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Abstract

We propose a locally e¢ cient estimator for a class of semiparametric data combi-
nation problems. Our estimator also possesses a double robustness type property. A
leading estimand in this class is the average treatment e¤ect on the treated (ATT).
Data combination problems are related to, but distinct from, the class of missing
data problems analyzed by Robins, Rotnitzky and Zhao (1994) (of which the Aver-
age Treatment E¤ect (ATE) estimand is a special case). Our procedure may be used
to e¢ ciently estimate, among other objects, the ATT, the two-sample instrumental
variables model (TSIV), counterfactual distributions, and poverty maps. In an em-
pirical application we use our procedure to characterize residual Black-White wage
inequality after �exibly controlling for �pre-market�di¤erences in measured cognitive
achievement as in Neal and Johnson (1996). We �nd that residual Black-White in-
equality is negligible at lower and higher quantiles of the Black wage distribution,
but substantial at middle quantiles.
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1 Introduction

Let Z = (W 0; X 0; Y 0)0 denote a random vector drawn from some study population

of interest with distribution function Fs: For some unique 0, and known function

 (z; ) of the same dimension, we assume that

Es [ (Z; 0)] = 0; (1)

where Es [�] denotes expectations taken with respect to the study population. If a

random sample of Z is available, then consistent estimation of 0 (under regularity

conditions) is straightforward (e.g., Newey and McFadden, 1994). Many statistical

models of interest can be represented in terms of moment restrictions like (1); see

Wooldridge (2002) for a textbook exposition.

In this paper we consider estimation of 0 when a random sample of Z is unavail-

able. Instead two separate samples are available. The �rst is drawn from the study

population and contains Ns measurements of (Y;W ) : The second is drawn from an

auxiliary population (with distribution function Fa; Ea [�] denotes expectations taken

with respect to this distribution) and contains Na measurements of (X;W ) : While

the variable W is common to the two samples, X and Y are not. Hahn (1998)

and Chen, Hong and Tarozzi (2008) show that identi�cation of 0 follows if (i) the

conditional distributions of X given W in the two populations coincide (although

their marginal distributions for W may di¤er), (ii) the support of W in the auxiliary

population is at least as large as that in the study population and (iii)  (z; 0) is

separable in the components depending on the �non-common�variables Y and X

 (Z; 0) =  s (Y;W; 0)�  a (X;W; 0) : (2)
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Examples of statistical problems to which the above setup applies include the

two sample instrumental variables (TSIV) model of Angrist and Krueger (1992)

and Ridder and Mo¢ tt (2007), the average treatment e¤ect on the treated (ATT)

estimand from the program evaluation literature (e.g., Heckman and Robb, 1985;

Imbens, 2004), counterfactual earnings/wealth decompositions as in Dinardo, Fortin

and Lemieux (1996) and Barsky, Bound, Charles and Lupton (2002), poverty map-

ping as in Elbers, Lanjouw and Lanjouw (2003) and Tarozzi and Deaton (2007), di-

rect standardization methods used in demography (e.g., Kitagawa, 1964), and models

with mismeasured regressors and validation samples (e.g., Carroll and Wand, 1991).

To help �x ideas consider the ATT example. Here Y denotes an individual�s

potential outcome under active treatment, say earnings given participation in a job

training program, X denotes her outcome under control (earnings in the absence of

training) and W is a vector of baseline covariates. Available is a random sample

of (Y;W ) from the population assigned active treatment (i.e., �the treated�). A

separate sample of measurements of (X;W ) is drawn from a population of controls.

The ATT, 0 = Es [Y �X], is given by the solution to (1) with  s (Y;W; 0) = Y

and  a (X;W; 0) = X + 0.

Dehejia and Wahba (1999), revisiting earlier work by LaLonde (1986), com-

bine two distinct samples to estimate the e¤ect of the National Supported Work

(NSW) demonstration, a labor training program, on the post-intervention earnings

of trainees. Their study sample consists of 185 NSW participants, while their auxil-

iary sample includes 2,490 non-participants drawn from the Panel Study of Income

Dynamics (PSID). These two samples consist of random draws from distinct, non-

overlapping, populations. The two sample feature of their analysis distinguishes it

from one seeking to estimate a population average treatment e¤ect (ATE). In that
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case the researcher generally bases her analysis on a random sample from the pop-

ulation of interest, where some units happen to be treated, and others not (e.g.,

Rosenbaum and Rubin, 1983). There the inferential problem is usefully conceptual-

ized as one of missing data and the general theory of Robins, Rotnitzky and Zhao

(1994) directly applies.

The theoretical statistics literature has emphasized di¤erences between data com-

bination and missing data problems. In an important paper Hahn (1998) showed that

while prior restrictions on the form of the propensity score do not lower the semi-

parametric variance bound for the ATE, they do lower the corresponding bound for

the ATT. Chen, Hong and Tarozzi (2008) generalize this result, showing that, unlike

in the missing data context (their �verify-in-sample�case), knowledge of the form of

the propensity score is asymptotically valuable in data combination problems (their

�verify-out-of-sample�case).

Our contribution is to develop a �exible parametric estimator for general data

combination problems with good e¢ ciency and robustness properties. Similar to the

augmented inverse probability weighting (AIPW) estimator for missing data prob-

lems due to Robins, Rotnitzky and Zhao (1994), our data combination procedure is

locally e¢ cient and possesses a double robustness property. To our knowledge we

are the �rst to propose a locally e¢ cient estimator in the data combination con-

text. Chen, Hong and Tarozzi (2008) propose a globally e¢ cient estimator, but their

procedure requires nonparametric modelling as opposed to the �exible parametric

approach adopted here. Our methods provide a practical alternative to theirs when

W is high dimensional (cf., Firpo and Rothe, 2013). Abadie (2005) develops a para-

metric propensity score reweighting (PSR) estimate of the ATT. Qin and Zhang

(2008) show that Abadie�s estimator can have low e¢ ciency in some settings and
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propose an alternative that uses empirical likelihood ideas. Qin and Zhang (2008)

do not characterize the semiparametric e¢ ciency or robustness properties of their

ATT estimator, nor show how to extend it to the wider class of problems considered

here. Hirano and Imbens (2001) also propose a modi�cation of Abadie�s (2005) esti-

mator. They demonstrate that their modi�ed estimator exhibits a double robustness

property, but do not consider issues of semiparametric e¢ ciency nor general data

combination problems as we do.

In Section 2 we de�ne the semiparametric data combination model. We also

describe a number of speci�c data combination problems that arise frequently in

applied statistics and econometrics. Extending the work of Chen, Hong and Tarozzi

(2008) we calculate the semiparametric e¢ ciency bound for our model. We relate our

e¢ ciency bound analysis to prior work on distribution function estimation based on

a random sample from the population of interest and a second, biased, sample from

the same population (e.g., Qin, 1998; Gilbert, Lele, Vardi, 1999). In Section 3 we

de�ne our estimator and formally characterize its large sample properties. Section 4

provides an empirical application and reports on the results of several Monte Carlo

experiments.

2 Semiparametric data combination model

A formal de�nition of the data combination model is given by Assumption 2.1 below.

Assumption 2.1 Semiparametric Data Combination Model

(i) (Identification) For some  (z; ) =  s (y; w; ) �  a (x;w; ), equation (1)

holds with Es [ (Z; )] 6= 0 for all  6= 0;  2 G � RK, z 2 Z � Rdim(Z);

(ii) (Conditional Distributional Equality) Fs (xjw) = Fa (xjw) and Fs (yjw) =
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Fa (yjw) for all w 2 W � Rdim(W ); x 2 X � Rdim(X) and y 2 Y � Rdim(Y );

(iii) (Weak Overlap) Let Sj = fw : fj (w) > 0g for j = s; a, then Ss � Sa;

(iv) (Multinomial Sampling) With probability Q0 2 (�0; 1� �0) for 0 < �0 < 1

we draw a unit at random from Fs and record its realizations of Y and W , other-

wise we draw a unit at random from Fa and record its realizations of X and W: Let

Di = 1 if the ith draw (i = 1; : : : ; N) corresponds to a study population unit and

Di = 0 otherwise;

(v) (Propensity score model) There is a unique �0 2 D � R1+M ; known

vector r (W ) of linearly independent functions of W with a constant in the �rst

row, and known function G (�) such that (i) G (�) is strictly increasing, di¤erentiable

and maps into the unit interval with lim
v!�1

G (v) = 0 and lim
v!1

G (v) = 1, (ii)

fs(w)
fa(w)

= 1�Q0
Q0

G(r(w)0�0)
1�G(r(w)0�0) for all w 2 W, and (iii) 0 < G (r(w)0�) � � < 1 for all

� 2 D and w 2 W.

