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Consider a cohort of individuals who reside in a common metropolitan area during their
formative years, for example, individuals born in the early 1960s who lived in the Bay Area
of California as teenagers. Diversity in this population is characterized by the pair (A′, T ).
Here A is a vector of unobserved individual attributes, measured prior to, or at the onset of,
adolescence. The elements of A capture, among (many) other attributes, innate cognitive
ability, health endowments, and family and ethnic background. An agent’s observed type is
given by the binary indicator T . In practice T might be a race dummy or an indicator for
whether a child’s parents graduated from college or not.

Let Y be an outcome of interest. This outcome is measured post-adolescence; examples
include adult earnings, eventual educational attainment and incarceration status by age 25.
All exogenous agent characteristics measurable at the onset of adolescence and relevant for
the determination of Y are captured by (A′, T ). Since A is unmeasured, and may be of
arbitrarily high dimension, this is without loss of generality. For convenience I will call A
“background”. It should be recognized that this reification is simply a shorthand for what
is typically a large bundle of both acquired and innate attributes which help to determine
Y . To keep the exposition concrete I will also refer to T = 1 households as Minorities and
T = 0 households as Whites. Of course, other running examples are possible.

Individuals reside in one of i ∈ {1, . . . , N} neighborhoods. Let Z be an N × 1 vector of
neighborhood dummies. Let s (z) = Pr (T = 1|Z = z) be the fraction Minority in neighbor-
hood Z = z, mA (z) = E [A|Z = z] the mean background of residents living in neighborhood
Z = z, and U additional unobserved neighborhood-level characteristics. Throughout what
follows I will take the joint distribution of (A′, T )′ as given and invariant across policies. In
practice this means that the elements of (A′, T )′ are non-manipulable, at least over the time
frame in which the outcome is being measured. We conceptualize (A′, T ′)′ as a bundle of
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fixed characteristics that a household brings with them as they move from neighborhood to
neighborhood. Behaviors, for example parenting style, which may change with neighborhood
of residence are not elements of A.

We will also view U as a vector of exogenous location specific characteristics (e.g., micro-
climate, proximity to the city-center and so on). Its marginal distribution is invariant across
policies. Other location-specific characteristics, for example the mill rate on assessed prop-
erty values, may vary with the mix of residents living in a location (e.g., via the mechanism of
majority voting). The influence of these composition-induced policy changes on the outcome
of interest are “peer effects”, broadly defined.

A prototypical analysis of the effects of residential segregation by race on Y begins with the
linear regression model

E [Y |T, s (Z) ,mA (Z) , U, A] = α0 + β0T + γ0s (Z) +mA (Z)′ δ0 + U ′κ0 + A′λ0. (1)

Equation (1) provides a mapping from the neighborhood distribution of household types and
backgrounds, given own type, background and exogenous neighborhood-level characteristics,
into outcomes. There are neighborhood effects if the outcome varies with changes in the
neighborhood distribution of household types and/or backgrounds (i.e., γ0 6= 0 and/or δ0 6=
0).

The predictive value of own type and background, T and A, on the outcome is indexed by
β0 and λ0. The parameter γ0 measures how the expected outcome changes with the fraction
Minority in one’s neighborhood, while δ0 does so for changes in mean neighbor “background”.
Finally κ0 measures the influence of U on the outcome.

I assume this equation is structural in the sense of Goldberger (1991). Since we are free
to define A and U broadly, the assumption that (1) describes a causal relationship, the lin-
ear conditional mean assumption aside, is not especially restrictive (cf., Wooldridge, 2005).
Recall that the joint distribution of (A′, T )′, and the marginal distribution of U is assumed
invariant. Therefore equation (1) is structural in that it provides accurate predictions for
an individual’s outcome given an exogenous change in her neighborhood environment. Put
differently, the policies of interest are reallocations or, in the words of Durlauf (1996), as-
sociational redistributions. Equation (1) is helpful for understanding how “who lives with
whom” influences the distribution of Y .

Let (1) be the long regression of interest. The econometrician can compute the sample analog
of the short regression of the outcome onto a constant, own Minority status and the fraction
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Minority in one’s neighborhood of residence:

E [Y |T, s (Z)] = a0 + b0T + c0s (Z) . (2)

Prior reviewers of the empirical literature on neighborhood effects have outlined a variety of
reasons for why c0 need not coincide with γ0 and, more generally, why knowledge of relation-
ship (2) may not be useful for understanding the effects of reallocations on the distribution
of outcomes.

