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Figure 1 provides a visual representation of a set of risk-sharing links, measured in the year
2000, between 119 households residing in Nyakatoke, a small village in Tanzania. These
data are described and analyzed by de Weerdt (2004). Individuals were asked for lists of
people that they could “personally rely on for help”. A list of undirected links between all
households was constructed using responses to this question.

Each point in the figure represents a household, with the size of the point proportional to
the number of risk sharing links to which the household is party. Yellow, orange, green and
blue households correspond to categories of increasing land and livestock wealth (see the
notes to Figure 1).

This note describes methods for summarizing network data of the type depicted in Figure 1.
Basic references for the material survey below include Newman (2003), Jackson (2008) and
Kolaczyk (2009). A few minor results presented below, mostly of pedagogical significance,
are new.

An undirected graph G (N , E) consists of a set of nodes N = {1, . . . , N} and a list of
unordered pairs of nodes called edges E = {{i, j} , {k, l} , . . .} for i, j, k, l ∈ N . A graph is
conveniently represented by its adjacency matrix D = [Dij] where

Dij =

{
1 if {i, j} ∈ E
0 otherwise

. (1)

A node, depending on the context, may be called a vertex, agent or player. Likewise edges
may be called links, friendships, connections or ties. Since self-ties are ruled-out, and the
nodes in edges are unordered, the adjacency matrix is a symmetric binary matrix with a
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Figure 1: Nyakatoke risk-sharing network

Source: de Weerdt (2004) and author’s calculations.
Notes: Node size proportional to household degree. Yellow nodes represent households with
land and livestock wealth below 150,000 Tanzanian shillings, orange those between 150,000
and 300,000, green those between 300,000 and 600,000 and blue those with 600,000 and
above. Following Comola and Fafchamps (forthcoming) land was valued at 300,000 shillings
per acre. Network plotted using igraph package in R (see http : //igraph.org/r/).
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diagonal of so-called structural zeros (i.e., Dij = Dji and Dii = 0).

A social network consists of a set of agents (nodes) and ties (edges) between them. A
social network can be conveniently represented by it node and edge list or by its adjacency
matrix. I will utilize the adjacency matrix representation in most of what follows.

In summarizing the structure of a social network it is convenient to define network statistics
at the level of individual agents, at the level of pairs of agents or dyads, and at the level of
triples of agents or triads.

Network statistics involving single agents

The total number of links belonging to agent i, or her degree is Di+ =
∑

j Dij. The
degree frequency distribution of a network, or degree distribution for short, consists of
the frequency of each possible agent-level degree count {0, 1, . . . , N} in the network. A
important component of the literature on networks takes the degree distribution as its prim-
itive object of interest (e.g., Barabási and Albert (1999) and Albert and Barabási (2002)).
This focus is motivated by the fact that many other topological features of a network are
fundamentally constrained by its degree distribution. Jackson and Rogers (2007) develop
connections between degree distributions and the spread of infectious diseases and new tech-
nologies/behaviors through a network. I will have more to stay about the connection between
a network’s degree sequence and its other topological features below.

The density of a network equals the frequency with which any randomly drawn dyad is
linked:

PN =

(
N

2

)−1 N∑
i=1

∑
j<i

Dij. (2)

Note that (N − 1)PN coincides with average degree. The density of the Nyakatoke network
is 0.0698.

Bonacich (1972) recursively defined an agent’s centrality, power, or importance within a
network, Ci, to be proportional to the sum of her links to other agents, weighted by their
own centralities. Letting c be the N vector of centrality measures this gives

λc = Dc.

Since (D− λIN) c = 0, Bonacich’s measure corresponds to a normalized eigenvector of D.
Typically the largest eigenvalue λmax is used for normalization. Jackson (2008) surveys
additional measures of node centrality.

3



Consider the matrix product

D2 =


D1+

∑
iD1iD2i · · ·

∑
iD1iDNi∑

iD1iD2i D2+ · · ·
∑

iD2iDNi

...
... . . . ...∑

iD1iDNi

∑
iD2iDNi · · · DN+

 .

