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The notion that an individual’s choices are affected by the behavior and/or attributes of
her peers is a natural one. Individual’s may have a taste for conformity, such that they
experience disutility when their actions deviate too far from established social norms (e.g.,
Akerlof, 1997). Since we often learn about new technologies, products and ideas from our
friends, peer groups may also play an important role in the spread of new technologies (e.g.,
Conley and Udry, 2010). Finally, for certain behaviors there may be complementaries in
actions across peers. For example, the returns to effort may be increasing in the effort of
one’s classmates, teammates or colleagues.

This note describes methods of inferring the presence, and identifying the size of, peer group
effects using network data. The focus is on the so-called “linear-in-means” model of social
interactions. This model has served as the organizing framework of much of the empirical
literature on peer group effects (especially in the economics of education field, e.g., Angrist
and Lang (2004)).

Formal econometric analysis of the linear-in-means model begins with Charles Manski’s
(1993) well-known “reflection-problem” paper. Subsequent researchers have extended Man-
ski’s basic analysis in various ways (e.g., Brock and Durlauf, 2001; Bramoulle, Djebbari and
Fortin, 2009). This last paper, in particular, shows how the availability of detailed network
data on who is connected to whom, substantially increases the set of conditions under which
positive identification results are possible. In a recent working paper, Blume, Brock, Durlauf
and Jayaraman (2012) survey and extend prior work. My exposition is synoptic, drawing on
all the papers cited above, and introducing a few (very) small new ideas along the way.
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Game theoretic analyses of models of social interactions that yield linear best reply functions
are extensively surveyed in Jackson and Zenou (forthcoming). Such models provide rigorous
micro-foundations for empirical analyses based on the linear-in-means model.

Linear-in-Means Model

Consider a network consisting of N agents. The econometrician observes all ties within this
network. These ties are encoded in the N ×N adjacency matrix D. For simplicity I assume
that ties are binary-valued and undirected. For each agent the econometrician also observes
the K-vector of attributes Xi, as well as her chosen action Yi. Let X and Y be the N ×K
and N × 1 matrix and vector of agent attributes and equilibrium actions respectively.

Let G = diag (DιN)−1 D be the row-normalized network adjacency matrix (i.e., the
network adjacency matrix where each element of the ith row is divided by Di+, the ith

agent’s degree). Note that all rows of this matrix sum to 1 by construction. The matrix is
row-stochastic.

Let

Giy =
∑
j 6=i

Gijyj
def
≡ ȳn(i)

GiX =
∑
j 6=i

GijXj

def
≡ X̄n(i)

respectively equal the average action of player i’s peers under the (perhaps hypothetical)
action profile y and the average of her peers’ attribute vectors. Here Gi denotes the ith row
of G.

Assume that the utility agent i receives from action profile y given network structure (D)

and agent attributes (X) is

ui (y; D,X) = vi (D,X) yi −
1

2
y2
i + βȳn(i)yi

= vi (D,X) yi −
1

2
y2
i + βGiyyi (1)

with |β| < 1 and vi (D,X) equal to

vi (D,X) = X ′iγ + X̄ ′n(i)δ + A+ Ui

= X ′iγ + (GiX)′ δ + A+ Ui

Assume that the observed action Y corresponds to a Nash equilibrium where no agent
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can increase her utility by changing her action given the actions of all other agents in the
network. The econometrician observes the triple (Y,X,D); she does not observe A, nor
does she observe U, the N × 1 vector of individual-level heterogeneity terms. Unlike the
econometrician, we assume that agents do observe (A,U).

The utility function (1) posits the existence of two types of social interactions or peer group
effects. First, the marginal utility associated with an increase in yi is increasing in the
average action of one’s peers, ȳn(i). Specifically,

∂2ui (y,D,X)

∂yi∂ȳn(i)

= β.

That is, own- and peer-effort are complements. In the terminology of Manski (1993), the
magnitude of β indexes the strength of any endogenous social interactions.

Second the marginal utility associated with an increase in yi may vary with peer attributes:

∂2ui (y,D,X)

∂yi∂X̄ ′n(i)

= δ.

Manski (1993) terms this type of interaction an exogenous or contextual effect.

A third, and key, feature of (1) is what Manski (1993) calls correlated effects:

∂2ui (y,D,X)

∂yi∂A
= 1.

Agents located in networks with high values of A will choose higher actions.

Endogenous, contextual and correlated effects all tend to cause outcomes across members
of a common network to covary. Attributing this covariance to true spillovers, whether
endogenous or contextual, versus heterogeneity is of policy relevance. Spillovers raise the
possibility that rewirings of the network – the addition or subtraction of links – could improve
the distribution of outcomes.