Sorting and matching

Two concerns commonly raised by reviewers of the neighborhood effects literature are biases
due to sorting and matching. Graham, Imbens and Ridder (2010) formally define sorting and
matching on unobservables in the context of a non-linear, non-separable, version of regression
(1). The linear form of (1) allows for a more compact development of the key ideas, but this
is not without a loss of generality. I begin with the mean regression representation of A

A = π0 + φ0T +B, E [B|T ] = 0. (3)

Here B is the component of “background” that does not vary, on average, with race. It is
convenient to partition unobserved agent-level heterogeneity into a component that varies
with type and one which is (mean) independent of it. Equation (3) is nothing more than
a decomposition. Graham, Imbens and Ridder (2010) work with a variant of (3) appro-
priate for models where A enters non-separably; they provide additional discussion and
motivation. Note that the “background gap” between Minorities and Whites is given by
φ0 = E [A|T = 1]− E [A|T = 0] .

There is no sorting unobservables if an individual’s neighborhood of residence, Z, is not
predictive of the B component of her background conditional on her observed type, T :

E [B|T, Z] = E [B|T ] = 0. (4)

The second equality in (4) follows by construction. Condition (4) implies that the dis-
tribution of “background” (specifically its mean) among, say, Minorities is similar across
neighborhoods. If this is not the case, then we say there is sorting on unobservables. For
example, it may be that Minority families living in predominately White neighborhoods
differ systematically in terms of A, than their counterparts in predominately Minority neigh-
borhoods (e.g., their adult members may have graduated from more elite colleges). This
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captures the intuition that observed neighborhood characteristics may be correlated with
the unobserved characteristics of its residents; a commonly articulated concern in empirical
analyses of neighborhood effects (e.g., Brooks-Gunn, Duncan, Klebanov and Sealand, 1993;
Duncan and Raudenbush, 2001; Kling, Liebman and Katz, 2007).

Matching is a related but distinct process. There is matching when the unobserved exogenous
attributes of one’s neighborhood (e.g., proximity to the city-center) can be predicted by own
type. There is no matching on U if

E [U |T ] = E [U ] . (5)

If, for example, Minorities are less likely to live in neighborhoods adjacent to employment
districts, then we say there is matching on U .

Anatomy of the short regression

A large empirical literature fits models of the form given in (2), typically with additional
individual- and location-level characteristics. How do these analyses relate to the structural
model (1)? After tedious manipulation it is possible to show that the two slope coefficients
in (2) equal1

b0 = β0 + φ′0λ0 (6)

+
1

p (1− p)
C (s (Z) ,E [B|Z])′

λ0
1− η2

.

c0 = γ0 + φ′0δ0 +
1

η2

{
1

p (1− p)
C (s (Z) ,E [B|Z])′

(
δ0 +

λ0
1− η2

)
(7)

+ (E [U |T = 1]− E [U |T = 0])′ κ0
}
.

where p = E [T ] is the population fraction Minority and η2 the eta-squared index of segre-
gation (e.g., Farley, 1977). The η2 index coincides with the (linear) regression coefficient on
T in the least squares fit of s (Z) onto a constant and T .2 As such it provides a measure of
the degree to which own race predicts the race of one’s neighbors. Using the fact that (i) T
is binary, (ii) C (T − s (Z) , s (Z)) = 0, and (iii) V (T ) = V (s (Z)) + E [V (T |Z)] as well as

1To keep the calculations manageable I assume there is a continuum of neighborhoods. Calculation details
are provided in Appendix A.

2Here and it what follows I use “linear regression of Y on X” to denote the mean squared error minimizing
linear predictor of Y given a constant and X (e.g., Goldberger, 1991).
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some algebra gives

η2 =
C (T, s (Z))

p (1− p)
=

I− p
1− p

(8)

where I = E
[
s(Z)
p
s (Z)

]
is a measure of minority isolation. The η2 index therefore provides a

scaled measure of minority isolation. It measures the excess isolation of Minorities in a city
compared to perfect integration (the numerator in (8)) relative to the corresponding excess
isolation that would be observed in a perfectly segregated city (the denominator in (8)).

