Ec240a, Fall 2015 Professor Bryan Graham Problem Set 1 Due: October 26th, 2015

Problem sets are due at 5PM in the GSIs mailbox. You may work in groups, but each student should turn in their own write-up (including a printout of a narrated/commented and executed iPython Notebook if applicable). Please also e-mail a copy of any iPython Notebook to the GSI (if applicable).

1 Binomial distribution

Imagine it is the Fall Semester of 2012 and you are conducting a survey of the presidential voting intentions of Cal undergraduates. Let Y = 1 if a randomly sampled Cal undergraduate plans to vote for the incumbent, Barack Obama, and zero if they plan to vote for an alternative candidate. Among the population of Cal undergrads $\theta = \Pr(Y = 1)$ is the true population frequency of individuals who intend to vote for Obama. You take a random sample of size N from the Cal student body. Let $Z_N = \sum_{i=1}^N Y_i$ equal the total number of sampled students who indicate their intention to vote for Obama.

- 1. Derive a formula that can be used to calculate the ex ante (i.e., pre-sample) probability of the event that $Z_N < z$ for any $z \in \{1, 2, ..., N\}$. Provide a 3 4 sentence written description of your reasoning.
- 2. Let $\bar{Y}_N = \frac{1}{N} \sum_{i=1}^N Y_i$. Using your answer above, provide an expression that can be used to calculate the ex ante probability of the event $\frac{\sqrt{N}(\bar{Y}_N \theta)}{\theta(1-\theta)} < c$.
- 3. Using your formula plot, in an iPython Notebook, $\Pr\left(\frac{\sqrt{N}(\bar{Y}_N \theta)}{\theta(1 \theta)} < c\right)$ as a function of c for N = 5, 10, 100, 1000 and $\theta = 1/2$. Make a single figure with 4 subplots arrayed 2×2 . Title each figure and label all axes.
- 4. Let $X \sim \mathcal{N}(0,1)$. Plot $\Pr(X < c)$ as a function of c on *each* of the four plots created in the previous problem.
- 5. Repeat questions 3 and 4 with $\theta = 1/20$. Comment on your figures (4 6 sentences).
- 6. After collecting your data you form a confidence interval for θ of $\bar{Y}_N \pm \sqrt{\frac{\bar{Y}_N(1-\bar{Y}_N)}{N}} z^{1-\alpha/2}$ where $z^{1-\alpha/2}$ is the $1-\alpha/2$ quantile of a standard normal distribution. What is the approximate ex ante probability that this interval will contain θ ? Provide a heuristic justification for this interval (3 4 sentences).
- 7. While in the Econometrics Laboratory, Clopper Pearson, an advanced graduate student, recommends the confidence interval $[\underline{\theta}, \overline{\theta}]$ where $\underline{\theta}$ and $\overline{\theta}$ respectively solve

$$\underline{\theta} = \max\left\{t : \sum_{i=1}^{\lfloor Z_N \rfloor} {N \choose i} t^i (1-t)^{N-i} > \frac{\alpha}{2}\right\}$$
$$\overline{\theta} = \min\left\{t : \sum_{i=\lfloor Z_N \rfloor+1}^{N} {N \choose i} t^i (1-t)^{N-i} > \frac{\alpha}{2}\right\}$$

The lower limit, $\underline{\theta}$, is set equal to zero when $Z_N = 0$ and the upper limit, $\overline{\theta}$, equal to 1 when $Z_N = N$.

- 8. Write 3 4 sentences justifying Clopper's proposal.
- 9. It turns out that $\sum_{i=k}^{N} {N \choose i} t^i (1-t)^{N-i} = \int_0^t f_B(\theta) d\theta$ with $f_B(\theta)$ the pdf of a Beta(k, N-k-1) random variable. Let $F_B^{-1}(\tau; a, b)$ give the τ^{th} quantile of the Beta(a, b) distribution. Argue that

$$F_B^{-1}\left(\frac{\alpha}{2}; Z_N, N - Z_N + 1\right) < \theta < F_B^{-1}\left(1 - \frac{\alpha}{2}; Z_N + 1, N - Z_N\right)$$

closely approximates Clopper's interval. We continue to set the lower limit to zero when $Z_N = 0$ and the upper limit equal to 1 when $Z_N = N$.