The �rst part of Assumption 2.1 implies global identi�ability of the complete data

model. The second part implies that the distributions of (Y;W ) and (X;W ) in the

two populations di¤er only in terms of their marginal distributions for the always

measured variable, W . The third part ensures that, in large samples, for each unit

in the study sample there will be matching units with similar values of W in the

auxiliary sample. The fourth part of Assumption 2.1 allows us to treat the merged

sample �
(Di;Wi;

0 (1�Di)X
0
i; DiY

0
i )
0	N
i=1

;

�as if�it were a random one from a pseudo merged population with distribution func-

tion F (let E [�] denote expectations taken with respect to this distribution). The

semiparametric data combination model is typically de�ned by specifying properties
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of the merged population (e.g., Hahn, 1998; Chen, Hong and Tarozzi, 2008). We

prefer the formulation given above because it (i) emphasizes that the problem is fun-

damentally one of combining two datasets and (ii) in many applications the merged

population does not correspond a real world population. Formulating a model by im-

posing restrictions on a pseudo-population is somewhat awkward (cf., the discussion

in Abadie and Imbens (2006, p. 239)).

The sampling distribution induced by the multinomial scheme, F , has density

f (z; d) = Qd0 (1�Q0)
1�d fs (z)

d fa (z)
1�d ;

such that f (zj d = 1) = fs (z) and f (zj d = 0) = fa (z) : Now consider the condi-

tional probability given W = w that a unit in the merged sample corresponds to a

draw from the study population. Let E[DjW = w] = p0 (w) denote this �propensity

score�, by Bayes�Law we can de�ne a relationship between the study and auxiliary

densities of W in terms of p0 (w)

fs (w) = fa (w)

�
1�Q0
Q0

p0 (w)

1� p0 (w)

�
: (3)

Under the merged population formulation of the problem it is clear that part (i) of

Assumption 2.1 corresponds to requiring that E [ (Z; 0)jD = 1] = 0; part (ii) to

conditional independence restrictions on the merged population distribution function

of F (yjw; d = 1) = F (yjw; d = 0) and F (xjw; d = 1) = F (xjw; d = 0) ; and parts

(iii) and (iv) to assuming that p0 (w) is bounded away from one. Part (v) of the

assumption implies that the density ratio fs (w) =fa (w) takes a parametric form or,

equivalently, that the propensity score is known up to a �nite dimensional parameter.
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Identi�cation of 0 follows from, using parts (ii) and (iii) of Assumption 2.1 and

Equation (3), the equality

Es [ (Z; )] = E
�
D

Q0
 s (Y;W; )

�
� E

�
1�D

Q0

p0 (W )

1� p0 (W )
 a (X;W; )

�
; (4)

which is, by part one of Assumption 2.1, uniquely zero at  = 0: See Lemma 3.1 of

Abadie (2005) for a formal proof.

2.1 Examples

To give some idea of the range of problems to which our methods apply, we outline

three examples (in addition to the program evaluation example discussed in the

introduction). Additional examples are described in Chen, Hong and Tarozzi (2008)

and Ridder and Mo¢ tt (2007).

Two sample instrumental variables (TSIV) model: Ridder andMo¢ tt (2007)

consider two sample instrumental variables (TSIV) models of the form

Es [ff (Y ; )� g (X;W1; )g e (W )] = 0;

with W = (W 0
0;W

0
1)
0. The �rst sample consists of measurements of (Y;W ) and the

second of (X;W ). They assume that both samples are random ones from the study

population (i.e., the samples are �compatible�). This corresponds to augmenting As-

sumption 2.1 with the additional requirement that Fs (w) = Fa (w) : The TSIV model

is of the form required by (2) with  s (y; w; ) = f (Y ; ) e (W ) and  a (x;w; ) =

g (X;W1; ) e (W ). When e (W ) = W , f (Y ; ) = Y and g (X;W1; ) = X 0� +W 0
1�

7



with 0 = (�0; �
0
0)
0 we have the linear model analyzed by Angrist and Krueger (1992).

Ridder and Mo¢ tt (2007) show how one may estimate the Mixed Proportional Haz-

ard (MPH) model under this setup, while Ichimura and Martinez-Sanchis (2004)

discuss binary choice models.

A concrete example of a TSIV problem is provided by the work of Currie and

Yelowitz (2000), who consider the model

Et [W (Y �X 0�0 �W 0
1�0)] = 0;

where Y is an indicator for whether a school-aged child has repeated a grade, X

an indicator for residence in public housing, W0 equals the number of male siblings

in the household, and W1 equals the overall number of siblings and also contains

other household characteristics; W = (W 0
0;W

0
1)
0. Their interest centers on the causal

e¤ect of residence in public housing on human capital acquisition. The number of

male siblings changes the probability of residence in public housing since, conditional

on the overall number of siblings, families with a mixture of boys and girls qualify

for larger units and hence higher (implicit) housing subsidies. Currie and Yelowitz

(2000) additionally argue that, conditional on the total number of one�s siblings,

their gender mix should not in�uence schooling independently of any e¤ect mediated

by exposure to public housing. Hence W0 may serve as an instrumental variable for

X.

Currie and Yelowitz (2000) observe Y andW for a random subsample of children

drawn from the US Census. The Census, however, does not collect information

on residence in public housing, X. This information is available in the US Current

Population Survey (CPS), which also includes measurements ofW (but not Y ). They
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treat both the Census and CPS samples as random ones from their study population

(school-aged children living in the United States) and use a variant of Angrist and

Krueger�s (1992) method to estimate 0 = (�0; �
0
0)
0
:

In applications of the TSIV model, like Currie and Yelowitz�s (2000), it is often

found that the sample moments of the common variablesW di¤er signi�cantly across

the two datasets being combined (see also Björkland and Jäntti, 1997). This suggests

that full compatibility may fail in practice (i.e., Fs (w) 6= Fa (w)). The estimator

presented below does not require full compatibility and is generally more e¢ cient

than the one proposed by Angrist and Krueger (1992) (compare Theorem 3.1 below

with Angrist and Krueger (1992, p. 331) or Ridder and Mo¢ tt (2007, p. 5505)).

Poverty mapping: Let X be an indicator denoting whether a household�s total

outlay falls below a poverty line andW a vector of household characteristics. We seek

to estimate the poverty rate in a speci�c study municipality as in Elbers, Lanjouw

and Lanjouw (2003) and Tarozzi and Deaton (2007). Available is a random sample

of Ns observations of W from this municipality; however, no poverty measurements

are available in this sample. Also available is a random sample of size Na of both

X and W from the entire country. Our estimand is 0 = Es [X] which corresponds

to setting  s (Y;W; ) = 0 and  a (X;W; ) = X � : In this example part two of

Assumption 2.1 implies that the conditional probability of begin poor given W = w

is the same in the entire country as it is in the speci�c municipality of interest.

Counterfactual distributions and direct standardization: We develop this

example in our empirical application below. Let Y be wages of employed Black males

and X those of White males. LetW be a vector of worker characteristics. A random
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study sample of Black, and another auxiliary sample of White, workers are available.

We seek to decompose di¤erences in speci�c quantiles of the Black and White wage

distributions into portions due to (i) di¤erences in the distribution of characteristics,

and (ii) di¤erences in the mapping from those characteristics into wages, across the

two populations. The latter di¤erence is sometimes interpreted as a measure of labor

market discrimination, although this interpretation is not assumption free (cf., Darity

and Mason, 1998).

