
Lecture 4: U-Statistics & U-Process Minimizers

Bryan S. Graham, UC - Berkeley & NBER

September 4, 2015

Hoeffding (1948a) developed the basic theory of U-Statistics, a family of estimates which
includes many familiar and interesting examples. This lecture reviews this theory. Standard
references for the material presented here include Serfling (1980, Chapter 5), Lehmman
(1999, Chapter 6) and van der Vaart (1998, Chapters 11 & 12).

The basic theory of U-Statistics allows for a presentation of large sample results for so-called
U-Process minimizers. U-Process minimizers generalize the textbook M-Estimator (e.g.,
Wooldridge, 2010, Chapter 12). Honore and Powell (1994) is a basic reference on U-Process
minimizers (see also Bose (2002)). Later I will will apply these results to a one-to-one
matching model.

U-Statistics

Let {Zi}Ni=1 be a simple random sample. Let h (Zi1 , . . . , Zim) be a symmetric kernel func-
tion. The assumption of symmetry is without loss of generality since we can always replace
h (Zi1 , . . . , Zim) with its average across permutations. A U-statistic is an average of the
kernel h (Zi1 , . . . , Zim) over all possible m-tuples of observations in the sample.

UN =

(
N

m

)−1 ∑
i∈Cm,N

h (Zi1 , . . . , Zim)

where Cm,N denotes the set of all unique combinations of indices of size m drawn from the
set {1, 2, . . . , N}.

The parameter of interest is
θ = E [h (Z1, . . . , Zm)] ,

where the expectation is over m independent random draws from the target population.

1



Empirical Methods for Program Evaluation and Networks CEMFI, August 24 - 28, 2015

Variance of UN

For s = 1, . . . ,m let

h̄s (z1, . . . , zs) = E [h (z1, . . . , zs, Zs+1, . . . , Zm)]

be the average over the last m− s elements of h (·) holding the first s elements fixed. Note
that since Zik is independent of Zil for all k 6= l we have

E [h (Z1, . . . , Zs, Zs+1, . . . , Zm)| (Z1, . . . , Zs) = (z1, . . . , zs)] = E [h (z1, . . . , zs, Zs+1, . . . , Zm)] .

It is also useful to observe that

E
[
h̄s (Z1, . . . , Zs)

]
= E [h (Z1, . . . , Zm)] = θ.

The variance of UN has a special structure. Define, for s = 1, . . . ,m

δ2s = V
(
h̄s (Z1, . . . , Zs)

)
.

The variance of UN equals

V (UN) = V

(N
m

)−1 ∑
i∈Cm,N

h (Zi1 , . . . , Zim)


=

(
N

m

)−2 ∑
i∈Cm,N

∑
j∈Cm,N

C (h (Zi1 , . . . , Zim) , h (Zj1 , . . . , Zjm)) . (1)

The form of the covariances in (1) depends on the number of indices in common. Let s be
the number of indices in common in Zi1 , . . . , Zim and Zj1 , . . . , Zjm :

C (h (Zi1 , . . . , Zim) , h (Zj1 , . . . , Zjm)) = E [(h (Z1, . . . , Zs, Zs+1, . . . , Zm)− θ)

×
(
h
(
Z1, . . . , Zs, Z

′
s+1, . . . , Z

′
m

)
− θ
)]

(2)

Conditional on Z1, . . . , Zs the two terms in (2) are independent so that, using the Law of
Iterated Expectations,

E
[(
h̄s (Z1, . . . , Zs)− θ

) (
h̄s (Z1, . . . , Zs)− θ

)]
= δ2s .
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Using the same argument yields

C
(
h̄s (Z1, . . . , Zs) , h (Z1, . . . , Zm)

)
= δ2s .

By the Cauchy-Schwartz Inequality we have

C
(
h̄s (Z1, . . . , Zs) , h (Z1, . . . , Zm)

)
δsδm

≤ 1

and hence
δ2s ≤ δ2m.

Continuing with this type of reasoning we get the weak ordering

δ21 ≤ δ22 ≤ . . . ≤ δ2m.

In what follows we will assume that δ2m <∞.

To use these results to get an expression for V (UN) begin by observing that the number of
pairs of m-tuples (i1, . . . , im) and (j1, . . . , jm) having exactly s elements in common is(

N

m

)(
m

s

)(
N −m
m− s

)
.

This follows since
(
N
m

)
equals the number of ways of choosing (i1, . . . , im) from the set

{1, . . . , N}. For each unique m-tuple there are
(
m

s

)
ways of choosing a subset of size s

from it. Having fixed the s indices in common there are then
(
N−m
m−s

)
ways of choosing the

m− s non-common elements of (j1, . . . , jm) from the N −m integers not already present in
(i1, . . . , im).

