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The previous chapters emphasized optimal prediction under complete knowledge of the pop-
ulation data distribution. Specifically, given knowledge of the joint distribution of X and Y
how does one predict Y for a random draw with X = x? Under specific parameterizations of
the loss associated with prediction error, the linear, mean and quantile regression functions
are all optimal prediction functions. By optimal I mean that they minimize average loss, or
risk, across many replications of our prediction problem.

Evaluating the risk attached to a specific prediction procedure requires knowledge of the
data distribution function. Consequently, when this distribution function is unknown, a
risk-minizing procedure is generally unavailable. In this lecture we consider prediction when
only a random sample of size N from the target population is available. While our random
sample provides information about the underlying population, it does not perfectly reveal its
properties. We must proceed under varying degrees of uncertainty about the true population
distribution. Our inference problem is created by this lack of knowledge.

One approach to handling this uncertainty would be to calculate the risk associated with a
given prediction rule under all logically possible data distributions. We could then choose
rules that have low maximal risk orminimax rules (e.g., Ferguson, 1967, Chapter 2; Lehmann
and Casella, 1998, Chapter 5). Here we will develop a different approach. We begin with the
observation that the sample provides information about the relative plausibility of different
logically possible data distributions. If the sample includes many draws from a certain
region of the sample space, then we might reasonably conclude that the true population
data distribution attaches a large amount of probability mass to that region. Likewise we
may conclude that data distributions which attach little mass to that region are less plausible
candidates for the true distribution.

One way to formalize the above intuition is to conceptualize the data distribution as a
∗This note is adapted from my teaching materials from Ec 240a at Berkeley and makes references to other

materials not included here.
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random draw from the set of all logically possible data distributions. The frequency with
which specific possible data distributions are drawn is governed by a prior. After observing
the sample we update our beliefs about from which distribution, among all those logically
possible, our sample was, in fact, drawn.

Treating the sampled data distribution as random is not straightfoward. Doing so requires
placing a distribution on the space of probability measures (i.e., we need a distribution for
distributions). We will use results from Ferguson (1973, 1974) for this purpose. The basic
idea, however, dates to the work of Pierre Simon Laplace in the late 18th century (Laplace
1774; Stigler, 1986a, 1986b). Laplace, considered a bag of approximately fair coins. It may
be that prior to flipping any specific coin we believe that the true probability of observing
heads is in the neighborhood of one half. We formalize this, as Laplace did, by assuming that
the distribution of heads probabilities across all coins in the bag is uniform over a narrow
region centered on 1/2. Once we draw a specific coin, and begin to flip it, our beliefs about
its heads probability will change. A coin that comes up heads more often then tails is more
likely to have a true heads probability is excess of 1/2 than below 1/2. Of course, even after
many flips of the coin we remain uncertain about its true heads probability.

Our post-sample beliefs are summarized by a posterior distribution, again on the space of
probability measures. This distribution is computed using the prior, the likelihood for the
data, and Bayes rule. Assume, for example, the ultimate object of interest is a vector of linear
predictor coefficients. We may compute a predictive distribution for this coefficient vector
as follows. First, we draw a candidate distribution from our posterior distribution (on the
space of probability measures). Second, using the drawn distribution we compute the linear
predictor coefficients. If we repeat this process many times we will get a distribution of linear
predictor coefficients. This distribution captures our uncertainty about the magnitudes of the
linear predictor coefficients in the population actually sampled. This predictive distribution
will reflect our uncertainty about the underlying population data distribution. We attach
greater probability mass to predictions that are optimal (i.e., risk minimizing) under joint
distributions that, after having observed the sample in hand, we believe are more likely to
characterize the true sampled population. We attach less probability mass to predictions
that are optimal under distributions that, again after having observed the sample in hand,
we believe are less likely. In situations where a single prediction is called for we may use
the average, median or some other quantile of our predictive distribution. These types of
point estimates are called Bayes’ predictions or Bayes’ rules (e.g., Ferguson, 1967, Chapter
2; Lehmann and Casella, 1998, Chapter 4).
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1 Discrete distributions

