

T
0 = xT0

]
(7)

be the proxy variable regression function. We then might hope that its marginal mean
ˆ
v

ˆ
w0

· · ·
ˆ
wT

q
(
v, wT

0 , x
T
0

)
f
(
v, wT

0

)
dwT · · · dw0dv
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identifies the ASF. An implication of Robins (1986) is that this is not the case. Robins
(1986) instead shows that, in order to appropriately adjust for bias cause by time-varying
confounders, one must sequentially average the proxy variable regression function vis-a-vis
a particular sequence of conditional distributions for the confounders.

Lemma 1. (G-Computation Formula) Under (2) and Assumption 1

mASF
(
xT0
)

=

ˆ
v

ˆ
w0

· · ·
ˆ
wT

q
(
v, wT

0 , x
T
0

) T∏
t=0

f
(
wt| v, wt−1

0 , xt−10

)
f (v) dwT · · · dw0dv (8)

for all treatment sequences xT0 satisfying Assumption 2.

Proof. An outline of the argument is as follows. Under random sampling q
(
v, wT

0 , x
T
0

)
is non-

parametrically identified at all points in the joint support V×WT
0 ×XT

0 . For the average (8)
to be computable we require that

∏T
t=0 f

(
wt| v, wt−1

0 , xt−10

)
f (v) is non-zero only at values

of v and wT
0 contained in the conditional support of V×WT

0 given XT
0 = xT0 . Assumption 2

ensures this condition. To see this consider the factorization

T∏
t=0

f
(
wt| v, wt−1

0 , xt−10

)
f (v) =

T∏
t=0

f
(
v, wt

0, x
t−1
0

)
f
(
v, wt−1

0 , xt−10

)f (v)

=
f
(
v, wT

0 , x
T−1
0

)
f
(
v, wT−1

0 , xT−10

) f (v, wT−1
0 , xT−20

)
f
(
v, wT−2

0 , xT−20

) ×
· · · × f (v, w1

0, x0)

f (v, w0, x0)

f (v, w0)

f (v)
f (v)

= f
(
v, wT

0 , x
T−1
0

) 1

f
(
xT−1| v, wT−1

0 , xT−20

)
× 1

f
(
xT−2| v, wT−2

0 , xT−30

) × · · · × 1

f (x0| v, w0)
.

Under Assumption 2 q
(
v, wT

0 , x
T
0

)
is identified at all points v, wT

0 ∈ S
(
xT−10

)
and, hence,

whenever the numerator in the ratio to the right of the last equality above is non-zero.
We also have the denominator is non-zero and positive. To see this note that if v, wT−1

0 ∈
S
(
xT−10

)
it is also an element of S

(
xT−20

)
. This follows because any sub-group that follows

treatment XT−2
0 = xT−20 through periods t = 0, 1, . . . , T − 2 continues on to treatment

XT−1 = xT−1 in period T − 1 with positive probability under Assumption 2. Hence any
group defined in terms of period T −1 observables (V,W T−1

0 ) contained in S
(
xT−20

)
will also

be in S
(
xT−10

)
. This gives positivity of the denominator. Consequently the right-hand-side

of (8) is identified.
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We can then use Assumptions 1 to show that the stated equality holds. Manipulating the
right-hand-side of (8):

ˆ
v

ˆ
w0

· · ·
ˆ
wT

{
q
(
v, wT

0 , x
T
0

)
T∏
t=0

f
(
wt| v, wt−1

0 , xt−10

)
f (v)

}
dwT · · · dw0dv =

ˆ
v

ˆ
w0

· · ·
ˆ
wT

{[ˆ
u

m
(
xT0 , u

)
f
(
u| v, wT

0 , x
T
0

)
du

]
T∏
t=0

f
(
wt| v, wt−1

0 , xt−10

)
f (v) dwT · · · dw0dv

}
=

ˆ
u

ˆ
v

ˆ
w0

· · ·
ˆ
wT

{
m
(
xT0 , u

)
f
(
u| v, wT

0 , x
T−1
0

)
f
(
wT | v, wT−1

0 , xT−10

)
T−1∏
t=0

f
(
wt| v, wt−1

0 , xt−10

)
f (v)