We therefore have

V (UN) =

(
N

m

)−2 m∑
s=0

(
N

m

)(
m

s

)(
N −m
m− s

)
δ2s

=

(
N

m

)−1 m∑
s=1

(
m

s

)(
N −m
m− s

)
δ2s .

=
m∑
s=1

m!2

s! (m− s)!2
(N −m) (N −m− 1) · · · (N − 2m+ s+ 1)

N (N − 1) · · · (N −m+ 1)
δ2s . (3)

To understand this expression note that each of the covariances in (1) above have s = 0, . . . ,m

elements in common. The coefficients on the δ2s in (3) give the number of covariances with
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s elements in common. Also note that δ20 = 0.

The coefficient on δ21 is

m!2

1! (m− 1)!2
(N −m) (N −m− 1) · · · (N − 2m+ 1 + 1)

N (N − 1) · · · (N −m+ 1)
= m2

m-1 terms︷ ︸︸ ︷
(N −m) (N −m− 1) · · · (N − 2m+ 2)

N (N − 1) · · · (N −m+ 1)︸ ︷︷ ︸
mterms

' m2

N
.

The coefficient on δ22 is O (N−2) etc. We therefore have

V (UN) =
m2

N
δ21 +O

(
N−2

)
and also that V

(√
N (UN − θ)

)
→ m2δ21 as N →∞.

If δ1 = 0 we say that UN is a degenerate U-Statistic with degeneracy of order 1. I will not
consider the properties of degenerate U-Statistics here, although this situation is more than
a technical curiosity (cf., Graham, 2015).

First projection of UN

The arguments outlined so far provide expressions for the mean and variance of UN . To
conduct inference we need an asymptotic normality result. While UN is a sum of identi-
cally distributed random variables, not all elements of its summand are independent of one
another. We cannot apply a standard central limit theorem (CLT).

To show asymptotic normality of
√
NUN we will therefore proceed as follows. First, we

will construct a statistic U∗N with the property that
√
NU∗N obeys a standard CLT. Second,

we will show that
√
NUN converges in mean square to

√
NU∗N . Since

√
NU∗N and

√
NUN

are asymptotically equivalent, their limit distributions coincide. The basic strategy is to
construct a statistic, the properties of which are easy to understand, and show that this
statistic, in large enough samples, is approximately equal to the original statistic of interest,
the properties of which were not directly apparent at the outset.

In order to use a CLT we’d like our approximation U∗N to be a sum of independent and
identically distributed random variables.

To simplify the argument assume that m = 2. To understand the how to construct U∗N begin

4 © Bryan S. Graham 2015



Empirical Methods for Program Evaluation and Networks CEMFI, August 24 - 28, 2015

by considering the L2 projection of UN onto just the first observation Z1:

E [UN |Z1] =
(
N
2

)−1 N∑
i=1

∑
i<j

E [h (Zi, Zj)|Z1]

=
(
N
2

)−1
(N − 1) h̄1 (Z1) +

(
N
2

)−1 ((N
2

)
− (N − 1)

)
θ

=
2

N

{
h̄1 (Z1)− θ

}
+ θ. (4)

The second equality follows because E [h (Zi, Zj)|Z1] = h̄1 (Z1) if either i or j equals 1

(which occurs N − 1 times). In all other cases, by random sampling, E [h (Zi, Zj)|Z1] =

E [h (Zi, Zj)] = θ (which occurs
(
N
2

)
− (N − 1) times). Second recall, that for X1, . . . , XK all

independent, we have E [Y |X1, . . . , XK ] =
∑K

k=1 E [Y |Xk] − (K − 1)E [Y ]. Using this fact
and (4) yields

E [UN |Z1, . . . , ZN ] =
N∑
i=1

E [UN |Zi]− (N − 1)E [UN ]

=
2

N

N∑
i=1

{
h̄1 (Zi)− θ

}
+Nθ − (N − 1)E [UN ]

=
2

N

N∑
i=1

{
h̄1 (Zi)− θ

}
+ θ.

Define the centered average
h̃1 (Zi) = h̄1 (Zi)− θ.

The projection of UN − θ onto the set of all statistics of the form
∑N

i=1 g (Zi) is thus given
by

U∗N =
m

N

N∑
i=1

{
h̄s (Zi)− θ

}
=
m

N

N∑
i=1

h̃1 (Zi) . (5)

Equation (5) is often called the Hajek projection; see van der Vaart (1998, Chapters 11-12)
for more details.