Our development will focus on the case where Z = (X ′, Y )′ is a discrete random variable,
possibly vector-valued, with J points of support (i.e, Z ∈ {z1, . . . , zJ}). Importantly, the
number of support points may be extremely large. In many cases our assumption of dis-
creteness will be unrestrictive, since even nominally continuously-valued random variables
can only be measured (and stored) with finite precision (we will develop some limitations of
this argument below; cf., Efron (1982)).

Available is a random sample of size N from the population of interest, {Zi}Ni=1. Let Z =

(Z ′1, . . . , Z
′
N)′ be the vector containing all N random draws. The probability that a generic

random draw takes on the jth possible value is

Pr (Z = zj| θ) = θj, j = 1, . . . , J,

where θ = (θ1, . . . , θJ)′ is the collection of probabilities attached to each possible realized
value of Z. This vector fully characterizes the sampled population. The set of all logically
possible population distributions or the parameter space is given by the (J − 1) probability
(unit) simplex

Θ = SJ−1 =

{
θ = (θ1, . . . , θJ) ∈ RJ : θj ≥ 0,

J∑
j=1

θj = 1

}
.

Our parameter space is a subset of a finite dimensional Euclidean space, in this sense our
approach is ‘parametric’. On the other hand, conditional on the multinomial assumption, it
places no restrictions on the form of the true data distribution. In this sense our setup is
‘nonparametric’. Exploiting the dual parametric/nonparametric interpretation of the multi-
nomial likelihood often leads to interesting insights.

If we knew θ with certainty we could proceed as in the previous lectures. For example the
vector of coefficients indexing the best linear predictor of Y given X equals, for zj =

(
x′j, yj

)′,
β (θ) = E [XX ′]

−1 × E [XY ]

=

[
J∑
j=1

θjxjx
′
j

]−1

×

[
J∑
j=1

θjxjyj

]
,

which is a function of θ. Unfortunately we do not know which value of θ indexes the sample
population, and hence β (θ).
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The gamma function
The function

Γ (x) =

ˆ t=∞

t=0

tx−1 exp (−t) dt, (1)

which appears in the Dirichlet density function (4), is called the is the gamma function. It
has several special properties. First, it is finite if x > 0. Second, integration by parts (with
u (t) = tx and v (t) = − exp (−t)) gives

ˆ t=b

t=a

tx exp (−t) dt = [−tx exp (−t)]ba + x

ˆ
tx−1 exp (−t) dt.

Letting a → 0 and b → ∞ we get the recursive relationship Γ (x+ 1) = xΓ (x) for x > 0.
Since

´ t=∞
t=0

exp (−t) dt = [− exp (−t)]∞0 = 1 we further have

Γ (1) = 1 = 0!

Γ (2) = 1 · Γ (1) = 1!

Γ (3) = 2 · Γ (2) = 2!

Γ (4) = 3 · Γ (3) = 3!

So that, third, the gamma function is an extension of the factorial function.
The gamma distribution, with location parameter α, and scale parameter β, has density

f (x;α, β) =
1

βα
xα−1 exp (−x/β)

Γ (α)
(2)

for x > 0 and zero otherwise. A useful feature of gamma random variables is that if

Xj ∼ G (αj, β) ,

then
J∑
j=1

Xi ∼ G

(
J∑
j=1

αj, β

)
. (3)

Chamberlain (2012) calls this a reproductive stable property. When α = 1 the gamma
distribution coincides with an exponential distribution with scale parameter β.