10. Let $Y_1, \ldots, Y_N \stackrel{iid}{\sim} \text{Bernoulli}(\theta)$. Hoeffding's Inequality states that for any $\epsilon > 0$

$$\Pr\left(\left|\bar{Y}_N - \theta\right| > \epsilon\right) \le 2\exp\left(-2N\epsilon^2\right)$$

with $\bar{Y}_N = N^{-1} \sum_{i=1}^N Y_i$. Let $\operatorname{CI} = (\bar{Y}_N - \epsilon_N, \bar{Y}_N + \epsilon_N)$. Use Hoeffding's Inequality to find an expression for ϵ_N as a function of N and α such that

$$\Pr\left(\theta \in \mathrm{CI}\right) \ge 1 - \alpha.$$

- 11. In your iPython Notebook, generate 1,000 samples each consisting of i = 1, ..., N independent Bernoulli random variables Y_i with $Pr(Y_i = 1) = \theta$. For each sample compute the confidence intervals described in 6, 8 and 10 above and record whether the intervals contains θ or not. Do this for all sixteen combinations of $N = 5, 10, 100, 1000, \theta = 1/20, 1/2$ and $\alpha = 0.05, 0.10$. Summarize your results in a table and comment on then (7 to 10 sentences).
- 12. Using the Cropper's method you construct the interval [0.48, 0.72]; what is the probability that this interval contains θ ? Comment (3 to 4 sentences).

2 Binomial-Beta learning

Let θ , as before, denote the probability than a randomly sampled Cal undergraduate intends to vote for Barack Obama. Assume that your beliefs about θ are summarized by a prior distribution. In particular the probability that you assign to different possible values of θ is given by a beta (a, b) distribution (i.e., $\theta \sim \text{beta}(a, b)$). Let Z_N , also as before, equal the number of Cal students, out of a random sample of size N, who say they intend to vote for Barack Obama.

- 1. What is the conditional distribution of Z_N given θ ?
- 2. Calculate the joint distribution of Z_N and θ .
- 3. Calculate the conditional distribution of θ given Z_N . What is the mean of this distribution? Why might posterior be a good name for this distribution? (5 6 sentences)
- 4. Assume that a = b = 1/2. Comment on this prior (2 to 3 sentences).

5. While in the Econometrics Laboratory, Harold Jeffreys, another advanced graduate student, suggests that you calculate the interval

$$F_B^{-1}\left(\frac{\alpha}{2}; Z_N + \frac{1}{2}, N - Z_N + \frac{1}{2}\right) < \theta < F_B^{-1}\left(1 - \frac{\alpha}{2}; Z_N + \frac{1}{2}, N - Z_N + \frac{1}{2}\right).$$

Comment on Jeffreys' proposal? (4 - 6 sentences).

6. Using Z_N you evaluate Jeffreys' interval to be [0.47, 0.73]; what is the probability that this interval contains θ ? Comment (3 to 4 sentences).

3 Multivariate normal distribution

Let $\mathbf{Y} = (Y_1, \dots, Y_K)'$ be a $K \times 1$ random vector with density function

$$f(y_1, \dots, y_K) = (2\pi)^{-K/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2} (\mathbf{y} - \mu)' \Sigma^{-1} (\mathbf{y} - \mu)\right),$$

for Σ a symmetric positive definite $K \times K$ matrix and μ a $K \times 1$ vector. We say that **Y** is a multivariate normal random variable with mean μ and covariance Σ or

$$\mathbf{Y} \sim \mathcal{N}(\mu, \Sigma)$$
.

The multivariate normal distribution arises frequently in econometrics and a mastery of its basic properties is essential for both applied and theoretical work in econometrics. This problem provides an opportunity for you to review and/or learn some of these properties. There are many useful references on the multivariate normal distribution, for example, T. W. Anderson's *An Introduction to Multivariate Statistical Analysis*.

