
Empirical Methods for Program Evaluation and
Networks

CEMFI Summer School, August 24 to 28th, 2015

Course Description

This course begins with an overview of methods of covariate adjustment,
as used, for example, to adjust for differences in baseline characteristics across
treated and control units in an experimental or observational study. Our fo-
cus will be on methods which are semiparametrically efficient. The theory of
semiparametric efficiency bounds will be used to provide guidance on estimator
choice and other dimensions of research design. Methods of covariate adjustment
for binary-valued treatment variables are widely-available. We will selectively
review these methods but also study procedures appropriate for settings where
the policy variable of interest is continuously-valued and/or time-varying.

We will next turn to the analysis of matching and assignment problems.
We will consider two questions. First, how can we identify and efficiently esti-
mate a match production function? For example, we might wish to understand
how variation in characteristics of one parent, holding those of the other fixed,
influences child outcomes. Second, how can we identify and estimate the param-
eters which determine who matches with whom? Answering this second question
will require us to develop some basic theory of U-Statistics.

Next we will review methods for identifying and estimating peer group ef-
fects. Our analysis will begin with a careful study of the linear-in-means model
and then turn to less parametric approaches. We will also consider neighbor-
hood effects. Since sorting into neighborhoods is mediated by the market for
housing, new issues and research design opportunities arise relative to the analy-
sis of other types of social spillovers. Finally we will study some basic, and quite
recent, models of network formation. Some of this material will require the
use of the EM-Algorithm, which we will also review.
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Course Logistics

Instructor: Bryan Graham, Department of Economics, University of California – Berkeley

Email: bgraham@econ.berkeley.edu

Time: 3:30PM to 7PM daily

Office Hours: I will announce the time and location of office hours on the first day of class.
I look forward to talking with all of you!

Prerequisites: The equivalent of a first year Ph.D. level sequence in econometrics. Specif-
ically an understanding of probability and statistical inference at the level of Casella and
Berger (1990), linear regression analysis at the level of Goldberger (1991) and some exposure
to non-linear models. I will also assume a basic knowledge of applied matrix algebra.

Textbook: Lecture will be based on the assigned readings as well as my own lecture notes
(some of which will be made available to students prior to class). Readings preceded by a [r] in
the course outline are “required” (i.e., should be read prior to class), while those preceded by
a [b] are for “background” (i.e., may be useful for students interested in additional material).
A useful general purpose reference is the textbook by Wooldridge (2010).

Computation: The bulk of class will be devoted to the formal development of the material,
albeit with empirical illustrations as well as ample discussions of the various practicalities
of implementation. However I do intend to reserve some class time for actual practice
with computation. Computational examples will be done in a mix of Stata, MATLAB and
Python. Python is free. I recommend the Anaconda installation available for download at
http://continuum.io/downloads. Some basic tutorials on installing and using Python,
with a focus on economics applications, can be found online at http://quant-econ.net.
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Course Outline

Date Topic Readings

M 8/24 Covariate adjustment [b] Imbens & Wooldridge (2009)
Binary treatments [r] Graham, Pinto and Egel (2012, forthcoming)

[b] Graham (2011a)
Continuously-valued treatments [b] Newey (1990), [r] Robins, Mark & Newey (1992)

[b] Hirano & Imbens (2004), [b] Wooldridge (2004)
Dynamic treatments [b] Robins, Hernán & Brumback (2000)

[r] Hernán, Brumback & Robins (2001)
Tu 8/25 Matching Problems [r] Graham (2011b)

Assignment problems [r] Graham, Imbens & Ridder (2015)
U-Statistics [b] van der Vaart (1998, Chapters 11 & 12)

[r] Ferguson (2006)
U-Process Minimizers [b] Honore & Powell (1994), [b] Graham (2013)

W 8/26 Peer Effects [r] Manski (1993), [b] Angrist (2015)
Quasi-experiments [r] Angrist & Lang (2004)
Network structure [r] Bramoullé, Djebbari & Fortin (2009)

Covariance restrictions [r] Graham (2008)
Reallocations with spillovers [r] Graham, Imbens & Ridder (2010)

Th 8/27 Neighborhood Effects [b] Benabou (1996), [r] Graham (In Preparation)
Cross-city research designs [r] Card and Rothstein (2007)

Covariate adjustment designs [b] Sharkey & Elwert (2011)
[r] Wodtke, Harding & Elwert (2011)

MTO Experiment [b] Chettty, Hendren & Katz (2015)
F 8/28 Network formation [b] Goldenberg, Zheng, Fienberg & Airoldi (2009)

[r] Graham (2015)
β-Model, Testing [b] Blitzstein and Diaconis (2011)

[b] Chatterjee, Diaconis and Sly (2011)
Stochastic Block Models [b] Snijders & Nowicki (1997)

[r] Daudin, Picard & Robin (2008)
[b] Gupta and Chen (2011)

Dyadic link formation [r] Graham (2014)
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