The ith diagonal element of D2 equals the number of agent i’s links or her degree. The
{i, j}th element of D2 gives the number of links agent i has in common with agent j (i.e.,
the number of “friends in common”). In the language of graph theory the {i, j}th element of
D2 gives the number of paths of length two from agent i to agent j. For example, if i and
j share the common friend k, then a length two path from i to j is given by i → k → j.
The diagonal elements of D2 correspond to the number of length two paths from an agent
back to herself. For example if i is connected to k, then one such a path is i→ k → i. The
number of such paths coincides with an agent’s degree.

Calculating D3 yields

D3 =


∑

i,j D1iDijDj1

∑
i,j D1iDijDj2 · · ·

∑
i,j D1iDijDjN∑

i,j D1iDijDj2

∑
i,j D2iDijDj2 · · ·

∑
i,j D2iDijDjN

...
... . . . ...∑

i,j D1iDijDjN

∑
i,j D2iDijDjN

∑
i,j DNiDijDjN

 ,

whose {i, j}th element givens the number of paths of length 3 from i to j.

The diagonal elements of D3 are counts of the number of transitive triads or triangles in
the network. If both i and j are connected to k as well as to each other, then the {i, j, k}
triad is closed (i.e., “the friend of my friend is also my friend”). Note that if {i, j, k} is a
closed triad it is counted twice each in the ith, jth and kth diagonal elements of D3. Therefore
Tr (D3) /6 equals the number of unique triangles in the network.

Proceeding inductively it is easy to show that the {i, j}th element of DK gives the number
of paths of length K from agent i to agent j.

Theorem 1. The {i, j}th element of DK gives the number of paths of length K from agent
i to agent j.

Proof. Let D(K)
ij denote the {i, j}th element of DK . Begin by observing that D0 = IN ,

correctly implying that the only zero length walks in the network are those from each agent
to herself. Under the maintained hypothesis, D(K)

ij equals the number of K-length paths
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from i to j. The number of K + 1 length paths from i to j then equals

N∑
k=1

D
(K)
ik Dkj,

which equals the {i, j}th element of DK+1. The claim follows by induction.

Network statistics involving pairs of agents or dyads

The distance between agents i and j corresponds to the minimum length path connecting
them. If there is no path connecting i to j, then the distance between them is infinite. We
can use powers of the adjacency matrix to calculate these distances. Specifically,

Mij = min
k

{
k : D

(k)
ij > 0

}
equals the distance from i to j (if it is finite). For modest sized networks Mij can be
calculated by taking successive powers of the adjacency matrix.

If the network consists of a single, giant, connected component, such that the minimum
length path between any two agents is finite, we can compute average path length as

M =

(
N

2

)−1 N∑
i=1

∑
j<i

Mij. (3)

If the network consists of multiple connected components, standard practice is to compute
average path length within the largest one. Alternatively, following Newman (2003), we can
calculate average distance or path length in the network as

M
alt

=

[(
N

2

)−1 N∑
i=1

∑
j<i

M−1
ij

]−1
. (4)

By taking the reciprocal of an average of reciprocal distances, we neatly handle the ‘problem’
of infinite paths.

The diameter of a network is the largest distance between two agents in it. It will be
finite if the network consists of a single connected component (in which case all agents are
“reachable” starting from any given agent) and infinite in networks consisting of multiple
components (in which case there are no paths connecting some pairs of agents).

Table 1 gives the frequence of minimum path lengths in the Nykatoke network. There are
490 direct ties in the network (paths of length one). Just under 7 percent of all pairs of
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Table 1: Frequency of degrees of separation in the Nyakatoke network
1 2 3 4 5

Count 490 2666 3298 557 10
Frequency 0.0698 0.3797 0.4697 0.0793 0.0014

Source: de Weerdt (2004) and author’s calculations.

Table 2: Nyakatoke risk-sharing network triad census
empty one-edge two-star triangle

Count 221,189 48,245 4,070 315
Proportion 0.8078 0.1762 0.0149 0.0012
Random Graph Proportion 0.8049 0.1812 0.0136 0.0003

Source: de Weerdt (2004) and author’s calculations.
Notes: The Nyakatoke network includes N = 119 households, corresponding to

(
N
2

)
= 7, 021

unique dyads and
(
N
3

)
= 273, 819 unique triads.

households are directly connected in Nykatoke. Another 2,666 dyads are only two degrees
apart. That is, although they are not connected directly, they share a tie in common. About
80 percent of dyads are separated by three or fewer degrees. The diameter of the Nyakatoke
network is 5. The juxtaposition of low density (i.e., only a small fraction of all possible ties
exists), with few degrees of separation (i.e., low average degree and/or diameter) is a feature
of many real world social networks.