This decomposition requires knowledge of the distribution of White wages that

would prevail under the Black distribution of worker characteristics. That is, what

would the wage distribution look like in a hypothetical White population whose

distribution of W coincided with the one in the actual Black population? The �th

quantile of this counterfactual distribution, �W jB, is identi�ed by

Es
�
1(X � �W jB)� �

�
= 0;

which corresponds to setting  0 (Y0; X; ) = � � 1(X � �W jB) and  1 (Y1; X; )

to a vector of zeros. The �th quantiles of the actual Black and White earnings

distributions are denoted by �BjB and 
�
W jW . A decomposition into wage structure

and compositional e¤ects is then given by

�BjB � �W jW =
�
�BjB � �W jB

�
�
�
�W jW � �W jB

�
:

Barsky, Bound, Charles and Lupton (2002) and Fortin, Lemieux and Firpo (2010)

survey alternative decomposition methods. For discretely-valued W these methods

are similar to techniques used by demographers to standardize mortality rates across
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localities (e.g., Kitagawa, 1964).

2.2 E¢ ciency bound

Hahn (1998, Theorem 1) calculated the semiparametric variance bound for the special

case where 0 is the ATT and part (v) of Assumption 2.1 is not part of the prior

restriction. Chen, Hong and Tarozzi (2008, Theorem 3) include part (v) in their

prior, but assume that  s (Y;W; ) = 0. The following result generalizes that of

Chen, Hong and Tarozzi (2008) to the case where the moment function is of the

form given in (2).2 To present this result we require some additional notation. Let

�0 (w) = E
�
@ (Z; 0)

@0

����W = w

�
; p0 (w) = G (t(w)0�0)

qs (w) = E [ s (Y;W; 0)jW = w] ; qa (w) = E [ a (X;W; 0)jW = w]

�s (w; 0) = V ( s (Y;W; 0)jW = w) ; �a (w; 0) = V ( a (X;W; 0)jW = w)

S� =
D �G (r(W )0�0)

G (r(W )0�0) [1�G (r(W )0�0)]
G1 (r(W )

0�0) r(W );

and

� (W ) =

�
p0 (W )

Q0

�2�
�s (W ; 0)

p0 (W )
+
�a (W ; 0)

1� p0 (W )
(5)

+ [qs (W )� qa (W )] [qs (W )� qa (W )]
0	

+E
��

D

p0 (W )
� 1
�
p0 (W ) fqs (W )� qa (W )g

Q0
S0�
�

�E [S�S0�]
�1 E

��
D

p0 (W )
� 1
�
p0 (W ) fqs (W )� qa (W )g

Q0
S0�
�0
:

2Relative to Chen, Hong and Tarozzi (2008), our model includes an additional conditional inde-
pendence assumption which in�uences the form of the e¢ ciency bound.
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Theorem 2.1 (Semiparametric Variance Bound) Under Assumption 2.1 the

maximal asymptotic precision with which 0 may be regularly estimated is given by

the inverse of I (0) = E
h
p0(W )
Q0

�0 (W )
i0
E [� (W )]�1 E

h
p0(W )
Q0

�0 (W )
i
:

Proof. See the supplemental appendix.

It is easy to show that the information bound for 0 is smaller in the model which

leaves p0 (W ) nonparametric (i.e., where part (v) of Assumption 2.1 is not part of the

prior). Knowledge of the parametric form of the propensity score increases the large

sample precision with which 0 may be estimated. In contrast, in semiparametric

missing data problems it is well-known that parametric restrictions on the propensity

score do not shift the e¢ ciency bound (e.g., Robins, Rotnitzky and Zhao, 1994; Hahn,

1998). The value of prior restrictions on the propensity score distinguishes the data

combination problem from the missing data one.

To better understand this di¤erence consider estimation of the study popula-

tion distribution of W . Since a random sample of W from the study population is

available, an obvious estimate is the study sample empirical distribution function

bFs (w) = 1

Ns

NsX
i=1

1 (Wi � w) : (6)

Here, and in what follows, we assume without loss of generality that the merged

sample is arranged such that its �rst Ns units correspond to study population draws,

and its remaining Na units to auxiliary sample draws. If nothing is known about

the relationship between Fs (w) and Fa (w), as is true when the propensity score is

left nonparametric, then this estimator is also e¢ cient. However if the relationship

between Fs (w) and Fa (w) is a priori restricted, as occurs when the propensity score

is parametrically speci�ed, a more e¢ cient estimate can be constructed.
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Let G(r(w)0b�ML) denote the conditional maximum likelihood estimate of the

propensity score (based on the merged sample) and bQML =
PN

i=1G(r(Wi)
0b�ML)=N

that of Q0, then the estimate

bF e�s (w) =
NX
i=1

b�e�i 1 (Wi � w) ; b�e�i =
G(r(Wi)

0b�ML)PN
i=1G(r(Wi)0b�ML)

(7)

e¢ ciently uses the information in both the study and auxiliary samples to estimate

Fs (w). To understand (7) note that Bayes� law gives fs (Wi) = f (WijDi = 1) =

p0 (Wi) f (Wi) =Q0; replacing p0 (Wi) and Q0 with their maximum likelihood esti-

mates, and f (Wi) with the empirical measure of the merged sample, 1=N , givesbfs (Wi) = b�e�i , for b�e�i de�ned in (7). In contrast to (6), (7) uses both study and

auxiliary units �linked via a parametric form for the propensity score �to e¢ ciently

estimate Fs (w) :

Parts (v) of Assumption 2.1 implies that we can view the auxiliary sample as a

biased sampled from the study population of interest where the biasing function is

known up to a �nite dimensional parameter (cf., Qin, 1998; Gilbert, Lele and Vardi,

1999; Ridder and Mo¢ tt, 2007). As is well known, a biased sample may be combined

with a random one to form a more e¢ cient distribution function estimate as long as

the biasing function is known or parametrically speci�ed. Equation (7) is a speci�c

application of this general idea.

Since 0 involves integration over the study population distributions of (Y;W )

and (X;W ), these two distribution functions must be (implicitly) estimated in order

to estimate 0. The estimator we propose in the next section improves the e¢ ciency

of these distribution function estimates by requiring them to share a �nite number of

moments of W in common with bF e�s (w). The idea of calibrating a distribution func-
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tion estimate to information garnered from auxiliary sources arises in other contexts.

Little and Wu (1991) discuss contingency table calibration to known margins and

provide historical references (cf., Hellerstein and Imbens, 1999). Bickel, Ya�Acov and

Wellner (1991) study estimation of linear functionals of probability measures with

known marginals. Hirano, Imbens, Ridder and Rubin (2001) show how calibration

to marginal information from refreshment samples may be used to correct for certain

types of nonignorable attrition in panel data. In the context of average treatment

e¤ect estimation, Tan (2006) calibrates estimates of the two potential outcome dis-

tributions to features of the empirical distribution of always observed variables (cf.,

Qin and Zhang, 2007; Graham, Pinto and Egel, 2012). Recently Cheng, Small, Tan,

and Ten Have (2009) apply related ideas to an instrumental variables model.

We calibrate our estimates of the study population distributions of (Y;W ) and

(X;W ) to features of (7) (which is the most e¢ cient estimate of Fs (w) when the

propensity score takes a parametric form). In contrast, in missing data problems the

population of interest corresponds to what we have termed the merged population.

The most e¢ cient estimate of the merged population distribution function of W is

the merged sample empirical distribution function. This is true irrespective of the

form of the propensity score. This provides one intuition for why prior knowledge

of the form of the propensity score is not valuable in the missing data context (cf.,

Graham, 2011).