The identification problem is to recover θ = (β, γ′, δ′)′ from F (Y,D,X). Concretely, we
will assume that the econometrician has available a dataset formed from a random sample
of networks. Identification and inference when data from only a single network are available
raises complicated, and largely unsolved, issues.

Equilibrium behavior

The first order condition for optimal behavior associated with (1) generates the following
best response function:
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Yi = A+ βȲn(i) +X ′iγ + X̄ ′n(i)δ + Ui (2)

for i = 1, . . . , N . Equation (2) is called the linear-in-means model of social interactions
(e.g., Brock and Durlauf, 2001). An agent’s best reply varies with the average action of those
to whom she is directly connected (Ȳn(i)) , her own observed attributes (Xi), the average
attributes of her direct peers (X̄n(i)), the unobserved network effect, A, and unobserved own
attributes (Ui).

Observe that (2) defines an N × 1 system of simultaneous equations. A least squares fit
of Yi onto a constant, Ȳn(i), X and X̄n(i) will not provide consistent estimates of θ0 =

(A0, β0, γ
′
0, δ
′
0)′. Define the index set

N (i) = {j : Dij = 1}

with cardinalityNi. By construction Ui will be correlated with the Ni player actions Yj with
j ∈ N (i) (since Yi is a component of each of these players’ best response functions). Hence
Ui will covary with Ȳn(i) and the least squares estimator will be inconsistent. Manski (1993)
calls this feature of the linear-in-means model the reflection problem.

It is convenient, for what follows, to write the system defined by (2) in matrix form:

Y = AιN + Xγ + GXδ + βGY + U. (3)

Derivation of the reduced form action vector

Observe that for |β| < 1 the matrix IN − βG is strictly (row) diagonally dominant. By the
Levy-Desplanques Theorem (cf., Horn and Johnson, 2013) it is therefore non-singular. Non-
singularity of (IN − βG) allows us to solve for the equilibrium action vector as a function of
D, X, A and U alone.

Solving (3) for Y yields the reduced form

Y = A (IN − βG)−1 ιN + (IN − βG)−1 (Xγ + GXδ) + (IN − βG)−1 U. (4)

It is helpful to simplify (4) in a number of ways. First, using the series expansion

(IN − βG)−1 =
∞∑
k=0

βkGk,

as well as the fact that GιN = ιN (and hence that GkιN = ιN for k ≥ 1) we get the
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simplification

A (IN − βG)−1 ιN = A

[
∞∑
k=0

βkGk

]
ιN

= A
(
1 + β + β2 + β3 + · · ·

)
ιN

=
A

1− β
ιN .

Using this result and re-arranging (4) yields

Y =
A

1− β
ιN +

[
∞∑
k=0

βkGk

]
(Xγ + GXδ) +

[
∞∑
k=0

βkGk

]
U

=
A

1− β
ιN +

[
∞∑
k=0

βkGk

]
Xγ +

[
∞∑
k=0

βkGk+1

]
Xδ +

[
∞∑
k=0

βkGk

]
U

=
A

1− β
ιN + Xγ +

[
∞∑
k=0

βkGk+1

]
Xγβ +

[
∞∑
k=0

βkGk+1

]
Xδ +

[
∞∑
k=0

βkGk

]
U

=
A

1− β
ιN + Xγ +

[
∞∑
k=0

βkGk+1X

]
(γβ + δ) +

[
∞∑
k=0

βkGk

]
U. (5)

The social multiplier

Equation (5) provides some insight into what various researchers have called the social mul-
tiplier. For simplicity assume that δ = 0, so that the only type of peer influence is the
endogenous effect. Further assume that Xi is a scalar. Now consider a policy which in-
creases the ith agent’s value of Xi by ∆. We can conceptualize the full effect of this increase
on the network’s distribution of outcomes as occurring in “waves”. In the initial wave only
agent i’s outcome increases. The change in the entire action vector is therefore

4γci,

where ci is an N -vector with a one in its ith element and zeros elsewhere.

In the second wave all of agent i’s friends experience outcome increases. This is because
their best reply actions change in response to the increase in agent i′s action in the initial
wave. The action vector in wave two therefore changes by

4γβGci.
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In the third wave the outcomes of agent i’s friends’ friends change (this includes a direct
feedback effect to agent i). In wave three we get a further change in the action vector of

∆γβ2G2ci.

In the kth wave we have a change in the action vector of

4γβk−1Gk−1ci.

Observing the pattern of geometric decay we see that the “long-run” or full effect of the
change in Xi on the entire distribution of outcomes is given by

4γ (IN − βG)−1 ci. (6)

Observe that, if the cost of perturbing Xi does not vary with i, the planner can use the
form of G to efficiently target interventions. This is the policy content of endogenous social
effects in the linear-in-means model.