Under the no sorting on unobservables condition (4) we have C (s (Z) ,E [B|Z]) = 0 since

(s (Z)− p)E [B|Z] = (s (Z)− p)E [E [B|T, Z]|Z] = (s (Z)− p)E [E [B|T ]|Z] = 0

and hence a coefficient on Minority equal to

b0 = β0 + φ′0λ0, (9)

so that knowledge of a person’s race alters one’s prediction of their realization of Y via a
direct adjustment, β0, as well as an indirect adjustment capturing the population average
difference in A across the two groups, φ′0λ0 = (E [A|T = 1]− E [A|T = 0])′ λ0. Because the
distribution of (A′, T )′ is assumed invariant across reallocations, b0, is a structural, albeit
composite, parameter when there is no sorting on unobservables.3 When condition (4) fails
to hold, b0 is not structural, in the sense that its value is not policy invariant. As is clear
from inspection, the third component of (6) varies with the joint distribution of (A′, T, Z ′)′,
whose manipulation is precisely the goal of a reallocation policy. If neighborhood of residence
predicts unobserved background conditional on observables (i.e., condition (4) fails), then
then b0 will not be useful for predicting the effects of reallocative policies.

A similar set of observations apply to c0, the coefficient on fraction Minority, in (2). It is this
coefficient which purports to provide a measure of peer group or neighborhood effects. The
third term in (7) depends on the covariance between fraction minority in a neighborhood
and mean neighbors’ background. Although B is mean independent of T , its neighborhood
average need not be. Consider a city where low B households, irrespectively of race, sort into
predominately Minority neighborhoods and high B households into predominately White
neighborhoods. Under this type of sorting pattern C (s (Z) ,E [B|Z]) = E [E [B|Z]|T = 1]−
E [E [B|Z]|T = 0] will be negative. This will, in turn, bias c0 downward relative to γ0+φ′0δ0,

3When the distribution of (A′, T ′)
′ is invariant across the policies of interest maintaining an “inclusive

definition of type” is without loss of generality (cf., Graham, Imbens and Ridder (2010)).
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making exposure to Minority neighbors appear more detrimental for Y than it would be in
the absence of sorting.

When there is no sorting on unobservables the coefficient on fraction Minority simplifies to

c0 = γ0 + φ′0δ0 +
1

η2
(E [U |T = 1]− E [U |T = 0])′ κ0. (10)

The first two terms in (10) are invariant across reallocations, while the last is not. However
if we additionally impose the no matching condition (5) the third term drops out leaving

c0 = γ0 + φ′0δ0, (11)

which does measure the causal effect of exogenous changes in fraction Minority on outcomes.

I conclude that regression (2), is informative about neighborhood effects when conditions
(4) and (5) hold. Specifically b0 and c0 are useful for predicting the effects of “doubly ran-
domized” reallocations of households across neighborhoods (Graham 2008, 2011; Graham,
Imbens and Ridder, 2010). First, the social planner selects a feasible distribution of Minor-
ity fraction across neighborhoods. If the status quo assignment is heavily segregated, the
planner may choose a more integrated distribution. Second, she fills Minority and White
“spots” in each neighborhood by taking independent random draws from the populations of
Minorities or Whites as appropriate. Third, neighborhoods, so formed, are assigned at ran-
dom to locations. Steps two and three of this procedure ensure that the new neighborhood
assignment obeys the no sorting and matching restrictions.

Expressions (6) and (7) also provide a framework for understanding conventional neighbor-
hood effects analyses based on observational data, where conditions (4) and (5) are unlikely
to hold. Consider the effect of sorting on unobservables on the coefficient on Minority status.
If high “background” households, irrespective of type, tend to be concentrated in predomi-
nately White neighborhoods, then C (s (Z) ,E [B|Z]) < 0. Sorting by background biases the
coefficient on Minority downward relative to the no sorting benchmark case (cf., equation
(9)). When the Minority population share is small (p small), and/or segregation by race
large (η2 big), the negative bias will be even larger.

Now consider the coefficient on fraction Minority in (2). Terms three and four in (7) are
bias terms. The third term is proportional to the sorting bias term in (6). If sorting follows
the form sketched in the previous paragraph this term will be negative. The fourth term
is due to Minority-White gaps in location-specific amenities. If predominately Minority
neighborhoods have characteristics which otherwise tend to lower outcomes, then this term
will be negative as well. Collectively sorting and matching will exaggerate any negative, or
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attenuate any positive, impact of Minority exposure on the outcome.

These conclusions are specific to the assumptions made about sorting on unobservables and
matching; other assumptions could lead to opposite results. The point of walking through
a specific example is to show how the structure of the prototypical neighborhood effects
regression analysis may be utilized to be more precise about (i) assumptions needed for
causal inferences to be valid and (ii) how to think about likely biases when causal inference
is not warranted.