We will model our uncertainty about the true value of θ, by assuming that it is itself random.
Specifically we assume that the θ indexing the sampled population corresponds to a random
draw from a collection of possible data distributions. The probability measure we place on the
parameter space Θ is called the prior distribution. A convenient way to assign probabilities
to the (J − 1) unit simplex is to use the a Dirichlet distribution (cf., Ferguson, 1973, 1974;
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Chamberlain and Imbens, 2003; Ng, Tian and Tang, 2011). The Dirichlet distribution is a
distribution over SJ−1 with density

π (θ1, . . . , θJ) =
Γ
(∑J

j=1 αj

)
∏J

j=1 Γ (αj)

[
J∏
j=1

θ
αj−1
j

]
(4)

if θ ∈ Θ = SJ−1 and zero otherwise. The parameter indexing the Dirichlet, α = (α1, . . . , αJ)′,
is a vector of strictly positive real numbers. We will discuss how to choose α in practice
below.

2 Bayes rule

Let Nj =
∑N

i=1 1 (Zi = zj) equal the number of units in our sample taking the jth possible
value. Conditional on θ, the likelihood, of our data is multinomial with density

f (z| θ) =
N !

N1! · · ·NJ !

J∏
j=1

θ
Nj

j .

The value of Z in hand reveals information about likely (population) values of θ. The sample
allows us to learn, or update our beliefs, about the true population distribution. For example,
if draws with Z = zj are numerous in our sample, then we might sensibly conclude that θj is
‘likely’ to be ‘large’. We update our beliefs using the laws of probability, specifically Bayes’
rule. We call the conditional distribution of θ given Z = z, or the distribution representing
our beliefs about the plausibility of different values for θ after having observed the sample
in hand, the posterior distribution.

Using Bayes’ rule the posterior density is given by

π̄ (θ| z) =
f (z| θ) π (θ)´
f (z| θ)π (θ) dθ

,

which, given the multinomial likelihood and Dirichlet prior, takes the specific form

π̄ (θ| z) =

∏J
j=1 θ

Nj+αj−1
j´

SJ−1

∏J
j=1 θ

Nj+αj−1
j dθ1 · · · dθJ

.

Following calculations similar to those used to derive the characterization of the beta function
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given by (5) we can show that

ˆ
SJ−1

J∏
j=1

θ
Nj+αj−1
j dθ1 · · · dθJ =

∏J
j=1 Γ (Nj + αj)

Γ
(∑J

j=1 Nj + αj

)
and consequently that our posterior is itself a member of the Dirichlet family with density

π̄ (θ| z) =

Γ
(∑J

j=1Nj + αj

)
∏J

j=1 Γ (Nj + αj)

 J∏
j=1

θ
Nj+αj−1
j .

The Dirichlet is what is known as the conjugate prior of the multinomial distribution: when
our prior beliefs about the distribution of probability mass across a finite set of support
points takes the Dirichlet form, then our posterior beliefs, after observing a random sample,
will take the same form.

Let ᾱj = αj + Nj for j = 1, . . . , J , ᾱ0 =
∑J

j=1 ᾱj and θ̄j =
αj+Nj∑J
j=1 αj+Nj

=
ᾱj

ᾱ0
. The posterior

mean of θ is given by

E [θ|Z = z;α] =


θ̄1

...
θ̄J

 ,

= θ̄.

while the posterior covariance is

V (θ|Z = z;α) =
1

1 + ᾱ0


θ̄1

(
1− θ̄1

)
· · · −θ̄1θ̄J

... . . . ...
−θ̄J θ̄1 · · · θ̄J

(
1− θ̄J

)
 .

=
1

1 + ᾱ0

[
diag

{
θ̄
}
− θ̄θ̄′

]
.

The sample allows us to sharpen our beliefs about which distribution functions are more likely
to characterize the sampled population, but uncertainty remains; the posterior distribution
is non-degenerate.
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The beta function
The connection between the gamma and factorial functions suggests we may use the latter

to generalize the bionomial coefficient

(
x+ y

x

)
= (x+y)!

x!y!
. Such a generalization is provided

by the reciprocal of the beta function:

β (x, y) =
Γ (x) Γ (y)

Γ (x+ y)
.