}
dwT · · · dw0dvdu =

ˆ
v

ˆ
w0

· · ·
ˆ
wT

ˆ
u

{
m
(
xT0 , u

)
f
(
u,wT | v, wT−1

0 , xT−10

)
T−1∏
t=0

f
(
wt| v, wt−1

0 , xt−10

)
f (v)

}
dwT · · · dw0dvdu =

ˆ
v

ˆ
w0

· · ·
ˆ
wT−1

ˆ
u

{
m
(
xT0 , u

)
f
(
u| v, wT−1

0 , xT−10

)
T−1∏
t=0

f
(
wt| v, wt−1

0 , xt−10

)
f (v)

}
dwT−1 · · · dw0dvdu =

...ˆ
v

ˆ
u

m
(
xT0 , u

)
f (u| v) f (v) dvdu =

mASF
(
xT0
)

=

where the first equality follows from (2) and the definition of the conditional expectation
function and the second equality follows from sequential exogeneity. The third and fourth
equalities involve density factorization and integration over wT . These last two steps are
repeated for t = T − 1, T − 2, . . . . . . , 0 to get the final equality.

When T = 0 equation (8) specializes to

mASF (x0) =

ˆ
v

ˆ
w0

q (v, w0, x0) f (v, w0) dw0dv,
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which is familiar from the static problem. Lemma 1 is therefore a dynamic generalization of
the familiar approach to covariate adjustment in static models by marginal integration (e.g.,
Newey, 1994; Blundell and Powell, 2003; Wooldridge, 2005).

Recursive representation

Bang and Robins (2005) discuss a backwards recursion formulation of G-Computation. This
representation, which helps to build intuition for Lemma 1, is given by

m̃T+1

(
V,W T

0 , x
T
0

)
= E

[
Y |V,W T

0 , X
T
0 = xT0

]
= q

(
V,W T

0 , x
T
0

)
m̃T

(
V,W T−1

0 , xT0
)

= E
[
m̃T+1

(
V,W T

0 , x
T
0

)∣∣V,W T−1
0 , XT−1

0 = xT−10

]
...

m̃t

(
V,W t−1

0 , xT0
)

= E
[
m̃t+1

(
V,W t

0, x
T
0

)∣∣V,W t−1
0 , X t−1

0 = xt−10

]
...

m̃2

(
V,W 1

0 , x
T
0

)
= E

[
m̃3

(
V,W 2

0 , x
T
0

)∣∣V,W 1
0 , X

1
0 = x10

]
m̃1

(
V,W0, x

T
0

)
= E

[
m̃2

(
V,W 1

0 , x
T
0

)∣∣V,W0, X0 = x0
]

m̃0

(
xT0
)

= E
[
m̃1

(
V,W0, x

T
0

)]
= mASF

(
xT0
)
.

Each line above corresponds to one of the integrals in the G-Computation formula. Integra-
tion occurs sequentially, beginning with the inmost integral and working outwards.

Covariate imbalance in dynamic evaluation problems unfolds sequentially. At each time
period some individuals continue on with the particular protocol of interest, while others
deviate. To the extent that these two groups differ, covariate imbalance is introduced. Each
of the averages in the lines above corrects for a particular component of this imbalance. This
correction occurs backwards: we undo the imbalance introduced in the final period first,
then the next to last period and so on.

Our goal is to recover the value of the average structural function (ASF) at treatment
sequence xT0 . We begin, at “line T + 1”, by averaging the final outcome conditional on V ,
W T

0 and XT
0 = xT0 . This yields m̃T+1

(
V,W T

0 , x
T
0

)
, which coincides with the proxy variable

regression (PVR) function introduced above.

Next we compute m̃T

(
V,W T−1

0 , xT0
)
; this average corrects for covariate imbalance induced

by treatment selection in the final period. More precisely, suppose we wish to identify the
average potential outcome associated with final period treatment XT = xT conditional on
having previously followed treatment sequence XT−1

0 = xT−10 and on having period T − 1

characteristics W T−1
0 and V . Within this specific subpopulation of units, the only possible
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covariate imbalance is in WT , the distribution of which may differ across the those who
continue on to final period treatment XT = xT and those that do not. We can correct for any
such imbalance by averaging over WT . Since we are only concerned with the subpopulation
that previously followed protocolXT−1

0 = xT−10 and has period T−1 characteristicsW T−1
0 and

V , the appropriate average overWT conditions on these covariates. Hence m̃T

(
V,W T−1

0 , xT0
)

gives the average counterfactual outcome that would have been observed if all units that
followed protocol XT−1

0 = xT−10 and have period T − 1 characteristics W T−1
0 and V had,

possibly contrary to fact, continued on with treatment XT = xT in the final period.