In the context of observational neighborhood effect analyses, researchers reactions to the
biases caused by sorting and matching has typically been to improve measurement. Specifi-
cally to add proxies for A and U to equation (2). This approach has led to innovative data
collection strategies (e.g., the “ecometrics” espoused by Sampson and Raudenbusch (1999)).
Datasets like the L.A. FANS include a rich array of theoretically motivated and carefully
measured family- and neighborhood-level proxies for A and U . Of course, as in other areas of
causal analysis, approaches based on covariate adjustment are not always compelling. This
observation has led researchers to develop other research designs for neighborhood effects
analysis.

While conditions (4) and (5) are strong, there are examples of real world datasets where they
are plausible. For example in the Project STAR class size reduction experiment, students
were first randomly grouped into classes (no sorting), with classes then assigned randomly
to teachers (no matching) (see Graham (2008) for additional details and caveats). The value
of such experiments for enhancing our understanding of peer group and neighborhood effects
is considerable.

Cross-city research designs

Several researchers have proposed estimation methods involving aggregation of (1) to the
city-level as a remedy for sorting bias (e.g., Evans, Oates and Schwab, 1992; Cutler and
Glaeser, 1997; Card and Rothstein, 2007). This approach requires observations from a cross-
section of cities, typically operationalized by a metropolitan statistical area (MSA), and
restrictions on how the joint distribution of (A′, T )′ various across cities. A formalization
and illustration of this approach is provided here.

The researcher has access to a nationally representative sample of (T, Y ) pairs. Assume
further that this sample is geocoded, such that each observation can be assigned to a specific
MSA. As a concrete example, the NLSY79 and NLSY97 restricted-use geocode files, available
from the Bureau of Labor Statistics (BLS) by special agreement, may be used to assign
each respondent to an MSA of residence (at the time of adolescence). Index MSAs by
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Figure 1: Minority vs. White AFQT gap and residential segregation across 44 MSAs,
NLSY97
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Segregation and the AFQT gap: NLSY97

Source: National Longitudinal Survey of Youth 1997 (NLSY97), Neighborhood Change
Database (NCDB) and author’s calculations.
Notes: The NLSY97 sample consists of 8,985 youths, of which a total of 7,263 resided in
an MSA at baseline (1,796 Hispanic respondents, 1,943 Black respondents, and 3,524 non-
Hispanic, non-Black respondents). The estimation sample used here includes the 2,292 male
respondents who resided in a city with at least 5 White responding households as well as
5 Black and/or Hispanic responding households. “AFQT score at age 16” corresponds to
the inverse normal CDF transform of the adjusted AFQT percentile score used in Altonji,
Bharadwaj and Lange (2012). This score was normalized to the distribution of percentile
scores across NLSY79 respondents aged 16 at the time of test-taking in 1980. Across respon-
dents from the reference population of American Youth aged 15 to 23 in 1980 this transform
of percentile scores is mean zero with unit variance. Since the Altonji, Bharadwaj and
Lange (2012) percentile scores are normalized to a different reference group (both in terms
of age-of-testing and year-of-birth), “AFQT score at age 16” need not be mean zero with
unit variance (across all 7,002 respondents with valid AFQT scores its mean is -0.0001 and
its standard deviation is 0.9893). AFQT scores were only available for a subset of the target
sample of 7,263 MSA-residents. The y-value of each point in the figure corresponds to the
coefficient on a dummy variable for Minority (i.e., Black or Hispanic) in the least squares fit
of standardized AFQT score onto a constant and Minority using observations from a single
MSA (baseline sampling weights used in this computation). The x-value corresponds to
the eta-squared measure of Minority segregation in 2000. The size of the scatter points are
proportional to the estimated precision of the corresponding Minority-White AFQT gap. A
total of 44 MSAs are represented in the figure.
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c = 1, . . . , N and sampled respondents within a city by i = 1, . . . ,Mc. Assume that various
measures of residential segregation by race, corresponding to the period coinciding with the
respondent’s adolescence, are available for each city (e.g., computed using information in the
Neighborhood Change Database (NCDB)).

We begin by modifying (1) to incorporate a city-specific effect (i.e., intercept):

E [Yci|Tci, s (Zci) ,mA (Zci) , Uci, Aci] = αc + β0Tci + γ0s (Zci) (12)

+mA (Zci)
′ δ0 + U ′ciκ0 + A′ciλ0.