Since U∗N is a sum of i.i.d. random variables with V
(
h̃s (Zi)

)
= m2δ21, a CLT gives

√
NU∗N

D→ N
(
0,m2δ21

)
.

We will now show (see also Theorem 12.3 in van der Vaart (2000)), that

NE
[
(U∗N − (UN − θ))2

]
→ 0 (6)
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as N → ∞. Equation (6) implies that
√
N (UN − θ) converges in mean square to

√
NU∗N .

This latter statistic is normally distributed in large samples and hence so will be our centered
U-Statistic.

We have

NE
[
(U∗N − (UN − θ))2

]
= NV (U∗N)− 2NC (U∗N , UN) +NV (UN) .

Evaluating the covariance component first yields

NC (U∗N , UN) = NC

m
N

N∑
i=1

h̃1 (Zi) ,

(
N

m

)−1 ∑
j∈Cm,N

h (Zj1 , . . . , Zjm)


=

m(
N
m

) N∑
i=1

∑
j∈Cm,N

C
(
h̄1 (Zi) , h (Zj1 , . . . , Zjm)

)
.

This covariance is zero unless i ∈ {j1, . . . , jm} and equals δ21 otherwise (by the calculations
above). For a fixed i the number of m-tuples containing i is

(
N−1
m−1

)
and since there are N

such i we get therefore get

NC (U∗N , UN) =
m(
N
m

)N(N−1
m−1

)
δ21

= m2δ21.

Since (
N−1
m−1

)(
N
m

) =
(N − 1)!

(m− 1)! ((N − 1)− (m− 1))!

m! (N −m)!

N !
=
m

N
.

This gives

NE
[
(U∗N − (UN − θ))2

]
= V

(√
NUN

)
−m2δ21

→ 0

as N → ∞. Since
√
NU∗N −

√
N (UN − θ) converges in mean square to zero, they are

asymptotically equivalent, and hence

√
N (UN − θ)

D→ N
(
0,m2δ21

)
as needed.
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Kendall’s Tau

There are many applications of U-Statistics to non-parametric testing problems. I will give
just one example here. See Lehmann (1999) for an exposition of many classic examples.

Consider the statistics (e.g., Hoeffding, 1948b)

KN =

(
N

2

)−1 N∑
i=1

∑
j<i

sgn {(Xi −Xj) (Yi − Yj)} . (7)

Let Z = (X, Y ) , then (7) is a U-Statistic of order 2 with kernel h (z1, z2) = sgn {(x1 − x2) (y1 − y2)}.
To calculate the Hajek projection we evaluate

h̄1 (z) = E [sgn {(x−X) (y − Y )}]

= Pr ((x−X) (y − Y ) > 0)− Pr ((x−X) (y − Y ) < 0)

= Pr (X > x, Y > y orX < x, Y < y)−

Pr (X > x, Y < y orX < x, Y > y)

= 1− 2FXY (x,∞)− 2FXY (∞, y) + 4FXY (x, y)

= (1− 2FX (x)) (1− 2FY (y)) + 4 (FXY (x, y)− FX (x)FY (y)) .

To verify the above calculations it is helpful to draw a figure. Under the null of independence
of X and Y FXY (x, y) = FX (x)FY (y) so that

h̄1 (z) = (1− 2FX (x)) (1− 2FY (y)) .

Note that U = (1− 2FX (X)) is a U [−1, 1] random variable, independent of V = (1− 2FX (Y )),
which is also a U [−1, 1] random variable. Under the independence null we therefore have
θ = E [UV ] = 0.
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The variance of h̄1 (Z) equals

δ1
H0= V

(
h̄1 (Z)

)
= V (UV )

= E
(
U2V 2

)
=

[ˆ 1

−1
u2

1

2
du

] [ˆ 1

−1
v2

1

2
dv

]
=

(
1

3

)2

=
1

9
.

Using these results, and the general large sample results above, we have that under the
maintained null of independence of X and Y

√
NKN

H0→ N
(

0,
4

9

)
.

We may reject the null of independence if
√

9N
4
|KN | > zα/2.

U-Process Minimizers

Honoré and Powell (1994) study the large sample properties of U-Process minimizers (see
also Bose (2002)). They are motivated by problems due to censoring.

Let {Zi}Ni=1 be a sample of i.i.d random variables and consider the estimator β̂ which mini-
mizes

LN (β) =
(
N
m

)−1 ∑
i∈Cm,N

l (Zi1 , . . . , Zim ; β) .