3 Auxiliary-to-Study Tilting

Our estimator for 0, which we call the auxiliary-to-study tilting (AST) estimator,

is a sequential method of moments estimator, as surveyed by, for example, Newey
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and McFadden (1994). In the �rst step we estimate the propensity score parameter

� by conditional maximum likelihood:

1

N

NX
i=1

Di �G
�
r (Wi)

0b�ML

�
G
�
r (Wi)

0b�ML

� h
1�G

�
r (Wi)

0b�ML

�iG1 �r (Wi)
0b�ML

�
r (Wi) = 0: (8)

In the second step we compute a reweighting of both the study and auxiliary

samples. Let t (W ) be vector of known linear independent functions of W with

a constant 1 in the �rst row and �a and �s be �tilting� parameters of the same

dimension. We allow for r (W ) and t (W ) to include common elements or even

coincide. Fixing � at b�ML and Q at bQML =
PN

i=1G(t(Wi)
0b�ML)=N we choose b�a to

solve:

1

N

NX
i=1

0@ 1�Di

1�G
�
r (Wi)

0b�ML + t (Wi)
0 b�a� � 1

1A G
�
r (Wi)

0b�ML

�
bQML

t (Wi) = 0: (9)

To understand this method of choosing b�a its helpful to rearrange (9) to get
1

N

NX
i=1

1�DibQML

G
�
r (Wi)

0b�ML

�
t (Wi)

1�G
�
r (Wi)

0b�ML + t (Wi)
0 b�a� =

1

N

XN

i=1

G
�
r (Wi)

0b�ML

�
t (Wi)bQML

NX
i=Ns+1

b�ai t (Wi) =
XN

i=1
b�e�i t (Wi) ; (10)

for

b�ai = G
�
r (Wi)

0b�ML

�
PN

i=1G(r(Wi)0b�ML)

1

1�G
�
r (Wi)

0b�ML + t (Wi)
0 b�a� ; i = Ns + 1; : : : ; N:
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The term to the right of the equality in (10) is an estimate of Es [t (Wi)] �the study

population mean of t (Wi) �based on the e¢ cient distribution function estimate

(7). It is consequently an e¢ cient estimate of Es [t (Wi)] : The solution to (9) �our

estimate of �a �is chosen to form a reweighting of the auxiliary sample such thatPNs
i=1 b�ai t (Wi) is numerically identical to the e¢ cient estimate of Es [t (Wi)] based onbF e�s (w).

To better understand (10) recall that, as shown by Abadie (2005) and others, the

propensity score reweighting type estimator

bFPSRs (x;w) =
1

N

NX
i=1

1�DibQML

G
�
r (Wi)

0b�ML

�
1�G

�
r (Wi)

0b�ML

�1 (Xi � x;Wi � w) ;

is consistent for the study population distribution function of (X;W ). Our AST

estimator replaces bFPSRs (x;w) with the more e¢ cient tilted version

bFASTs (x;w) =
NX

i=Ns+1

b�ai 1 (Xi � x;Wi � w) :

This tilted distribution estimate, unlike bFPSRs (x;w), is guaranteed to integrate to

one and shares a �nite number of moment in common with bF e�s (w) :

We also compute an analogous tilt of the study sample

1

N

NX
i=1

0@ Di

G
�
r (Wi)

0b�ML + t (Wi)
0 b�s� � 1

1A G
�
r (Wi)

0b�ML

�
bQML

t (Wi) = 0; (11)

so that
NsX
i=1

b�si t (Wi) =
NX
i=1

b�e�i t (Wi) ; (12)
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for

b�si = G
�
r (Wi)

0b�ML

�
PN

i=1G(r(Wi)0b�ML)

1

G
�
r (Wi)

0b�ML + t (Wi)
0 b�s� ; i = 1; : : : ; Ns:

With the auxiliary and study sample tilts in hand we then choose bAST to solve,
holding b�a and b�s �xed at their second step values,

NsX
i=1

b�si s (Yi;Wi; bAST )� NX
i=Ns+1

b�ai a (Xi;Wi; bAST ) = 0: (13)

Inspection of (13) indicates that our estimate of 0 is based on two separate

estimates of the study population distribution function. The �rst, corresponding to

the study tilt fb�sigNsi=1 is an estimate of the study population distribution of (Yi;Wi),

the second, corresponding to the auxiliary tilt, fb�ai gNi=Ns+1, is an estimate of the study
population distribution of the (Xi;Wi). Neither of these two estimates coincide with

the e¢ cient estimate of the study population distribution of Wi alone (i.e, with (7)),

but they do share important features with it. Speci�cally they are constructed so

that the means of t (Wi) ; computed using the two tilts, coincide with the e¢ cient

estimate.

Our next two results provide formal descriptions of the asymptotic sampling prop-

erties of bAST under di¤erent combinations of assumptions. We begin by introducing
the following assumption.

Assumption 3.1 (Moment CEF) For some unique pair of matrices �s; �a and

vector of linear independent functions t (W ) with a constant in the �rst row, we have

E [ s (Y;W; 0)jW ] = �st (W ) ; E [ a (X;W; 0)jW ] = �at (W ) :
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Assumption 3.1 posits a working model for the conditional expectation functions

(CEFs) of  s (Y;W; 0) and  a (X;W; 0) given W . The substantive content of this

assumption is, of course, model and application speci�c. The ATT example discussed

in the introduction provides a simple illustration. In that case Assumption 3.1 implies

that the CEFs of the potential outcomes given active and control treatment, Y and

X, are linear in t (W ). Thus, if the object of interest is the ATT, the analyst should

pick the elements of t (W ) so as to provide a good approximation to these two CEFs.

For the two sample instrumental variables (TSIV) model it is possible to show that

the correct t (W ) is an implication of the structure of the �rst stage relationship

between the endogenous right hand side variable, X, and the instrument vector, W .

Let E� [Y jX] denote the mean squared error minimizing linear predictor of Y

given X. If both Assumptions 2.1 and 3.1 hold the Appendix shows that bAST is
asymptotically linear with representation

p
N (bAST � 0) = ���10

1p
N

NX
i=1

�
Di

Q0
f s (Yi;Wi; 0)� qs (Wi)g (14)

�1�Di

Q0

p0 (Wi)

1� p0 (Wi)
f a (Xi;Wi; 0)� qa (Wi)g

+
p0 (W )

Q0
fqs (W )� qa (W )g

+
1

Q0
E�
��

D

p0 (W )
� 1
�
p0 (W ) (qs (W )� qa (W ))

���� S���+ op (1) :

Equation (14) then gives our asymptotic e¢ ciency result.

Theorem 3.1 (Local Semiparametric Efficiency) Consider the semipara-

metric data combination model de�ned by Assumption 2.1 and additional regularity

conditions, then for bAST the solution to (13), bAST is locally e¢ cient at Assumption
3.1 such that

p
N (bAST � 0)

D! N
�
0; I (0)

�1� with I (0) as de�ned in Theorem
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2.1.

Proof. See Appendix A.

Our e¢ ciency bound calculation, Theorem 2.1, gives the information bound for 0

without imposing the additional auxiliary Assumption 3.1. This assumption imposes

restrictions on the joint distribution of the data not implied by the baseline model. If

these restrictions are added to the prior used to calculate the e¢ ciency bound, then

it may be possible to estimate 0 more precisely. Our estimator is not e¢ cient with

respect to this augmented model. Rather it attains the bound provided by Theorem

2.1 if Assumption 3.1 happens to be true in the population being sampled from, but

is not part of the prior restriction used to calculate the bound. Newey (1990, p.

114), Robins, Rotnitzky and Zhao (1994, p. 852 - 3) and Tsiatis (2006) discuss the

concept of local e¢ ciency in detail. In what follows we will, for brevity, say bAST is
locally e¢ cient at Assumption 3.1.

Next we give our double robustness type result. Here our result is slightly less

general than similar results in the missing data literature, but nevertheless may be

useful in practice.

Theorem 3.2 (Double Robustness) Under parts (i) to (iv) of Assumption 2.1,

bAST p! 0 with a limiting normal distribution if either (a) part (v) of Assumption

2.1 also holds or (b) the analyst chooses G (v) = exp (v) = [1 + exp (v)] ; t (W ) =

r (W ) ; and Assumption 3.1 holds.

Proof. See Appendix A.

Theorem 3.2 indicates that the advantage of choosing t (W ) with Assumption 3.1

in mind is twofold. Under the baseline model de�ned by Assumption 2.1, Theorem 3.1

implies that bAST will have low sampling variation if qs (w) = E [ s (Y;W; 0)jW = w]
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and qa (w) = E [ a (X;W; 0)jW = w] are approximately linear in t (w) : This is the

case covered by part (a) of the Theorem. Now consider the case where the analyst

mispeci�es the propensity score model, but Assumption 3.1 holds, part (b) of The-

orem 3.2 indicates that bAST will remain consistent for 0 in this case if the analyst
chooses G (v) to take the logit form. We emphasize that the true propensity score

model may or may not be of the logit form.