The presence of αc allows the mean outcome to vary across cities for reasons unrelated to
segregation.

Let E∗ [Y |X; c] denote the best linear predictor of Y given X conditional on residence in
city c. Wooldridge (1997, Section 4) summarizes the basic properties of conditional linear
predictors (CLPs). Let V (Y | c) and C (X, Y | c) denote city-specific variances and covari-
ances. Some basic algebra gives a CLP of fraction minority in one’s neighborhood given own
Minority status of

E∗ [s (Zci)|Tci; c] =
(
1− η2c

)
pc + η2cTci (13)

where η2c is the eta squared segregation measure for city c and pc = Pr (T = 1| c) is the
city-wide fraction Minority. In highly segregated cities (η2c → 1) own race is very predictive
of neighbors’ race. In integrated cities (η2c → 0) the city-wide fraction Minority has more
predictive value.4

Define

φc = E [Aci|Tci = 1, c]− E [Aci|Tci = 0, c]

υc = E [E [Bci|Zci]|Tci = 1, c]− E [E [Bci|Zci]|Tci = 0, c]

τc = E [Uci|Tci = 1, c]− E [Uci|Tci = 0, c]

to be the Minority-White gap within city c in (i) “background” (φc), (ii) neighbors’ back-
ground (υc), and (iii) neighborhood amenities (τc) respectively. The first of these terms is a
vector of average differences between Minorities and Whites. The latter two terms are vec-
tors of average differences in features of their neighborhood. Specifically in the unobserved

4Note that

V (s (Z))

p (1− p)
=

E
[
s (Z)

2
]
− p2

p (1− p)
=

E
[
s(Z)
p s (Z)

]
− p

1− p
=

I− p
1− p

= η2.
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attributes of their neighbors and the unobserved non-composition-based characteristics of
their neighborhoods. Both of these are measures of average differences in neighborhood
quality between Minorities and Whites. To the extent that these components of neighbor-
hood quality directly influence the outcome of interest (i.e., δ0 6= 0 and/or κ0 6= 0), they
both are drivers of neighborhood effects, broadly defined.

Using (12), (13) and the notation defined above we get a city-specific short regression,
deviated from city-specific means, of

E [Yci|Tci; c]− E [Yci| c] =
{
β0 + (γ0 + φ′cδ0) η

2
c

+υ′cδ0 + τ ′cκ0 + φ′cλ0}

× (Tci − pc) . (14)

Let φ0 now equal the mean of φc across cities (i.e., φ0 = E [φc]) with ν0 and τ0 analogously
defined. Equation (14) indicates that the Minority-White outcome gap in city c – GAPc =

E [Yci|Tci = 1; c] − E [Yci|Tci = 0; c] – varies with its degree of segregation, as measured by
the eta-squared, η2c , index:

GAPc = a0 + (γ0 + φ′0δ0) η
2
c + Vc (15)

with

a0 = β0 + υ′0δ0 + τ ′0κ0 + φ′0λ0

Vc = (υc − υ0)′ δ0 + (τc − τ0)′ κ0 + (φc − φ0)
′ λ0 + (φc − φ0)

′ δ0η
2
c .

Here Vc varies with a city’s Minority-White gap in (i) neighbors’ unobserved “background”,
(ii) exogenous neighborhood attributes, (iii) own “background”, and (iv) the interaction of
own-background with measured segregation. If

E
[
Vcη

2
c

]
= 0 (16)

then, by equations (14) and (15), an OLS fit of the city-specific measure of the Minority-
White outcome gap, GAPc, onto a constant and η2c will provide a consistent estimate of γ0 +

φ′0δ0. Observe that this coincides with the coefficient on fraction minority in the prototypical
neighborhood effects regression (2) under no sorting and matching (i.e., when conditions (4)
and (5) hold).

Restriction (16) is sometimes referred to as a no “differential sorting” across cities assumption
(e.g., Card and Rothstein, 2007). To understand this language consider the common case
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where δ0 and κ0 are a priori presumed equal to zero. In that case condition (16) requires
that, across cities, variation in the “background gap” is uncorrelated with variation in racial
segregation (i.e, C (φc, η

2
c ) = 0). Sorting across cities is allowed in the sense that differences in

average “background” across cities do not threaten identification. However the background-
gap across cities, if it varies, must do so independently of measured segregation.