Next we compute m̃T−1
(
V,W T−2

0 , xT0
)
; this corresponds to the average potential outcome

associated with assignment to XT = xT and XT−1 = xT−1 within the subpopulation that
previously followed the treatment protocol XT−2

0 = xT−20 and with period T − 2 character-
istics W T−2

0 and V . This subpopulation is larger than the one considered in the previous
calculation. Specifically, it includes all those units represented in the prior average as well as
those units who began to deviate from the xT0 target treatment assignment in period T − 1.
To recover the mean potential outcome in this subpopulation we average m̃T

(
V,W T−1

0 , xT0
)

with respect to the conditional distribution of WT−1 given V , W T−2
0 and XT−2

0 = xT−20 .
Recall that m̃T

(
V,W T−1

0 , xT0
)
gives the average outcome associated with final period treat-

ment XT = xT conditional on having previously followed protocol XT−1
0 = xT−10 and having

period T − 1 characteristics W T−1
0 and V . This subpopulation is a selected one relative to

our new target one because not all individuals in the subpopulation with XT−2
0 = xT−20 and

homogenous in W T−2
0 and V go onto to treatment XT−1 = xT−1. We can correct for this by

appropriately undoing our conditioning on WT−1.

We continue recursively in this way until we recover the population-wide average outcome as-
sociated with treatment sequence XT

0 = xT0 . At each stage our average of potential outcomes
becomes more and more representative of the population of interest.

A parametric example

Let T = 1 and, for simplicity, set V = �. We can construct a very simple example of G-
Computation when both the proxy variable regression function q (w1

0, x
1
0) and the auxiliary

mean regression E [W1|W0 = w0, X0 = x0] are linear in their arguments:

q
(
W 1

0 , x
1
0

)
= γ0 +W ′

1γw1 +W ′
0γw0 + x′1γx1 + x′0γx0

E [W1|W0, X0 = x0] = ∆0 + ∆w0W0 + ∆x0x0.
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Under these parametric specifications we have

m̃2

(
W 1

0 , x
1
0

)
= γ0 +W ′

1γw1 +W ′
0γw0 + x′1γx1 + x′0γx0

m̃1

(
W0, x

1
0

)
= γ0 + E [W1|W0, X0 = x0]

′ γw1 +W ′
0γw0 + x′1γx1 + x′0γx0

= γ0 + {∆0 + ∆w0W0 + ∆x0x0}′ γw1 +W ′
0γw0 + x′1γx1 + x′0γx0

= (γ0 + ∆′0γw1) +W ′
0 (γw0 + ∆′w0γw1) + x′1γx1 + x′0 (γx0 + ∆′x0γw1)

m̃0

(
x10
)

=
{

(γ0 + ∆′0γw1) + E [W0]
′ (γw0 + ∆′w0γw1)

}
+ x′1γx1 + x′0 (γx0 + ∆′x0γw1)

= mASF
(
x10
)
.

Note that in this example the coefficient on X1 in the proxy variable regression correctly
identifies the causal effect of X1 on the outcome, however the coefficient on X0 does not
identify the correct causal effect. The correct effect is given by (γx0 + ∆′x0γw1), which includes
the direct effect γx0 as well as the indirect effect “mediated” by W1.

Estimation based on the G-Computation Formula

Basing estimation of Lemma 1 is not-straightforward. The most common method is fully
parametric and uses simulation to compute the integral in (8) (e.g., Taubman, Robins,
Mittleman and Hernán, 2009).

Algorithm 1. Parametric G-Computation

1. Specify and fit by maximum likelihood (ML) the t = 1, . . . , T parametric models

f (w1| v, w0, x0; η1) , . . . , f
(
wT | v, wT−1

0 , xT−10 ; ηT
)
.

2. Specify and fit by maximum likelihood (ML) the parametric model f
(
y| v, wT

0 , x
T
0 ;λ
)
.

3. Let xT0 be the treatment sequence of interest. Compute the following sequence of
simulated random variables

(a)
(
V

(s)
0 ,W

(s)
0

)
, a random draw from the empirical distribution.