- 1. Let C be a $K \times K$ nonsingular matrix. Show that $\mathbf{Z} = C\mathbf{Y}$ is distributed according to $\mathcal{N}(C\mu, C\Sigma C')$.
- 2. Partition $\mathbf{Y} = (\mathbf{Y}'_1, \mathbf{Y}'_2)'$ into $K_1 \times 1$ and $K_2 \times 1$ sub-vectors with $K_1 + K_2 = K$. Let $\mu = (\mu'_1, \mu'_2)'$ and

$$\Sigma = \left(\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array}\right)$$

be conformable partitions of μ and Σ (note that symmetry implies $\Sigma_{12} = \Sigma'_{21}$). Show that \mathbf{Y}_1 and \mathbf{Y}_2 are independent random vectors if $\Sigma_{12} = \Sigma'_{21} = \underline{00}'$ (i.e., a matrix of zeros).

3. Let

$$C = \left(\begin{array}{cc} I_{K_1} & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & I_{K_2} \end{array} \right)$$

for $I_P \ a \ P \times P$ identity matrix. Derive the distribution of $\mathbf{Z} = C\mathbf{Y}$. Are the first K_1 elements of \mathbf{Z} independent from the second K_2 ? Interpret your result?

4. Let D be a $P \times K$ ($P \leq K$) matrix of rank P. Arrange the first P columns of D, denoted by D_{11} , such that they are non-singular. Denote the remaining K - P columns by D_{12} . Find a $(K - P) \times K$ matrix E such that

$$\left(\begin{array}{c} \mathbf{Z} \\ \mathbf{X} \end{array}\right) = \left(\begin{array}{c} D \\ E \end{array}\right) \mathbf{Y}$$

is a non-singular transformation of **Y**. Finally show that **Z** is distributed according to $\mathcal{N}(D\mu, D\Sigma D')$.

- 5. Consider the partition of \mathbf{Y} introduced in Problem 2 above. Derive the conditional distribution of \mathbf{Y}_1 given $\mathbf{Y}_2 = \mathbf{y}_2$.
- 6. Let $\{\mathbf{Y}_i\}_{i=1}^N$ be a random sample of size N drawn from the multivariate normal population described above. Show that $\sqrt{N} (\overline{\mathbf{Y}} - \mu)$ is a $\mathcal{N}(0, \Sigma)$ random variable for $\overline{\mathbf{Y}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{Y}_i$, the sample mean (HINT: Use independence of the i = 1, ..., N draws and your result in Problem 4 above).
- 7. Let $\mathbf{W} = N \cdot (\overline{\mathbf{Y}} \mu)' \Sigma^{-1} (\overline{\mathbf{Y}} \mu)$. Show that $\mathbf{W} \sim \chi_K^2$ (i.e., \mathbf{W} is a chi-square random variable with K degrees of freedom).
- 8. Let $\chi_K^{2,1-\alpha}$ be the $(1-\alpha)^{th}$ quantile of the χ_K^2 distribution (i.e., the number satisfying the equality $\Pr\left(\mathbf{W} \leq \chi_K^{2,1-\alpha}\right) = 1-\alpha$ with \mathbf{W} a chi-square random variable with K degrees of freedom). Let D be a $P \times K$ ($P \leq K$) matrix of rank P and d a $P \times 1$ vector of constants. Consider the hypothesis

$$H_0: D\mu = d$$
$$H_1: D\mu \neq d.$$

Maintaining H_0 derive the sampling distribution of $D\overline{\mathbf{Y}}$ as well as that of

$$\mathbf{W} = N \cdot \left(D\overline{\mathbf{Y}} - d \right)' \left(D\Sigma D \right)^{-1} \left(D\overline{\mathbf{Y}} - d \right).$$

You observe that, for the sample in hand, $\mathbf{W} > \chi_P^{2,1-\alpha}$ for $\alpha = 0.05$. Assuming H_0 is true, what is the ex ante (i.e., pre-sample) probability of this event? What are you inclined to conclude after observing \mathbf{W} in the sample in hand?