Note that, again in the special case where δ0 = κ0 = 0, aggregation does eliminate biases
due to sorting on unobservables. In that case the coefficient on s (Z) in the within-city
neighborhood effects regression (2) is (see (7) above)

c0 = γ0 +
1

η2 (1− η2)
(E [E [B|Z]|T = 1]− E [E [B|Z]|T = 0])′ λ0

with the second term due to sorting and where I have also made use of the equality

C (s (Z) ,E [B|Z])

p (1− p)
= E [E [B|Z]|T = 1]− E [E [B|Z]|T = 0] .

In contrast, the coefficient on η2c in the cross-city regression of the Minority-White outcome
gap onto a constant and η2c is equal to γ0 alone. Under these conditions aggregation does
eliminate biases due to sorting, as is often asserted in empirical work.

However, when δ0 and κ0 possibly differ from zero, condition (16) requires maintaining addi-
tional (strong) assumptions. First, for δ0 6= 0, we require zero covariance between measured
racial segregation and (υc − υ0)′ δ0, the first element of Vc. This implies that the Minority-
White gap in neighbors’ background is uncorrelated with the degree of metropolitan-area
segregation. Very loosely speaking this assumption does not rule out within-city sorting
on unobservables, but it does constrain it to be similar across cities. When δ0 6= 0 we also
require strengthening the zero covariance condition C (φc, η

2
c ) = 0. For example if φc is mean-

independent of η2c , then
{

(φc − φ0)
′ δ0η

2
c

}
η2c , the last term in Vcη2c , will be mean zero (along

with the third term). In practice if the researcher is willing to assume that C (φc, η
2
c ) = 0,

then they ought to be willing to assume that E [φc| η2c ] = φ0. It is difficult to imagine plausi-
ble sorting processes that imply the weaker (former) condition, but not the stronger (latter)
condition.

Second, for κ0 6= 0, we require zero covariance between η2c and (τc − τ0)′ κ0 , the second
element of Vc. This implies that the degree to which race predicts exogenous neighborhood
characteristics is uncorrelated with the level of racial segregation.

In practice, it seems likely that own race will be a better predictor of unobserved neighbor-
hood attributes in highly segregated cities, for no other reason than in such cities Minorities
and Whites live apart. These considerations suggest that recovering a consistent estimate of
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γ0 from the cross-city correlation of GAPc and η2c is difficult. At the same time, one may be
able to learn about the “effects of place” broadly defined from such an analysis.

To understand this claim, considering maintaining the assumption that E [φc| η2c ] = 0 (i.e.,
that the city-specific Minority-White background-gap is mean independent of measured seg-
regation). This is a strong assumption, but is one that can be indirectly assessed. For
example, one could correlate gaps in measured components of family background with segre-
gation. Under this assumption the least squares fit of Gc onto a constant and η2c is consistent
for

E∗
[
GAPc| η2c

]
= β0 + φ′0λ0 + Π′υδ0 + Π′τκ0 +

(
γ0 + (φ0 + Πυη)

′ δ0 + Π′τηκ0
)
η2c (17)

where

E∗
[
υc| η2c

]
= Πυ + Πυηη

2
c

E∗
[
τc| η2c

]
= Πτ + Πτηη

2
c .

Here the coefficient on η2c is not structural. In particular it is not consistent for γ0 (or γ0 +

φ′0δ0) and hence informative about the effects of reallocations on outcomes. The coefficient
is, however, a measure of the effects of “place” on outcomes. It captures the collective effects
of differences in the racial composition of ones’ neighborhoods, their average background,
and neighborhood amenities on the Minority-White outcome gap. Importantly, it is not
affected by sorting. I conclude that while a structural interpretation of cross-city correlations
between outcome gaps and segregation requires strong assumptions, a looser interpretation –
as a measure of the “effects of place” – may be compelling in some circumstances. Of course,
the policy-relevance of this measure, unlike that of the composite parameter γ0 +φ′0δ0, which
can be used to predict the effects of doubly randomized reallocations, is not immediately
clear.

Figure 1 depicts the relationship between Minority (Black or Hispanic) - White gaps in
AFQT scores and residential segregation across 44 large MSAs (see the notes to the Figure for
details on the estimation sample). The Minority-White gap in test scores is substantial and
significantly larger in highly segregated cities. Under condition (16) the variance-weighted
least squares (OLS) fit of the estimated AFQT gap onto a constant and η2c will provide a
consistent estimate of γ0 + φ′0δ0:

̂AFQTGAPc =
−0.3391

(0.0746)
+
−1.0649 ETA2

c

(0.2044)
.
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This fit indicates that the AFQT gap averages under 0.5 standard deviations in America’s
least segregated cities but over 1 standard deviations in its most segregated cities. These
differences are precisely determined. Under condition (16) the data suggests that we can
strongly reject the null that γ0 + φ′0δ0 = 0. Again, maintaining condition (16), the fit
suggests that a student, if contrary to fact, was instead raised in a neighborhood with a
fraction Minority 10 percent lower, her AFQT score would, in expectation, be about 0.1
standard deviations higher.