The peculiar feature of Theorem 3.2, relative to analogous results in the missing

data literature (e.g., Tsiatis, 2006), is the requirement that the assumed propensity

score take the logit form. To understand this requirement note that, in general, (7)

will be an inconsistent estimate of the study population distribution of W when the

propensity score is misspeci�ed. Calibrating the study and auxiliary tilts to moments

of this distribution will therefore typically produce an inconsistent estimate of 0.

However when condition (b) of Theorem 3.2 holds we have, from the estimating

equations for the propensity score parameter,

1

N

NX
i=1

�
Di �G

�
t (Wi)

0b�ML

��
t (Wi) = 0: (15)

Now consider the mean of t (Wi) with respect to bF e�s (w). Using (15), and the fact

that t (Wi) contains a constant so that
PN

i=1G(t(Wi)
0b�ML) =

NP
i=1

Di, we have the

equalities

NX
i=1

b�e�i t (Wi) =

NX
i=1

G(t(Wi)
0b�ML)PN

j=1G(t(Wj)0b�ML)
t (Wi) =

PN
i=1Dit (Wi)PN

i=1Di

:

Therefore, under the conditions of part (b) of Theorem 3.2,
NP
i=1

b�e�i t (Wi)
p! Es [t (W )]

irrespective of whether the propensity score is correctly model. This implies that the
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study and auxiliary tilts will be correctly calibrated such that, when Assumption 3.1

holds, bAST will remain consistent for 0:
We note that, unlike in the missing data problem, where the propensity score is

ancillary, it is surprising that any data combination estimator is consistent in the

presence of propensity score misspeci�cation since it enters the actual de�nition of

0 :

E [ (Z; 0)jD = 1] = Q�10

Z
 (z; 0) p0 (w) f (z) dz:

Collectively Theorems 3.1 and 3.2 provide a strong theoretical case for using

AST in practice. If Assumption 3.1 happens to be true in the sampled populations,

then AST will be more e¢ cient than the propensity score reweighting approach of

Abadie (2005). This result is analogous to the enhanced e¢ ciency of the Augmented

Inverse Probability Weighting (AIPW) estimator of Robins, Rotnitzky and Zhao

(1994) relative to conventional Inverse Probability Weighting (IPW) in the missing

data context. Furthermore, if the propensity score is inadvertently misspeci�ed, AST

nevertheless remains consistent for 0 if Assumption 3.1 holds (and the analyst works

with a logit form for G (v)). We acknowledge that in settings where the researcher is

highly con�dent in Assumption 3.1 a direct imputation approach may be preferable

(e.g., Kline, 2011; Chen, Hong and Tarozzi, 2008). Such an approach is valid under

weaker support conditions than maintained by Assumption 2.1. A disadvantage

of imputation is its sensitivity to violations of Assumption 3.1; this limitation is

illustrated by our Monte Carlo experiments below.
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4 Application and Monte Carlo experiments

Empirical application Neal and Johnson (1996) study the role of �pre-market�

(i.e., acquired prior to age 18) di¤erences in cognitive achievement in explaining

di¤erences in earnings between young Black and White men. Using a sample of

employed Black and White males drawn from the National Longitudinal Survey of

Youth 1979 (NLSY79), Neal and Johnson (1996) compute the least squares �t of the

logarithm of hourly wages on a constant, a black dummy, age, and AFQT percentile

score measured at age 16 to 18.3 They �nd that the coe¢ cient on the black dummy

variable drops by two thirds to three quarters when AFQT score is included as a

covariate. On the basis of this �nding they argue that di¤erences in the rate of

cognitive skill acquisition across Blacks and White prior to age 18, due to di¤erences

in family background, school quality and neighborhood characteristics, explains a

substantial portion of subsequent Black-White wage inequality. We do not provide

an assessment of this interpretation here, rather we are interested in the sensitivity

of their statistical �nding to their maintained (linear) functional form assumptions.

Let Y denote real average wages from 1990 to 1993 for a random draw from the

population of Black men aged 16 to 18 in 1979 and residing in the United States.

This population corresponds to our study population of interest. Let X denote real

wages for a random draw from the population of White men aged 16 to 18 in 1979

and residing in the United States. This corresponds to our auxiliary population. Let

W be a vector including year of birth and AFQT score (We transform the percentile

scores used by Neal and Johnson (1996) onto the real line using the inverse standard

3The Armed Forces Quali�cation Test (AFQT) is used by the military for recruitment and
job assignment purposes. It is widely used as a measure of cognitive achievement in social science
research. The AFQT is a nationally normed test so that an individual�s percentile score corresponds
to her rank in the reference distribution.
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normal CDF). We compare features of the observed distribution of Black wages with

those of a hypothetical White population whose age and AFQT distribution coincides

with that of the Blacks (i.e., with study population�s). These types of hypothetical

comparisons underlie Oaxaca decompositions, as used in labor and health economics,

and similar exercises undertaken in demography (e.g., Kitagawa, 1964). Barsky,

Bound, Charles and Lupton (2002) and Fortin, Lemieux and Firpo (2010) survey

the application of decomposition methods in economics.

Our sample closely resembles that used in Johnson and Neal (1998).4 It in-

cludes 1,371 measurements of real wages, race, age and AFQT score drawn from

the NLSY79. Throughout we replace the empirical measure of our sample with the

NLSY79 base year sampling weights (although this adjustment has little e¤ect on

our results). The age distributions for Blacks and Whites in the merged sample are,

as would be expected, quite similar. The distribution of AFQT scores across the

two groups are quite di¤erent. The mean Black score is approximately one standard

deviation lower than the mean White score. The two distributions also substantially

di¤er in their second, third and fourth moments (not reported).

Panel A of Table 1 reports estimates of mean log Wages for Blacks (Column 1),

as well as the Black-White average di¤erence (Column 2). On average Blacks earn

almost 28 percent less per hour than Whites in our sample. Panel A also reports

estimates of the CDF of the Black wage distribution at selected points, and the

corresponding Black-White CDF di¤erences. For example, while over 45 percent of

Blacks earn less than $7.50 per hour in our sample, fewer than 30 percent of Whites

do (Table 1, Row 3). Inspection of the CDF di¤erences indicates that, while the

4We attempted to exactly reconstruct the Johnson and Neal (1998) sample by following the
guidelines in their data appendix. Our sample di¤ers form theirs negligibly, perhaps due to updates
in the NLSY79 databases since their research was undertaken.
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distributions are most di¤erent at the lower wage levels, di¤erences exist across the

entire support of wages.

Panel B of Table 1 reports average wage di¤erences between Blacks and a hypo-

thetical population of Whites whose distribution of age and AFQT score coincides

with the Black distribution. This allows for a comparison between Black and White

wages that �exibly controls for di¤erences between the two populations in age and

AFQT score.

In Column 1 of Panel B we report age- and AFQT-adjusted di¤erences in mean

wages and wage CDFs based on the conditional expectation projection (CEP) esti-

mator of Chen, Hong, and Tarozzi (2008). Our implementation of their procedure

models the conditional expectation functions (CEFs) of Y and X given W as a sep-

arable functions of a constant, two year of birth dummies, a quadratic polynomial in

transformed AFQT score, and twelve dummy variables for the transformed AFQT

score lying respectively below �2;�1:75; : : : ; 0:25; 0:5: Let t (W ) be the vector con-

taining all these functions of W . In principle, if the dimension of the approximating

model is allowed to grow with the sample size, the Chen, Hong, and Tarozzi (2008)

estimator is consistent for, and e¢ cient under, all data generating processes satis-

fying parts (i) to (iv) of Assumption 2.1. In small samples the performance of the

estimator is heavily dependent on the quality of the two CEF approximations. After

adjusting for age and AFQT di¤erences we �nd that, while a Black-White residual

log wage CDF gap remains at lower wage values, it disappears at higher values.