A mean value expansion gives, after some manipulation

√
N
(
β̂ − β0

)
= −Γ−10

√
N

(N
m

)−1 ∑
i∈Cm,N

∇βl (Zi1 , . . . , Zim ; β0)

+ op (1)

where plim
N→∞

∇ββLN

(
β̂
)

= Γ0, assumed invertible. To make connections to the basic theory
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of U-Statistics outlined above define

h (Zi1 , . . . , Zim ; β) = ∇βl (Zi1 , . . . , Zim ; β)

and also
h̃1 (z1; β) = E [h (z11 , Zi2 . . . , Zim ; β)] .

A CLT gives
m√
N

N∑
i=1

h̃1 (Zi; β0)
D→ N

(
0,m2Ω0

)
.

with
Ω0 = E

[
h̃1 (Zi; β0) h̃1 (Zi; β0)

′
]
.

Define

UN (β0) =
(
N
m

)−1 ∑
i∈Cm,N

∇βl (Zi1 , . . . , Zim ; β0) , U
∗
N (β0) =

m

N

N∑
i=1

h̃1 (Zi; β0) .

By our discussion of U-Statistics given above we have

NE
[
(U∗N (β0)− UN (β0))

2]→ 0

as N →∞ and hence, applying a Slutsky Theorem,

√
N
(
β̂ − β0

)
D→ N

(
0,m2Γ−10 Ω0Γ

−1
0

)
.

A rigorous derivation of this result requires considerably more care, but the heuristic argu-
ment given here is a simple combination of textbook arguments associated with M-estimation
(e.g., Wooldridge, 2001, Chapter 12) and those outlined for U-Statistics above.

To construct an estimate of the asymptotic variance of β̂ we compute

ˆ̃h1

(
Zi; β̂

)
=
(
N−1
m−1

)−1 ∑
j∈Cm−1,N−1

h (Zi, Zj2 . . . , Zjm ; β0) ,

and then calculate

Ω̂ =
1

N

N∑
i=1

ˆ̃h1

(
Zi; β̂

)
ˆ̃h1

(
Zi; β̂

)′
Γ̂ =

(
N
m

)−1 ∑
i∈Cm,N

∇ββl
(
Zi1 , . . . , Zim ; β̂

)
.

9 © Bryan S. Graham 2015



Empirical Methods for Program Evaluation and Networks CEMFI, August 24 - 28, 2015

Application: partially linear logit

Consider the binary choice model

Yi = 1 (X ′iβ0 + g (Wi)− Ui ≥ 0) ,

with Ui logistic. Here we assume thatWi is discretely-valued, but perhaps with many support
points. An estimator which replaces the unknown function g (Wi) with a vector of dummy
variables for each support point of Wi may have poor finite sample properties and/or be
difficult to compute.

Let i and j be two independent random draws. Recalling results from binary choice with
panel data analysis we have that

Pr (Yi = 0, Yj = 1 Xi, Xj, Yi + Yj = 1,Wi = Wj) =
exp

(
X ′jβ0 + g (Wj)

)
exp

(
X ′jβ0 + g (Wj)

)
+ exp (X ′iβ0 + g (Wj))

=
exp

(
(Xj −Xi)

′ β0
)

1 + exp
(
(Xj −Xi)

′ β0
) .

If we let
Sij = sgn {Yj − Yi} ,

we may base estimation of β0 on the U-Process

LN (β) =
(
N
2

)−1 N∑
i=1

∑
j<i

1 (Wi = Wj) |Sij|
{
Sij (Xj −Xi)

′ β − ln
[
1 + exp

(
Sij (Xj −Xi)

′ β
)]}

.

To construct an estimate of the asymptotic variance of β̂ first define

ˆ̃h1

(
Zi; β̂

)
=

1

N − 1

N∑
j=1,j 6=i

1 (Zi = Zj) |Sij|

1 (Sij = 1)−
exp

(
(Xj −Xi)

′ β̂
)

1 + exp
(

(Xj −Xi)
′ β̂
)
 (Xj −Xi) ,

and then compute

Γ̂ = − 2

N (N − 1)

N∑
i=1

∑
j<i

1 (Zi = Zj) |Sij|


exp

(
(Xj −Xi)

′ β̂
)

[
1 + exp

(
(Xj −Xi)

′ β̂
)]2
 (Xj −Xi) (Xj −Xi)

′

Ω̂ =
1

N

N∑
i=1

ˆ̃h1

(
Zi; β̂

)
ˆ̃h1

(
Zi; β̂

)′
.
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