As a pure peer effect, a value of γ0 + φ′0δ0 equal to -1 seems implausibly large. If we instead
interpret the coefficient on the eta-square measure in terms of regression (17), our view
changes. In that case the measured relationship is not presumed to be a pure peer effect.
Rather the effect measures the cumulative impact of a bundle of human-capital producing
amenities that differ, on average, across Minority and White neighborhoods. These could
include, among of things, systematic differences in school and teacher quality, differences
in environmental quality (e.g., indoor air quality, noise, etc.), differences in exposure to
violence and other risks, as well as a pure peer effect. Each of these items has been shown
to independently influence academic performance. When many drivers of human capital
accumulation vary across neighborhoods, the estimated effect of place can be plausibly large.

While the interpretation of the pattern shown in Figure 1 is not straightforward, what
is without dispute is that the AFQT gap varies significantly with measured segregation.
Minority adolescents fare worse relative to their White counterparts, in terms of AFQT
scores, in cities where they live in separate neighborhoods. Again, whether this is due to
neighborhood effects (i.e., γ0 + φ′0δ0 < 0), or has some other cause is open to debate.
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A Derivations

To derive (6) and (7) of the main text begin by observing that by the definition of the linear
predictor (

b0

c0

)
= V

(
T

s (Z)

)−1
C

((
T

s (Z)

)
, Y

)

=

(
p (1− p) η2p (1− p)
η2p (1− p) η2p (1− p)

)−1
C

((
T

s (Z)

)
, Y

)

=
1

p (1− p) η2 (1− η2)

(
η2 −η2

−η2 1

)
C

((
T

s (Z)

)
, Y

)
,

which after evaluating both rows yields

b0 =
1

p (1− p) (1− η2)
{C (T, Y )− C (s (Z) , Y )} (18)

c0 =
1

p (1− p) η2 (1− η2)
{
C (s (Z) , Y )− η2C (T, Y )

}
. (19)

To evaluate the terms in {·} in (18) and (19) first compute the covariances:

C (T,A) = E [(T − p)A]

= E [TA]− pE [A]

= pE [A|T = 1]− p (pE [A|T = 1] + (1− p)E [A|T = 0])

= p (1− p) (E [A|T = 1]− E [A|T = 0])

= p (1− p)φ0, (20)
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and

C (T, U) = E [(T − p)U ]

= p (1− p) (E [U |T = 1]− E [U |T = 0]) , (21)

and

C (T,mA (Z)) = E [(T − p)mA (Z)]

= E [(T − p) {π0 + φ0s (Z) + E [B|Z]}]

= η2p (1− p)φ0 + E [(s (Z)− p)E [B|Z]] , (22)

and

E [(s (Z)− p)A] = E [(s (Z)− p) (π0 + φ0T +B)]

= η2p (1− p)φ0 + E [(s (Z)− p)B]

= η2p (1− p)φ0 + E [(s (Z)− p)E [B|Z]] (23)

E [(s (Z)− p)mA (Z)] = E [(s (Z)− p) (π0 + φ0s (Z) + E [B|Z])]

= η2p (1− p)φ0 + E [(s (Z)− p) (E [B|Z])] (24)

E [(s (Z)− p)U ] = p (1− p) (E [U |T = 1]− E [U |T = 0]) . (25)

Using (20), (21), (22), (23), (24) and (25) I evaluate

C (T, Y ) = C
(
T, β0T + γ0s (Z) +mA (Z)′ δ0 + U ′κ0 + A′λ0

)
= β0p (1− p) + γ0η

2p (1− p)

+C (T,mA (Z))′ δ0 + C (T, U)′ κ0 + C (T,A)′ λ0

= (β0 + φ′0λ0) p (1− p) + γ0η
2p (1− p)

+C (T,mA (Z))′ δ0 + C (T, U)′ κ0

and

C (s (Z) , Y ) = C
(
s (Z) , β0T + γ0s (Z) +mA (Z)′ δ0 + U ′κ0 + A′λ0

)
= (β0 + γ0) η

2p (1− p)