(b) W (s)
1 , a random draw from the distribution defined by the density f

(
w1|V (s),W

(s)
0 , x0; η̂1

)
.

(c) For t = 2, . . . , T drawW
(s)
t at random from the distribution defined by the density

f
(
wt|V (s),W

(s)
0 , . . . ,W

(s)
t−1, x

t−1
0 ; η̂t

)
.
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(d) Draw Y (s)
(
xT0
)
from the distribution defined by the density

f
(
y|V (s),W

(s)
0 , . . . ,W

(s)
T , xT0 ; λ̂

)
.

(e) Repeat steps (a) to (d) S times.

4. Estimate the average structural function at treatment sequence xT0 from the S simula-
tion draws as

m̂ASF
(
xT0
)

=
1

S

S∑
s=1

Y (s)
(
xT0
)
.

Other functionals of the distribution of potential outcomes can be computed in step 4 in the
obvious way. Assuming correct specification of the distributions fitted in steps 1 and 2, there
remain two sources of error in m̂ASF

(
xT0
)
: sampling error and simulation error. The latter

can be made arbitrarily small by choosing S to be very large (albeit at a computational
cost). To account for the sampling error it is probably easiest to use the bootstrap (i.e.,
repeat steps 1 to 4 using B different bootstrap samples). As Algorithm 1 is likelihood-based,
posterior uncertainty also could be assessed using Bayesian methods. In principle, a fully
nonparametric implementation of G-Computation is also feasible.

I am aware no applications of G-Computation methods within economics and only a handful
in biostatistics. The exposition here provides some indication of why: the method is subtle
to understand and not simple to implement (particularly whenWt is high dimensional). Nev-
ertheless G-Computation provides a coherent and attractive generalization of the familiar
idea of covariate adjustment via marginal integration to dynamic settings. Given the pro-
liferation of data with longitudinal structures, and the inherently dynamic nature of many
policies of interest to economists, it seems fair to say that Lemma 1 should be more widely
known among economists.

Inverse probability weighting

Robins (2000), maintaining Assumptions 1 and 2 proposes an inverse probability of treat-
ment type estimator for the ASF. Just as the G-Computation approach generalizes static
identification arguments for the ASF based on marginal integration, Robins (2000) general-
izes familiar re-weighting methods for covariate adjustment (e.g., Rosenbaum, 1987) in static
models to dynamic ones.
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We begin by specifying a parametric model for the ASF directly

mASF
(
xT0
)

= g
(
xT0 ; β0

)
. (9)

Here g (·; β) is a known family of link functions indexed by the finite dimensional parameter
β. Since we are assuming that the number of logically feasible treatment sequences is finite,
we can make our parametric model nonparametric through saturation. In practice working
with a restrictive model for the ASF aides in both identification and effect interpretation.

Recall that the support of possible treatment assignments XT
0 is discrete and finite. Let

e0
(
v, wT

0 , x
T
0

)
=

N∏
t=0

f
(
xt| v, wt

0, x
t−1
0

)
f
(
xt|xt−10

) (10)

be a stabilized weight. The numerator in (10) is a particular probability of treatment mea-
sure. Specifically f (x0|w0, v) gives the probability of assignment to X0 = x0 given the
period 0 information set of the econometrician; f

(
xt|wt

0, x
t−1
0 , v

)
gives the probability of

assignment to Xt = xt given the period t information set of the econometrician. Hence the
denominator equals a recursively updated probability for treatment sequence XT

0 = xT0 . The
denominator equals the marginal probability of treatment sequence XT

0 = xT0 . Under pure
random assignment e0

(
v, wT

0 , x
T
0

)
≡ 1 for all units. Under sequential conditional exogeneity

e0
(
v, wT

0 , x
T
0

)
< 1 for treatment sequences which occur rarely conditional on controls and

e0
(
v, wT

0 , x
T
0

)
> 1 for those which occur frequently.

Robins (2000) proves the following Lemma.