The analysis of distances and diameter has a long history in social network analysis and
falls under the rubric of the “small-world problem”. Stanley Milgram (1967) popularized
this phrase and, through a series of postal experiments in the 1960s, showed that two ran-
dom individuals in the United States could be often be connected through a short chain of
acquaintances (“six degrees of separation”).

Network statistics involving triples of agents of triads

Triads, a set of three unique agents, come in four types: no connections, one connection,
two connections, or three connections between them. These triad types are called empties,
one-edges, two-stars and triangles respectively. There are

(
N
3

)
= N !

3!(N−3)! =
N(N−1)(N−2)

6

unique triads in a network of size N . A complete enumeration of them into their four possible
types constitutes a triad census.1

Each agent can belong to as many as (N − 1) (N − 2) triangles. The counts of these triangles
1Note that dyads are either linked or not, hence the dyad census coincides with computing the total

number of links in the network.
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are contained in the N diagonal elements of D3. However each such triangle appears 6 times
in these counts: as {i, j, k}, {i, k, j}, {j, i, k}, {j, k, i}, {k, i, j} and {k, j, i}. Thus

# of triangles = TT =
Tr (D3)

6
(5)

equals the number of unique triangles in the network.

Each pair of agents {i, j} can share of up to N − 2 links in common. If {i, j} are not linked
themselves, then they may belong to two stars with their links in common as star centers.
Since each dyad can create up to N−2 closed triangles by forming a link between themselves,
there may be up to

(
N
2

)
(N − 2) = N(N−1)(N−2)

2
(actual) triangles or two stars (i.e., potential

triangles) in the network. These counts are contained in the lower (or upper) off-diagonal
elements of D2. Each triad appears three times in these counts: as {i, j, k}, {i, k, j} and
{j, k, i}. If the triad is a two star, then only one of DjiDki, DijDkj, or DikDjk quantities
will equal one (i.e., contribute). If it is a triangle, then all three will equal one. Therefore
vech (D2)

′
ι gives the network count of three times the number triangles plus the number of

two-stars, with the count of the latter alone equal to

# of two stars = TTS = vech
(
D2
)′
ι− Tr (D3)

2
. (6)

We can use a similar logic to calculate the number of one-edge triads. Each agent belongsN−
2 triads. If all triads are empty or have only one edge, then there will be (N − 2) vech (D) ι

one edge triads. However if some triads are two-stars or triangles this count will be incorrect.
It turns out that subtracting twice the number of two stars and three times the number of
triangles gives the correct answer.

# of one edges= TOE = (N − 2) vech (D)′ ι− 2vech (D2)
′
ι+

Tr(D3)
2

(7)

The number of empty triads, TE, equals
(
N
3

)
minus the sum of (5), (6) and (7). Note that

(5), (6) and (7) collectively imply that

TOE + 2TTS + 3TT = (N − 2) vech (D)′ ι,

=
1

4
N (N − 1) (N − 2)PN

suggesting that network density can be computed from the triad census according to

PN =

(
4TOE + 8TTS + 12TT
N (N − 1) (N − 2)

)
. (8)
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The triad census for the Nyakatoke network is given in Table 2. As a point of comparison
the proportion of each type of triad that we would expect to see in a random graph, where
the probability of a link between any two agents coincides with the observed density of the
Nyakatoke network (0.0698), is given in the last row of the table.

A measure of network transitivity is given by three times the number of transitive triads
in the network relative to three times the number of transitive triads plus those triads which
could become transitive with the addition of a single link (i.e., two stars). The Transitivity
Index, sometimes called the clustering coefficient, is

Transitivity Index =
3TT

TTS + 3TT

=
1

2

Tr (D3)

vech (D2)′ ι

= RN .

In random graphs RN should be close to network density. For the Nyakatoke network the
transitivity index is 0.1884, which substantially exceeds the density of the network (0.0698).
We will explore how to assess the statistical significance of this difference in a later lecture.