There is a representation of the beta function as a definite integral which will frequently
prove useful. Using (1) we have

Γ (x) Γ (y) =

ˆ t=∞

t=0

ˆ s=∞

s=0

tx−1 exp (−t) sy−1 exp (−s) dsdt.

Applying the change-of-variable s = tu to the second integral yields

Γ (x) Γ (y) =

ˆ t=∞

t=0

ˆ u=∞

u=0

tx−1 exp (−t) ty−1uy−1 exp (−tu) · t · dudt

=

ˆ t=∞

t=0

ˆ u=∞

u=0

tx+y−1uy−1 exp (−t (1 + u)) · dudt.

Next we let v = t (1 + u), yielding

Γ (x) Γ (y) =

ˆ v=∞

v=0

ˆ u=∞

u=0

(
v

1 + u

)x+y−1

uy−1 exp (−v) · (1 + u) · dudv

=

ˆ v=∞

v=0

ˆ u=∞

u=0

vx+y−1

(1 + u)x+yu
y−1 exp (−v) · dudv

= Γ (x+ y)

ˆ u=∞

u=0

uy−1

(1 + u)x+y du.

Finally we apply the change-of-variables u = θ/ (1− θ) to get

Γ (x) Γ (y) = Γ (x+ y)

ˆ θ=1

θ=0

(
θ

1−θ

)y−1(
1 + θ

1−θ

)x+y

1

(1− θ)2 dθ

= Γ (x+ y)

ˆ θ=1

θ=0

θy−1 (1− θ)x−1 dθ,

which implies that

β (x, y) =
Γ (x) Γ (y)

Γ (x+ y)
=

ˆ θ=1

θ=0

θy−1 (1− θ)x−1 dθ. (5)
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3 Posterior simulation

Our posterior for θ summarizes our beliefs, after observing Z = z, about the relatively
plausibility of all possible joint distributions of X and Y . Consequently we can use this
distribution to summarize our beliefs about any functional of the data distribution. For
example, the posterior mean of the vector of coefficients indexing the best linear predictor
of Y given X is

β̄ = E [β (θ)|Z = z;α]

=

ˆ
SJ−1

[
J∑
j=1

θjxjx
′
j

]−1

×

[
J∑
j=1

θjxjyj

]Γ
(∑J

j=1 Nj + αj

)
∏J

j=1 Γ (Nj + αj)

 J∏
j=1

θ
Nj+αj−1
j dθ1 · · · dθJ .

In principle we could compute this integral directly. In practice an easier approach is to
use simulation. To develop this simulation approach it is useful to use a connection between
gamma random variables and Dirichlet ones. Let {Wj}Jj=1 be J independent random variables
with Wj ∼ G (αj, 1) . Define

Vj = Wj/
J∑
j=1

Wj.

It turns out that (V1, . . . , VJ) coincides with a random draw from a Dirichlet distribution
with parameter α = (α1, . . . , αJ)′ (e.g., Ng, Tian and Tang, 2011, p. 40).

Showing this result, which involves an application of the change of variables formula, is
instructive. Let U =

∑J
j=1 Wj. This gives Wj = UVj for j = 1, . . . , J − 1 and WJ =

U
(

1−
∑J−1

j=1 Vj

)
. The Jacobian is


V1 U · · · 0
...