The average log wage gaps falls, after adjusting for age and AFQT di¤erences, from

�0:279 to �0:111.

Column 2 of Panel B implements the propensity score reweighting (PSR) esti-

mator of Hirano and Imbens (2001) and Abadie (2005). We model the propensity
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Table 1: Raw and adjusted di¤erences in Black versus White hourly wages

Panel A Panel B
(1)
Black

(2)
B�W

(1)
CEP

(2)
PSR

(3)
AST

Average (log(Wage))
6:749
(0:021)

�0:279
(0:026)

�0:1108
(0:0348)

�0:1072
(0:0303)

�0:1052
(0:0298)

Pr (Wage � $5:00) 0:0801
(0:0125)

0:0566
(0:0135)

0:0243
(0:0216)

0:0246
(0:0193)

0:0278
(0:0187)

Pr (Wage � $7:50) 0:4505
(0:0244)

0:2948
(0:0275)

0:1780
(0:0391)

0:1737
(0:0355)

0:1757
(0:0350)

Pr (Wage � $10:00) 0:6590
(0:0244)

0:2691
(0:0300)

0:0987
(0:0406)

0:0964
(0:0358)

0:0903
(0:0353)

Pr (Wage � $12:50) 0:8020
(0:0198)

0:2001
(0:0265)

0:0417
(0:0328)

0:0386
(0:0288)

0:0348
(0:0284)

Pr (Wage � $15:00) 0:8896
(0:0153)

0:1426
(0:0219)

0:0176
(0:0238)

0:0129
(0:0203)

0:0109
(0:0202)

Notes: Results based on an extract of 1,371 Black and White men ages 16 to 18 in
1979 from the NLSY79. Estimated standard errors, which account for within-household
dependence in outcomes across siblings, are reported in parentheses.
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score as a logit function with an index linear in t (W ) as de�ned above for the CEP

estimator. The PSR estimates are very close in magnitude and precision to the CEP

estimates.

Column 3 of Panel B implements our AST procedure using the same choice of

t (W ) and r (W ) = t (W ) : This choice ensures that the study and auxiliary sample

tilts share the following features with the e¢ cient distribution function estimate of

W : (i) the marginal year of birth distributions coincide, (ii) the means and variances

of the transformed AFQT score coincide, (iii) the probability masses assigned to

the intervals de�ned by the �2;�1:75; : : : ; 0:25; 0:5 grid of AFQT score intervals

coincide. Figure 1 plots undersmoothed kernel density estimates of the actual Black

and White AFQT score densities; the two distributions are very di¤erent from one

another. The �gure also plots a density estimate based on the auxiliary sample

tilt. This corresponds to the AFQT score density in the hypothetical comparison

population of Whites. As is evident from the �gure, our choice of t (W ) is rich enough

to closely match this density with its target Black one.

While the AST point estimates are similar to the corresponding CEP and PSR

ones, their estimated sampling precision is uniformly superior (as Theorem 3.1 would

suggest). The close correspondence between the CEP, PSR and AST point estimates

in our application likely re�ects a combination of two factors. First, while the AFQT

distributions across Blacks and Whites di¤er dramatically, the support of the Black

distribution is clearly contained within that of the White distribution. Hence part

(iii) of Assumption 2.1 is well satis�ed. Second the approximating models under-

lying each of the estimators are quite �exible. In settings where overlap is weaker,

and/or the approximating models more parsimonious (as would be required when

the dimension of W is large), we would expect the three estimators to more often
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Figure 1: AFQT Densities
Notes: The �gure plots kernel density estimates of the actual Black and White
AFQT score distributions as well as an estimate based on the auxiliary sample tilt.
A Gaussian kernel is used with a bandwidth equal to 1/2 of Silverman�s �rule-of-
thumb�choice. Undersmoothing highlights the ability of the auxiliary tilt to match
local features of the Black AQFT density.

yield di¤erent point estimates depending on the true data generating process.

Our empirical application does generate new substantive �ndings relative to those

of Neal and Johnson (1996). These are most easily described by reference to Figure

2.5 Panel A of this �gure plots di¤erences in the quantiles of the unadjusted Black

versus White log wage distributions. Panel B plots the same di¤erences after ad-

justing for year of birth and AFQT di¤erences using our AST procedure with t (W )

as described above (i.e., di¤erences in the quantiles of the study versus auxiliary

sample tilts). The shaded area in the two �gures correspond to 95 percent pointwise

con�dence intervals. These intervals were computed using a percentile bootstrap

with 1000 replications (sampling households with replacement). While the raw wage

distributions di¤er signi�cantly at all quantiles, after adjusting for year of birth and

5These quantiles are computed by numerically inverting the relevant AST distribution function
estimate.
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Figure 2: Actual and age- and AFQT-adjusted di¤erences in the quantiles of the
Black versus White log wage distributions
Notes: Shaded areas correspond to 95 percent pointwise percentile bootstrap con-
�dence intervals.

AFQT di¤erences, they do not signi�cantly di¤er for lower and higher quantiles. If

we adopt the same interpretative perspective as Neal and Johnson (1996), our results

are consistent with the conclusion that explicit labor market discrimination is less

severe at the low and high ends of the Black wage distribution, and most pronounced

in the middle of the wage distribution. The regression methods used by Neal and

Johnson (1996) preclude the discovery of these heterogeneous e¤ects. Indeed the

average age and AFQT-adjusted wage gaps reported in row 1 of Table 1 are only

two-thirds of the di¤erence of medians reported in Figure 2.

Monte Carlo We now report on a number of Monte Carlo experiments we con-

ducted to verify the theoretical properties described in Theorems 3.1 and 3.2. In

particular we wish to assess the relevance of our theoretical robustness and e¢ ciency

results. To do this we consider a stylized program evaluation setting. The analyst

wishes to estimate the average treatment e¤ect on the treated (ATT).
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Table 2: Parameter values for Monte Carlo experiments
Design (1) (2) (3) (4)
�2a 1 2=3 1 2=3
�2Y 3:4823 2:6590 1:7496 0:9253
�2 0 0 �1 �1

In each of our �rst set of experiments we assume that W is distributed according

to a truncated normal distribution, with support [�c; c] ; in both the study (treated)

and auxiliary (control) populations. The location and scale parameters of these two

distributions, respectively (�s; �
2
s) and (�a; �

2
a), may di¤er. We assume a multinomial

sampling scheme: with probability Q0 = 1=2 a draw of (Y;W ) is taken at random

from the study (treated) population, otherwise a draw of (X;W ) is taken from the

auxiliary (control) population. Finally we assume that Y and X, which play the

roles of the outcome under treatment and control, are generated according to

Y jW;D � N
�
0; �2Y

�
XjW;D � N

�
�0 + �1

�
W � �W jD=1

�
+ �2

h�
W � �W jD=1

�2 � �2W jD=1

i
; �2X

�
;

where �W jD=1 and �
2
W jD=1 are the study population mean and variance ofW (which

di¤er from �s and �
2
s due to truncation).

The target parameter is 0 = Es [Y �X] = �0. The propensity score induced by

these designs is of the logit form with an index quadratic in W :

p0 (w) =
�
1 + exp

�
��0 � �1W � �2W

2
���1

;

where �0, �1 and �2 are functions of (�s; �
2
s) and (�a; �

2
a) (cf., Anderson, 1982).
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When the study and auxiliary population distributions of W have di¤erent means,

but a common variance, the logit index will be linear in W . When both the means

and variances di¤er, then the index will generally be nontrivially quadratic in W .