Identification of θ

Let X̄ be the N × K matrix with ith row X̄ ′n(i). Observe that GX = X; this is a matrix
consisting of the average of friends’ characteristics for each of the i = 1, . . . , N agents.
Now observe that G2X = GX̄ is a matrix consisting of an average of your friends’ friends’
average attributes. Likewise G3X̄ is an average of your friends’ friends’ average of their
friends’ average attributes (and so on in increasingly unmanageable mouthfuls).

Re-arranging we get
∞∑
k=0

βkGk+1X = X +
∞∑
k=1

βkGkX̄

which gives our final reduced form expression

Y =
A

1− β
ιN + Xγ + X̄ (γβ + δ) +

[
∞∑
k=1

βkGkX̄

]
(γβ + δ) +

[
∞∑
k=0

βkGk

]
U. (7)

Equation (7) indicates that, in equilibrium, an agent’s action will vary with own attributes,
those of her peers, as well as those of her peers’ peers and so on. Bramoulle, Djebbari and
Fortin (2009) show that the influence of indirect links on equilibrium actions can, under
certain network configurations, allow for consistent estimation of θ.

Equation (7) has a form reminiscent of the reduced form of a linear dynamic panel data
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model with a K-vector of strictly exogenous regressors. It is well-known that dynamics
induce a distributed lag structure on the coefficients on lags of Xt in the reduced form of
this model (e.g., Arellano, 2003).

To understand Bramoulle, Djebbari and Fortin’s (2009) result define Ȳ = GY to be the
N×1 vector of peer average actions. Multiplying (7) by G yields an N -vector of “first stage”
equations equal to

Ȳ =
A

1− β
ιM + X̄γ +

[
∞∑
k=0

βkGk+1X̄

]
(γβ + δ) +

[
∞∑
k=0

βkGk

]
Ū (8)

Recall, using some of the definitions given above, our structural equation (i.e., the N × 1

vector of agent-specific best response functions) of

Y = AιN + βȲ + Xγ + X̄δ + U. (9)

Let X̄ff
n(i) = GiGX be the average of agent i’s friends’ friends’ average attributes. We will

initially work with the following assumption.

Assumption 1. The econometrician (i) observes a random sequence of networks indexed by
c with the size of network c equal to Nc and with action profile Yc, adjacency matrix Dc and
attribute matrix Xc and (ii) E [Uc|Dc,Xc, Nc] = 0.

Part (ii) of Assumption 1 is strong. It, effectively, imposes strong restrictions on the network
formation process. Under Assumption 1 the moment

E
[
UciX̄cn(i)

]
= E [UciGciXc]

is mean zero. There are many reasons to be doubtful of this restriction. Under (1) agents
with high values of Ui have a high marginal utility of action. Such agents may also be
attractive friends, if so they will have high degree, Di+. In such situations GiX may help to
predict Ui and part (ii) of Assumption 1 will fail.

Unfortunately I am aware of no simple mechanisms which can guarantee that Assumption
1 holds. Say the researcher observes D and then randomly assigns Xi to each agent. This
assignment mechanism yields the independence relationship

(U,D) ⊥ X,
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but this does not imply the additional restriction

U ⊥ D|X,

which would together be sufficient for part (ii) of Assumption 1. More exotic experimental
designs, that both manipulate D and X might work, but real work in thinking through this
type of intuition formally is needed.

Under Assumption 1 the following 1+3K moment restrictions holds at the population vector
θ0 (note dim (θ) = 2 + 2K)

E
[(

ιNc GcX̄c Xc X̄c

)′ (
Y − A0ιNc − β0Ȳ −Xγ0 − X̄δ0

)]
= 0 (10)

As long as INc , Gc and G2
c are linearly independent and γβ + δ 6= 0, then a GMM estimator

based on the sample analog of (10) will be consistent for θ0. See Bramoulle, Djebbari and
Fortin (2009, Proposition 1) . Operationally a linear instrumental variables fit of Yci onto
a constant, Ȳcn(i), Xci and X̄cn(i) with X̄ff

cn(i) serving as an excluded instrument for Ȳcn(i)

and standard errors “clustered” at the network level will yield consistent estimates of θ0 and
asymptotically valid standard error estimates (cf., De Giorgi, Pellizzari and Redaelli, 2010).
The intuition is that the characteristics of my friends’ friends influence their actions and
hence me, but do not directly influence me. More on this below!

Bramoulle, Djebbari and Fortin (2009) provide some sufficient conditions for linear indepen-
dence of INc , Gc and G2

c as well as several counter-examples. I begin with (a variant of)
Manski’s (1993) famous non-identification result.