... . . . ...
VJ−1 0 · · · U

1−
∑J−1

j=1 Vj −U · · · −U

 ,

with determinant UJ−1. The joint density of W = (W1, . . . ,WJ)′ is

f (w;α) =
J∏
j=1

w
αj−1
j

exp (−wj)
Γ (αj)

,
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so we have a density for V1, . . . , VJ−1, U of

f (v1, . . . , vJ−1, u;α) =
J−1∏
j=1

(uvj)
αj−1 exp (−uvj)

Γ (αj)

×

(u(1−
J−1∑
j=1

vj

))αJ−1
exp

(
−u
(

1−
∑J−1

j=1 vj

))
Γ (αJ)

uJ−1

=
1∏J

j=1 Γ (αj)

[
J−1∏
j=1

v
αj−1
j

][
1−

J−1∑
j=1

vj

]αJ−1

× u(
∑J

j=1 αj−1)+N−1 exp

(
−u

J−1∑
j=1

vj − u

(
1−

J−1∑
j=1

vj

))

=
1∏J

j=1 Γ (αj)

[
J−1∏
j=1

v
αj−1
j

][
1−

J−1∑
j=1

vj

]αJ−1

u(
∑J

j=1 αj)−1 exp (−u) .

Integrating out u yields a marginal distribution for V1, . . . , VJ−1 of

f (v1, . . . , vJ−1;α) =

ˆ
f (v1, . . . , vJ−1, u;α) du

=
1∏J

j=1 Γ (αj)

[
J−1∏
j=1

v
αj−1
j

][
1−

J−1∑
j=1

vj

]αJ−1 ˆ
u(

∑J
j=1 αj)−1 exp (−u) du

=
Γ
(∑J

j=1 αj

)
∏J

j=1 Γ (αj)

[
J−1∏
j=1

v
αj−1
j

][
1−

J−1∑
j=1

vj

]αJ−1

,

Since Γ (α) =
´∞

0
uα−1 exp (u) du. This is the density of a Dirichlet distribution with param-

eter α = (α1, . . . , αJ)′ as claimed.

Recalling that ᾱj = αj + Nj and letting Vj = Wj/
∑J

j=1Wj for Wj ∼ G (ᾱj, 1), both for
j = 1, . . . , J , we may represent our posterior distribution for θ as

θ|Z ∼ (V1, . . . , VJ)′ .

Note that
Vj =

Wj

Wj +
∑

k 6=jWk

and hence that the marginal posterior distribution of θj is a member of the beta family:
B
(
ᾱj,
∑

k 6=j ᾱk

)
.
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4 Improper prior

We will continue our discussion under the assumption that the prior takes an improper form
with αj = 0 for j = 1, . . . , J . Our prior is improper under this parameterization because
it does not integrate to one (and hence is not a valid density function). Nevertheless the
posterior distribution is proper and we will base inference on it. See Chamberlain and
Imbens (2003) and Chamberlain (2012) for a discussion of this choice of prior. Briefly, its
two advantages are that it is ‘soft’ (i.e., generally dominated by the data) and, relatedly,
does not place any probability mass on support points not realized in the sample. This latter
property simplifies simulation.

To see this second point observe that a random draw from our posterior distribution of
probability measures is, for Vj as defined above,

FBB (z) =
J∑
j=1

Vj1 (zj ≤ z) .

But under our improper prior Vj = Wj/
∑J

j=1 Wj with Wj ∼ G (Nj, 1) and Nj equalling
the number of observations taking on the jth possible value of Z. Let W ∗

i ∼ G (1, 1) and
V ∗i = W ∗

i /
∑N

i=1W
∗
i , an alternative representation of a posterior draw is

FBB
N (z) =

N∑
i=1

V ∗i 1 (Zi ≤ z)

=
N∑
i=1

V ∗i

J∑
j=1

1 (Zi = zj)1 (zj ≤ z)

=
J∑
j=1

1 (Nj > 0)

(
N∑
i=1

1 (Zi = zj)V
∗
i

)
1 (zj ≤ z)

∼
J∑
j=1

1 (Nj > 0)Vj1 (zj ≤ z)

=
J∑
j=1

Vj1 (zj ≤ z) ,

= FBB (z) ,

since by the reproductive stable property of the gamma distribute Vj ∼
∑N

i=1 1 (Zi = zj)V
∗
i

(also note that Vj is degenerate at zero if Nj = 0 under our improper prior).