Transitivity has been hypothesized to facilitate risk sharing and other activities where moni-
toring may be helpful. If the (i, j, k) triad is transitivity, then agent k may be able to monitor
actions involving i and j. See Jackson (2014) for additional discussion.

Degree distributions

Barabási and Albert (1999) assert that the degree distribution of a network, at least over
some range, is well-described by a discrete Pareto or ‘power law’ distribution:

F (d+) = 1− A

1− α
d1−α+

for d+ = d+, . . . , N and F (d+) = Pr (Di+ ≤ d+). Here d+ > 0 is some threshold degree level
below which the power law distribution may not apply.

Taking logs yields the linear relationship

ln (1− F (Di+)) = ln

(
A

1− α

)
+ (1− α) lnDi+.

The coefficient, 1−α, may be estimated by OLS (although this may not be the best approach
in practice). For a review of estimation methods for power law coefficients see Clauset, Shalizi
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Figure 2: Nyakatoke risk-sharing network degree distribution

Source: de Weerdt (2004) and author’s calculations.

and Newman (2009).

Figure 2 plots the Nyakatoke network’s degree distribution. A small number of households
in the Nyakatoke network have many links (over 20), while the vast majority have only a
small number of links (less than 10).

The variance of the degree distribution equals

S2
N =

2

N
(TTS + 3TT )− (N − 1)PN [1− (N − 1)PN ] . (9)
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To see this observe that

S2
N =

1

N

N∑
i=1

(
Di+ −

1

N

N∑
j=1

Dj+

)2

=
1

N

[(
D− ι′Dι

N

)
ι

]′ [(
D− ι′Dι

N

)
ι

]
=

1

N

[
ι′D2ι− ι′Dι′Dι

N
ι− ι′ ι

′Dι

N
Dι+

(
ι′Dι

N

)2
]

=
ι′D2ι

N
−
(
ι′Dι

N

)2

=
2vech (D2)

′
ι

N
+
ι′Dι

N
−
(
ι′Dι

N

)2

=
2

N
(TTS + 3TT )− (N − 1)PN [1− (N − 1)PN ] .

Consider the effect of inducing a mean preserving spread in a network’s degree distribu-
tion. That is, we seek manipulations which keep network density fixed, while increasing the
variance of the degree distribution.

Using (8) and (9) we get

S2
N =

2

N
(TTS + 3TT )

− (N − 1)

(
4TOE + 8TTS + 12TT
N (N − 1) (N − 2)

)[
1− (N − 1)

(
4TOE + 8TTS + 12TT
N (N − 1) (N − 2)

)]

Inducing a mean-preserving spread requires triad manipulations that (i) increases the first
term in the expression above, while (ii) leaving the second term unchanged. Table 3 list
several mean-preserving triad manipulations. A triad is the smallest subgraph we can use
to induce a mean-preserving spread in the degree distribution.

To increase SN a two-star or triangle must be added to the network (accommodated by
changes in the number of empties and one edges). Alternatively we can convert a two-
star into a triangle (again accommodated by changes in the number of empties and one
edges). These correspond to manipulations 2 to 5 and manipulation 6 in Table 3. Note that
manipulations 2 and 4 and 3 and 5 are isomorphic, while manipulation 1 does not increase
S2
N . This leaves 4, 5 and 6 as unique triad manipulations which induce mean preserving

spreads in a network’s degree distribution.

Each of manipulations 4 to 6 involve net increases in TTS+3TT , accommodated by decreases
in the number of one edges and increases in the number of empties. This is an example of
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Table 3: Mean-preserving spreads via triad manipulations
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how a network’s degree distribution fundamentally constrains other aspects of its topology.
In this case higher variance degree sequences imply networks with more “hubs” (nodes with
many links emanating outwards from them) as well as more isolated nodes. Jackson and
Rogers (2007) show that the first effect tends to facilitate the spread of infections (ideas,
new technology, etc.) in a network, while the second acts as a break to diffusion.

Note that the effect of the triad manipulations listed in Table 3 on transitivity is not one-
directional. Manipulation 4 reduces transitivity, while manipulations 5 and 6 increase it.
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