+C (s (Z) ,mA (Z))′ δ0 + C (s (Z) , U)′ κ0 + C (s (Z) , A)′ λ0,

16 © Bryan S. Graham 2015



Empirical Methods for Program Evaluation and Networks CEMFI, August 24 - 28, 2015

which yields, after subtracting,

C (T, Y )− C (s (Z) , Y ) =
(
1− η2

)
p (1− p) β0 + φ′0λ0p (1− p)− C (s (Z) , A)′ λ0

=
(
1− η2

)
p (1− p) β0 + φ′0λ0p (1− p)

−η2p (1− p)φ′0λ0 + E [(s (Z)− p)E [B|Z]]′ λ0

=
(
1− η2

)
p (1− p) {β0 + φ′0λ0} − E [(s (Z)− p)E [B|Z]]′ λ0.

Substituting this expression in (18) above then gives (6) of the main text:

b0 = β0 + φ′0λ0 +
1

1− η2
1

p (1− p)
E [(s (Z)− p)E [B|Z]]′ λ0.

To derive (7) I evaluate the difference:

C (s (Z) , Y )− η2C (T, Y )

= (β0 + γ0) η
2p (1− p) + C (s (Z) ,mA (Z))′ δ0 + C (s (Z) , U)′ κ0 + C (s (Z) , A)′ λ0

−η2
{

(β0 + φ′0λ0) p (1− p) + γ0η
2p (1− p) + C (T,mA (Z))′ δ0 + C (T, U)′ κ0

}
= γ0η

2
(
1− η2

)
p (1− p) +

(
1− η2

)
C (s (Z) ,mA (Z))′ δ0 +

(
1− η2

)
C (s (Z) , U)′ κ0

+E [(s (Z)− p)E [B|Z]]′ λ0

= γ0η
2
(
1− η2

)
p (1− p) +

(
1− η2

)
C (s (Z) ,mA (Z))′ δ0 +

(
1− η2

)
C (s (Z) , U)′ κ0

−η2φ′0λ0p (1− p) + η2p (1− p)φ′0λ0 + E [(s (Z)− p)E [B|Z]]′ λ0

= γ0η
2
(
1− η2

)
p (1− p) +

(
1− η2

)
C (s (Z) ,mA (Z))′ δ0 +

(
1− η2

)
C (s (Z) , U)′ κ0

+E [(s (Z)− p)E [B|Z]]′ λ0

= γ0η
2
(
1− η2

)
p (1− p) +

(
1− η2

) {
η2p (1− p)φ0 + E [(s (Z)− p) (E [B|Z])]

}′
δ0

+
(
1− η2

)
C (s (Z) , U)′ κ0 + E [(s (Z)− p)E [B|Z]]′ λ0

= (γ0 + φ′0δ0) η
2
(
1− η2

)
p (1− p)

+
(
1− η2

)
E [(s (Z)− p) (E [B|Z])]′ δ0

+E [(s (Z)− p)E [B|Z]]′ λ0

+
(
1− η2

)
C (s (Z) , U)′ κ0,
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which, after substituting into (19), gives (7) of the main text:

c0 = γ0 + φ′0δ0

+
1

p (1− p) η2 (1− η2)
{(

1− η2
)
E [(s (Z)− p)E [B|Z]]′ δ0

+E [(s (Z)− p)E [B|Z]]′ λ0 +
(
1− η2

)
C (s (Z) , U)′ κ0

}
= γ0 + φ′0δ0 +

1

η2

{
1

p (1− p)
E [(s (Z)− p)E [B|Z]]′ δ0

+
1

1− η2
1

p (1− p)
E [(s (Z)− p)E [B|Z]]′ λ0

+ (E [U |T = 1]− E [U |T = 0])′ κ0
}
.

Equation (14) in the main text is easily calculated using the following terms:

E [s (Zci)|Tci; c] ∝ η2cTci

E [mA (Zci)|Tci; c] ∝
{
η2cφc +

C (s (Zci) ,E [Bci|Zci] ; c)

pc (1− pc)

}
Tci

=
{
η2cφc + υc

}
Tci

E [Uci|Tci; c] ∝ (E [Uci|Tci = 1, c]− E [Uci|Tci = 0, c])Tci

= τcTci

E [Aci|Tci; c] ∝ (E [Aci|Tci = 1, c]− E [Aci|Tci = 0, c])Tci

= φcTci.
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