Across all designs we assume a sample size of N = 1; 000 and set �s = 0; �
2
S = 1;

�a = �1=2; �0 = 0; �1 = 1=2, �2X = 1 and c = 3: We vary �2A and �2 across

designs to, respectively, induce nonlinearity in the (index of) the propensity score

and E [ a (X;W; 0)jW ] = qa (W ). We vary �2Y across designs to keep the variance

bound �xed. Across each of our designs an e¢ cient estimator (under Assumption

2.1) will have an asymptotic standard error of
q
I (0)

�1 =1000 = 1=10:

Table 2 gives the parameter con�gurations for each of four Monte Carlo de-

signs. In the �rst design both the propensity score, p0 (w), and qa (w) are �linear�

in w (for p0 (w) �linear�means linear in the logit index). In the second design the

propensity score is quadratic in w, while qa (w) remains linear. In Design three

the reverse is true, while in Design four both objects are �quadratic�. Across each

design we implement the AST estimator with G (�) being the logit function and

r (W ) = t (W ) = (1;W )0. For the conditional expectation projection (CEP) esti-

mator we proceed �as if�E [XjW ] were linear in W , while our implementation of

propensity score reweighting (PSR) uses a logit propensity score with a linear index.

Our AST estimator is consistent for 0 in designs 1 through 3. CEP is consistent

in designs 1 and 2, but inconsistent in design 3. The PSR estimator is consistent

in designs 1 and 3, but inconsistent in design 2. All estimators are inconsistent in

design 4 due to the nonlinearity of both p0 (w) and qa (w). Table 3 reports the results

of our experiments. Column 1 lists a �pencil and paper�asymptotic bias calculation,

while Column 2 gives the median bias across 5,000 Monte Carlo replications (in both

cases bias is scaled by the �pencil and paper�asymptotic standard error reported in
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Table 3: Monte Carlo results
(1)

Asym.
Bias

(2)
Med.
Bias

(3)
Asym.
SE.

(4)
Median
SE.

(5)
Std.
Dev.

(6)
Cov. of
95% CI

(7)
RMSE

Design 1: p0 (w) linear, qa (w) linear
CEP 0.0000 0.0097 0.0997 0.0996 0.0986 0.9526 0.0986
PSR 0.0000 0.0164 0.1007 0.1006 0.1005 0.9506 0.1005
AST 0.0000 0.0055 0.0100 0.0998 0.0998 0.9540 0.0997

Design 2: p0 (w) quadratic, qa (w) linear
CEP 0.0000 0.0137 0.0925 0.0924 0.0947 0.9480 0.0947
PSR 0.5053 0.5437 0.0905 0.0911 0.0912 0.9126 0.1039
AST 0.0000 0.0169 0.0941 0.0931 0.0941 0.9470 0.0942

Design 3: p0 (w) linear, qa (w) quadratic
CEP -1.6125 -2.0082 0.1309 0.1296 0.1627 0.6204 0.3111
PSR 0.0000 -0.0137 0.1063 0.1037 0.1068 0.9420 0.1068
AST 0.0000 -0.0266 0.1076 0.1054 0.1081 0.9416 0.1081

Design 4: p0 (w) quadratic, qa (w) quadratic
CEP -4.6038 -6.7095 0.1192 0.1157 0.1728 0.0010 0.8196
PSR -3.0049 -3.1031 0.0847 0.0821 0.0858 0.1694 0.2670
AST -2.8789 -2.9313 0.0941 0.0873 0.0953 0.1726 0.2908
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Column 3). As predicted, AST is median unbiased (up to simulation error) in designs

1 through 3. In contrast, PSR is severely biased in design 2 and CEP in design 3.

As expected, all estimators perform poorly in design 4. These bias properties are

re�ected in the coverage of standard, Wald-based, 95 percent con�dence intervals for

0 (Column 6). By comparing columns 1 and 2 and columns 3 and 5, we see that

�for the designs considered �the �nite sample distributions of all of the estimators

are very well approximated by their asymptotic counterparts.

Recently Qin and Zhang (2008) have proposed an empirical likelihood type esti-

mator for the di¤erence-in-di¤erences program evaluation parameter (e.g., Abadie,

2005). This parameter may be viewed as a special case of the average treatment

e¤ect on the treated (ATT) parameter. Their procedure, like ours, calibrates es-

timates of the study population distributions of (Y;W ) and (X;W ) to features ofbF e�s (w). They use empirical likelihood methods for this purpose, as opposed to our

�tilting�equations (9) and (11). In order to compare our method with the Qin and

Zhang (2008) EL procedure we replicated a subset of their Monte Carlo experiments.

Adapting their setup to our notation we let

W1 � N (0; 1) ; W2jW1 = w1 � N (1 + 0:6w1; 1) ;

and

Y jW;D � N
�
�Y (W ) ;W

2
2

�
; XjW;D � N

�
�X (W ) ;W

2
2

�
:

They assume the propensity score takes a logit form with an index linear in W =

(W1;W2)
0 (this in turn induces the conditional distributions of W given D = 0; 1).

The intercept in the logit index is set equal to one across all designs, while the two

slope coe¢ cients equal 0:1, 0:2 or 0:5 (corresponding to increasing selection bias).
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The two conditional mean parameters are set equal to �Y (W ) = 2+2W1+2W2 and

�X (W ) = 2W1+2W2 in Design (a) and �Y (W ) = 2+2W
2
1�W2+3W

2
2 and �X (W ) =

2W 2
1 �W2+3W

2
2 in Design (b). Analogously to Qin and Zhang (2008) we choose two

di¤erent speci�cations for t (W ). First, a �linear�one of t (W ) = (1;W1;W2)
0 : This

corresponds to the locally e¢ cient choice in Design (a). Second, a �quadratic�one of

t (W ) = (1;W 2
1 ;W

2
2 )
0
: This choice in not e¢ cient in either design, but is expected

to be more appropriate for Design (b). Across all designs the propensity score is

correctly speci�ed with r (W ) = (1;W1;W2)
0 : We set N = 1; 000 and perform 1; 000

Monte Carlo replications. The Monte Carlo statistics for the EL estimator are as

reported in Table 2 of Qin and Zhang (2008, p. 341).

By Theorems 3.1 and 3.2 above, and Theorem 3 of Qin and Zhang (2008, p.

339), both the AST estimator and the EL estimator should be consistent and as-

ymptotically normal across both designs and choices of t (W ). Our AST estimator

should be e¢ cient in Design (a) when t (W ) takes the linear form. (see Table 5 in

the supplemental appendix).

In Design (a) the AST and EL estimator perform similarly in terms of bias (see

Table 4). However, when t (W ) is (correctly) speci�ed to be linear in W; AST has

substantially less sampling variation that the EL estimator (consistent with Theorem

3.1). This e¤ect is largest when selection bias is severe. In that case the sampling

variation in the AST estimate is just over one half that of the EL one. When t (W )

is (incorrectly) speci�ed to be quadratic, this e¢ ciency ranking reverses. In Design

(b) the EL estimate exhibits lower sample variation than the corresponding AST

estimate when t (W ) is (incorrectly) speci�ed to be linear. When t (W ) is quadratic,

which more closely approximates the e¢ cient choice, this ranking is reversed. As

before, the e¢ ciency gains are increasing in the degree of selection bias. In terms of
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inference the AST Wald con�dence intervals generally have actual coverage close to

nominal coverage, while the corresponding EL ones tend to be conservative (Qin and

Zhang (2008) suggest the use of boostrap con�dence intervals in order to improve

coverage).

While Qin and Zhang (2008) do not consider the semiparametric e¢ ciency prop-

erties of their procedure, the results in Table 4 suggest that, in contrast to AST,

their estimator is not Locally E¢ cient at Assumption 3.1 (although this is only a

conjecture based on the Monte Carlo results). Evidently the comparison of the two

estimators when Assumption 3.1 does not hold is more complicated.

5 Summary

When the propensity score is parametrically speci�ed information in both the study

and auxiliary samples may be used to form an e¢ cient estimate of W , the variable

common to both datasets. An intuition for this insight follows from recognizing that,

under part (v) of Assumption 2.1, the auxiliary sample is equivalent to a biased

sample from the study population with the biasing function known up to a �nite

dimensional parameter. Using this e¢ cient distribution function estimate we tilt the

propensity score reweighting type study population distribution function estimates

of (Y;W ) and (X;W ) so that they share certain moments in common. By choosing

these moments carefully (i.e., with reference to Assumption 3.1) we can produce a

locally e¢ cient estimate of 0: Even if the parametric relationship between the study

and auxiliary populations, as embodied in the propensity score model, is misspeci�ed,

AST remains consistent for 0 if Assumption 3.1 holds.