Lemma 2. (Identification by Reweighting) Under (2), Assumptions 1, and Assump-
tion 2:

E

[
h
(
XT

0

)
e0 (V,W T

0 , X
T
0 )

(
Y −mASF

(
XT

0

))]
= 0. (11)

Proof. Using the joint density factorization implied by Assumptions 1 we can re-write (11)
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as

E

[
h
(
XT

0

)
e0 (V,W T

0 , X
T
0 )

(
Y −mASF

(
XT

0

))]

=
∑
x0∈X0

· · ·
∑

xT∈XT

ˆ
u

ˆ
v

ˆ
w0

· · ·
ˆ
wT

h
(
xT0
) (
m
(
xT0 , u

)
−mASF

(
xT0
))

e0 (v, wT
0 , x

T
0 )

×

{
T∏
t=1

f
(
xt| v, wt

0, x
t−1
0

)
f
(
wt|u, v, wt−1

0 , xt−10

)}
×f (x0| v, w0) f (u, v, w0) dwT · · · dw0dvdu

=
∑
x0∈X0

· · ·
∑

xT∈XT

ˆ
u

ˆ
v

ˆ
w0

· · ·
ˆ
wT

h
(
xT0
) (
m
(
xT0 , u

)
−mASF

(
xT0
))

×

{
f (x0)

T∏
t=1

f
(
xt|xt−10

)}
×f
(
wt|u, v, wt−1

0 , xt−10

)
f (u, v, w0) dwT · · · dw0dvdu

=
∑
x0∈X0

· · ·
∑

xT∈XT

[ˆ
u

h
(
xT0
) (
m
(
xT0 , u

)
−mASF

(
xT0
))
f (u) du

]

×f (x0)
T∏
t=1

f
(
xt|xt−10

)
.

Under Assumption 2 and other regularity conditions, the integrand in the expression to the
right of the first equality will be finite. This fact, the form of the weights, and Assumption 1
gives the second equality. The third equality follows after integrating over v, w0, w1, . . . , wT .
The claim then follows since, by (3),

ˆ
u

m
(
xT0 , u

)
f (u) du = mASF

(
xT0
)
,

which ensures that the integrand to the right of the last equality is zero for all xT0 ∈ XT
0 .

Estimation based on IPW

For simplicity consider the case where Xt is binary-valued. In this case the e0
(
V,W T

0 , X
T
0

)
weights may be estimated by assembling a sequence of logistic regression fits. The numerator
corresponds to the marginal probability the sequence XT

0 , which may be estimated as a cell
mean. Assume that the outcome is continuously-valued. We specify a parametric form for
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the ASF of, for example,

mASF
(
xT0
)

= g
(
xT0 ; β

)
= α + γ

(
T∑
t=0

xt

)
.

This model is restrictive. If T = 1, it asserts that the average potential outcome associated
with X1

0 = (0, 1)′ is the same as that associated with X1
0 = (1, 0)′. Only the number of

times treated “matters”. A non-parametric parameterization of the ASF would involve 2T+1

parameters, the specification above involves just two. Assuming the stabilized weights are
correctly specified, Lemma 2 implies that even if our ASF is incorrectly-specified we will still
recover a projection of the true ASF onto our family of approximating functions.

With our estimated weights in hand, we recover estimates of α0 and γ0 by computing the
weighted least squares fit of Y onto a constant and

(∑T
t=0Xt

)
using weight 1/ê

(
V,W T

0 , X
T
0

)
.

The standard errors reported by our program will be incorrect as they do not incorporate
the effects of sampling error in ê

(
V,W T

0 , X
T
0

)
. A simple way to account for this is to use a

bootstrap.

Additional reading

Daniel et al. (2010) provide a user-oriented introduction to methods for dealing with time
varying confounders. The online supplement of this paper includes STATA scripts. Two
empirical examples of parametric G-Computation are Moore et al. (2008) and Taubman,
Robins, Mittleman and Hernán (2009). Sharkey and Elwert (2011), Wodtke, Harding and
Elwert (2011) and Wodtke (2013) apply IPW methods to learn about neighborhood effects.
Introductions to inverse probability weighting for sequential treatments are provided by
Robins, Hernán and Brumback (2000) and Hernán, Brumback and Robins (2001). Robins
(1999) is an accessible, albeit somewhat dated, introduction to his theoretical work in this
area. Some of the theoretical arguments introduced here, especially the G-Computation
formula, also arise in mediation analysis. Baron and Kenny (1986) is a widely-cited early
reference. Tchetgen and Shpitser (2012) a recent theoretical reference.
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