Say we wish to simulate the posterior distribution of the coefficient vector indexing the

10 © Bryan S. Graham 2015



Empirical Methods for Program Evaluation and Networks CEMFI, August 24 - 28, 2015

best linear predictor of Y given X. Using our first representation a random draw from this
distribution is given by

β =

[
J∑
j=1

Vjxjx
′
j

]−1

×

[
J∑
j=1

Vjxjyj

]
.

Using the second representation, in contrast, a random draw is given by

β =

[
N∑
i=1

V ∗i XiX
′
i

]−1

×

[
N∑
i=1

V ∗i XiYi

]
,

which corresponds to the weighted least squares fit of Y onto X with the vector V∗ =

(V ∗1 , . . . , V
∗
N)′ containing the weights.

This suggests the following approach to inference.

1. Draw an N vector of independent G (1, 1) random variables. Form the sum normalized
vector V∗(b);

2. Compute β(b) =
[∑N

i=1 V
∗
i XiX

′
i

]−1

×
[∑N

i=1 V
∗
i XiYi

]
.

Repeat this process for b = 1, . . . , B times with B large (>1,000). The posterior probability
that an element of β lies in some interval can be approximated by the fraction of its B
posterior draws that lie in the same interval.1 An interval which will contain the true linear
predictor coefficient vector with probability 0.95 can be formed by taking the 0.025 and 0.975
sample quantiles of the B posterior draws. This is sometimes called a credible interval in
Bayesian statistics.

As an illustration of posterior simulation using the Bayesian Bootstrap consider the co-
efficients on schooling and AFQT percentile in the linear predictor of log earnings given a
constant, schooling and AFQT percentile. The sample is NLSY79 extract of about 2,000 em-
ployed white males. The first column reports the OLS estimate of the coefficient on schooling
and AFQT (as well as the ratio of these two estimates). Below each coefficient estimate is
an heteroscedastic robust standard error estimate and a 95 percent confidence interval. The
second column reports posterior means, standard deviations and 95 percent credible inter-
vals for these same three objects. These are approximated using 10,000 “Bayesian Bootstrap”
posterior draws. Note that the posterior distribution for the ratio of the schooling-to-AFQT

1We will develop methods which formalize the degree to which this approximation becomes more and
more accurate as B, the number of posterior draws, increase in later chapters.
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Figure 1: Bayes Bootstrap

linear predictor coefficients differs appreciably from its corresponding (estimated) asymptotic
sampling distribution.

OLS BB

YrsSch
0.1064

(0.012)

[0.084, 0.129]

0.1065

(0.012)

[0.084, 0.130]

AQFT
0.0042

(0.001)

[0.002, 0.006]

0.0042

(0.001)

[0.002, 0.006]

YrsSch/AQFT
25.31

(8.36)

[8.9, 41.7]

27.91

(12.9)

[14.2, 56.8]

Figure 1 plots the 10,000 draws of the two linear predictor coefficients from the posterior
distribution.
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5 Discussion

A convenient feature of the approach to measuring uncertainty outlined above is that it may
be used to make degree of belief statements about complex functionals of the data distri-
bution. The discussion above emphasized linear predictor coefficients, but its application to
conditional quantiles and other, more exotic, objects is similarly simple. We will develop
this point by means of an example in a later chapter. Rubin (1981) introduced the above
simulation method, terming it the ‘Bayesian Bootstrap’.

In later chapters we will develop an alternative, large sample, approach to inference. This
approach will not require the specification of a prior distribution. It is also conceptually
distinct. In many cases the Bayesian Bootstrap and the large sample approach will give
similar answers. This has been formalized by demonstrating a large sample equivalence in
certain leading cases (for example Efron (1982), Lo (1987) and Hahn (1997)).

The exposition here has made the assumption that Z may take on only a finite number of
values. The case of infinite support can also be handled and was first explored by Ferguson
(1973, 1974).
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