Relationship to Manski’s (1993) non-identification result

Early analyses of the linear-in-means model focused on the case where Gc is of the form

Gc =
(
ιNcι

′
Nc
− INc

) 1

Nc − 1
.

This corresponds to a network where all individuals are linked to one another. A canonical
example is a classroom of students, where all students are presumed to influence one another.
This form of Gc is associated with what is sometimes called the “leave-own-out linear-in-
means” model.
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Under this network structure we have

G2
c =

(
ιNcι

′
Nc
− INc

) (
ιNcι

′
Nc
− INc

)( 1

Nc − 1

)2

=
(
NcιNcι

′
Nc
− 2ιNcι

′
Nc

+ INc

)( 1

Nc − 1

)2

= [(Nc − 2) (ιNcιNc − INc) + (Nc − 1) INc ]

(
1

Nc − 1

)2

=
1

Nc − 1
INc +

Nc − 2

Nc − 1
Gc.

If groups/networks vary in size, then INc , Gc and G2
c will be linearly independent (cf., Lee,

2007). However if groups are equal in size identification will fail. Manski (1993) essentially
considers the case where Nc → ∞, which gives G2

c = Gc. When all groups are fairly large,
this equality will be approximately true and identification will be weak.

The identifying power of intransitive triads

Bramoulle, Djebbari and Fortin (2009) note that if the pair (i, j) are not connected then
Dij = 0. However if they share some friends in common, then (i, j)th element of D2, which
equals

∑
kDikDkj, will be non-zero. Thus the presence of intransitive triads, in at least

some networks, guarantees linear independence of INc , Gc and G2
c . See De Giorgi, Pellizzari

and Redaelli (2010) for the same observations and an empirical example. Intransitivity is
sufficient for identification even when all networks are equally sized and/or large. This, in
my view, is really the key take-away of their paper for empirical researchers.

Network effects

Until now we have assume that A is constant across networks. We can relax this assumption
and replace condition (ii) of Assumption 1 with E [Uc|Dc,Xc, Nc,Ac] = 0. This yields the
modified reduced form

Yc =
Ac

1− β
ιNc + Xcγ + X̄c (γβ + δ) +

[
∞∑
k=1

βkGk
cX̄c

]
(γβ + δ) +

[
∞∑
k=0

βkGk
c

]
Uc. (11)
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Subtracting (8) from this equation yields

Yc − Ȳc =
(
Xc − X̄c

)
γ +

[
∞∑
k=0

βkGk (INc −Gc) X̄

]
(γβ + δ) +

[
∞∑
k=0

βkGc
k

] (
Uc − Ūc

)
=

(
Xc − X̄c

)
γ + (INc −Gc) X̄ (γβ + δ) +

[
∞∑
k=1

βkGk (INc −Gc) X̄

]
(γβ + δ)

+

[
∞∑
k=0

βkGc
k

] (
Uc − Ūc

)
.

The presence of Gk (INc −Gc) X̄ in this transformation of the reduced form for k = 1, . . . , N

facilitates identification of θ0. A sufficient condition for identification in this model is linear
independence of INc −Gc, (INc −Gc) Gc and (INc −Gc) G2

c . This will hold if INc , Gc, G2
c

and G3
c are linearly independent. Bramoulle, Djebbari and Fortin (2009, Corollary 1) show

that a sufficient condition for this latter condition is that the diameter of the network is at
least three. This condition is satisfied by many real world networks.

Let Ȳ ff
cn(i) equal the ith element of of G2

cYc. This gives the average of my friends’ averages
of their friends behavior. Let X̄fff

cn(i) be the ith element of G3
cX. The ith row of this matrix

coincides with a (weighted) average of agent characteristics up to three degrees away from i.

If the linear independence condition holds, then a linear instrumental variables fit of Yci −
Ȳcn(i) onto Ȳcn(i) − Ȳ ff

cn(i), Xci − X̄cn(i) and X̄cn(i) − X̄ff
cn(i) with X̄ff

cn(i) − X̄fff
cn(i) serving as an

excluded instrument for Ȳcn(i) − Ȳ ff
cn(i) and standard errors “clustered” at the network level

will yield consistent estimates of θ0 and asymptotically valid standard error estimates.

Some thoughts on empirical work

Under the maintained assumption of linear best-reply behavior, identification of θ0 requires
maintaining fairly strong assumptions about the network formation process. These will be
credible in some settings, but not in others. Condition E [Uc|Dc,Xc, Nc] = 0 provides a
useful way for assessing the plausibility of empirical work: can I predict the idiosyncratic
component of behavior using network structure, agent characteristics and/or network size?
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