To our knowledge we are the �rst to propose a locally e¢ cient estimator for the
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Table 4: Monte Carlo results: Qin and Zhang (2008) designs with N =1,000
(1)
Mean
Bias

(2)
Sample
Var.

(3)
Mean
Est. Var.

(4)
RMSE

(5)
Cov. of
95% CI

(�1; �2) t (W ) Design (a): Linear CEFs
(0:1; 0:1) AST Lin -0.0004 0.0154 0.0151 0.1241 0.936

AST Qrd -0.0083 0.0285 0.0513 0.1690 0.988
EL Lin 0.0038 0.0204 0.0311 0.1429 0.981
EL Qrd 0.0040 0.0241 0.0357 0.1553 0.978

(0:2; 0:2) AST Lin -0.0065 0.0216 0.0195 0.1471 0.930
AST Qrd -0.0039 0.0371 0.0555 0.1926 0.983
EL Lin 0.0031 0.0275 0.0402 0.1659 0.975
EL Qrd -0.0009 0.0306 0.0430 0.1749 0.972

(0:5; 0:5) AST Lin 0.0024 0.0537 0.0428 0.2316 0.907
AST Qrd 0.0244 0.1015 0.0867 0.3193 0.920
EL Lin 0.0051 0.0900 0.7241 0.3000 0.912
EL Qrd -0.0089 0.1103 0.5842 0.3322 0.891

Design (b): Quadratic CEFs
(0:1; 0:1) AST Lin 0.0009 0.3050 0.2856 0.5520 0.942

AST Qrd -0.0011 0.0168 0.0174 0.1297 0.947
EL Lin 0.0347 0.1561 0.2003 0.3966 0.966
EL Qrd 0.0029 0.0226 0.1181 0.1504 0.995

(0:2; 0:2) AST Lin 0.0787 0.3620 0.3201 0.6065 0.916
AST Qrd 0.0078 0.0218 0.0217 0.1479 0.951
EL Lin 0.0477 0.1227 0.3790 0.3535 0.980
EL Qrd 0.0028 0.0309 0.4564 0.1758 0.998

(0:5; 0:5) AST Lin 0.1943 0.7010 0.4425 0.8591 0.817
AST Qrd 0.0095 0.0549 0.0429 0.2343 0.906
EL Lin 0.1969 0.2647 3.2656 0.5509 0.959
EL Qrd 0.0075 0.1026 2.1138 0.3204 0.993
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class of data combination problems de�ned by Assumption 2.1. Our procedure also

has a double robustness type property. Our results provide a useful complement to

the work of Robins, Rotnitzky and Zhao (1994), Tan (2006) and others for missing

data problems. Relative to Chen, Hong and Tarozzi (2008), who do provide explicit

results for data combination problems (their so called �verify-out-of-sample�case),

our approach may be useful when W is high dimensional such that their method,

which requires nonparametric estimation of qs (w) and qa (w), is impractical. In

future work it would be interesting to study data dependent methods for choosing

t (W ) :

A Proofs

Proof of Theorem 3.1: Letm (Zi; �0) be the ith unit�s contribution to dim (r (W ))+

2 dim (t (W )) + dim (0) vector of estimating equations de�ned by (8), (9), (11) and

(13) in the main text. Let M = E [@m (Z; �0) =@�0] ; a standard calculation gives the

asymptotically linear representation

p
N
�b� � �0

�
= �M�1

 
1p
N

NX
i=1

m (Zi; �0)

!
+ op (1) : (16)

The in�uence function for bAST corresponds to the last K elements of (16). By

tedious, but straightforward, calculation we can show that this subvector equals

p
N (b � 0) =

�M�1
44p
N

NX
i=1

�
m4 (Zi; �0; �a0; �s0; 0)�M41M

�1
11 m1 (Zi; �0) (17)

+M42M
�1
22

�
M21M

�1
11 m1 (Zi; �0)�m2 (Zi; �0; �a0)

�
+M43M

�1
33

�
M31M

�1
11 m1 (Zi; �0)�m3 (Zi; �0; �s0)

�	
+ op (1) :
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whereMkl equals the expected value of the derivative of the kth subvector of m (Z; �)

with respect to the lth subvector of � evaluated at � = �0.

Under part (v) of Assumption 2.1 the Information Matrix equality gives M11 =

�E [S�S0�]. Evaluating M21 yields, after some manipulation,

M21 = �E
��

1�D

1� p0 (W )
� 1
�
p0 (W ) t (W )S0�

�
; (18)

where p0 (W ) = G
�
r (W )0 �0

�
= G

�
r (W )0 �0 + t (W )0 �a0

�
: These results imply that

M21M
�1
11 m1 (Z; �) = E�

��
1�D

1� p0 (W )
� 1
�
p0 (W ) t (W )

���� S�� ;
with E� [Y jX] denoting the mean squared error minimizing linear predictor (LP) of

Y given X. Evaluating M22 and M42 yields

M22 = E
�

p0 (W )

1� p0 (W )
G1
�
r (W )0 �0

�
t (W ) t (W )0

�
(19)

M42 = � 1

Q0
E
�

p0 (W )

1� p0 (W )
G1
�
r (W )0 �0

�
 a (X;W; 0) t (W )

0
�

(20)

Assumption 3.1 then gives M42M
�1
22 = ��a=Q0: Similar calculations give

M31 = �E
��

D

p0 (W )
� 1
�
p0 (W ) t (W )S0�

�
(21)

yielding

M31M
�1
11 m1 (Z; �0) = E�

��
D

p0 (W )
� 1
�
p0 (W ) t (W )

���� S�� :
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Now consider M33 and M43; we have

M33 = �E
�
G1
�
r (W )0 �0

�
t (W ) t (W )0

�
(22)

M43 = � 1

Q0
E
�
G1
�
r (W )0 �0

�
 s (X;W; 0) t (W )

0� : (23)

Assumption 3.1 then gives M43M
�1
33 = �s=Q0: Tedious calculations give M41 equal

to

M41 =
1

Q0
E
�

1�D

1� p0 (W )
 a (X;W; 0)S0�

�
: (24)

Using this result, iterated expectations and part (ii) of Assumption 2.1 we then get

�M41M
�1
11 m1 (Z; �0) =

1

Q0
E�
�

1�D

1� p (W )
qa (W )

���� S�� :
Substituting the above results into (17) and manipulating then gives (14).

Proof of Theorem 3.2: Asymptotic normality follows from standard results. Con-

sistency under part (a) is a consequence of Equation (4) in the main text. Showing

consistency under part (b) is more complicated. Denote the probability limits ofb�, b�a,and b�s when part (v) of Assumption 2.1 fails to hold by, respectively ��, �a�,
and �s�. Let p� (W ) = G

�
r (W )0 ��

�
and pj (W ) = G

�
r (W )0 �� + t (W )0 �j�

�
for

j = s; a. If G (�) takes the logit form, then p� (W ) will satisfy the population restric-

tion E [m1 (Z; ��)] = E [(D � p� (W )) t (W )] = 0 so that, using iterated expectations

and rearranging, we have the equality.

E [t (W )jD = 1] = E
�
p� (W )

Q0
t (W )

�
: (25)
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We also have E [m2 (Z; ��; �a�)] = E [m3 (Z; ��; �s�)] = 0, which, respectively multi-

plying by �a and �s (using Assumption 3.1), gives the additional equalities:

E
�

1�D

1� pa (W )
p� (W ) qa (W )

�
= E [p� (W ) qa (W )] (26)

E
�

D

ps (W )
p� (W ) qs (W )

�
= E [p� (W ) qs (W )] : (27)

Using (25), (26), (27), Assumption 3.1, iterated expectations, and part (ii) of As-

sumption 2.1 yields

E [m4 (Z; ��; �a�; �s�; )] = E
�
p� (W )

Q0
fqs (W )� qa (W )g

�
= (�s � �a)E

�
p� (W )

Q0
t (W )

�
= E [qs (W )� qa (W )jD = 1]

= E [ (Z; )jD = 1] ;

which by part (i) of Assumption 2.1 is uniquely zero at  = 0.
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