What Does a Deductible Do? The Impact of Cost-Sharing on Health Care Prices, Quantities, and Spending Dynamics

Zarek Brot-Goldberg,¹ Amitabh Chandra,^{2,4} Benjamin Handel,^{1,4} and Jonathan Kolstad^{3,4}

¹Department of Economics, UC Berkeley

²Kennedy School, Harvard University

³Wharton School, University of Pennsylvania

⁴NBER

June 12, 2015

イロン 不良 とくほう イロン・ヨ

Medical Care Price Responsiveness

- Price elasticity of demand for health care services ("moral hazard") is a crucial input into many important policy decisions
 - Insurance menu offerings (e.g. ACA, large employer)
 - Design of payment structure within contract
 - National health system priorities / methods for cost control

Recent trends:

- 82% of employers offer HDHPs, 30% in 2015 will only offer an HDHP (up from 16% in 2014), and five year change in HDHP enrollment from 15% to 33% at employers
- Regulation of cost sharing on ACA exchanges

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our Environment

- Study health care utilization of 160,000 employees and dependents of large self-insured firm
 - Relatively high income (Median income \$125,000-150,000)
 - Approx. 70% of employees in one state / location
- The firm discontinued primary health insurance option at end of 2012, forcing most employees into high-deductible plan (HDHP)
 - Shift motivated by (i) ACA Cadillac Tax (ii) Health spending trends
 - Shift from zero cost-sharing to HDHP
 - Income effect compensated for
- Use shift together with detailed data to study many aspects of consumer price responsiveness

<ロ> <同> <同> < 同> < 同> < 同> = 三目

Key Questions

- Question 1: What are the effects of different marginal prices on health care spending?
 - Forced HDHP switch causes 16.5% reduction in total spending for 2013 (\$123 Million)
 - Spending reductions from sickest quartile of consumers (ex ante)
- Question 2: How do sick/well off consumers reduce spending?
 - Provider price changes (+1.7%)
 - Consumer price shopping (+4.3%)
 - Consumer quantity reductions (-22.4%)
- Question 3: Are sicker consumers responding to true expected marginal prices or spot prices (short-run)?
 - Reductions from ex ante sick consumers when under deductible
 - Consumers reduce under deductible spending by 27%, controlling for true end of year price
 - Related work: Part D, broadband, electricity

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

Overview

- Impact on Utilization
- 3 Decomposition
- 4 Consumer Response to NL Contracts
- 5 Conclusion & Next Steps

Administrative Data

- Large firm with approximately 60,000 US employees (yearly) covering roughly 160,000 lives
- Detailed administrative data from both the insurer and HR department of the firm, covering the years 2009-2013
 - Insurance choices / design features
 - Demographic data
 - Health claims
 - Linked HR files (income, job description, etc.)
 - ACG medically relevant predictive metrics
 - Linked survey data for subset of consumers
- A lot of money at stake–firm's total health care spending in 2012 over \$750 million

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

Policy Change

From 2009-2012 the firm had two primary insurance options:

• PPO:

- Broad provider network
- Zero employee cost-sharing
- 80-85% market share

• HDHP:

- Same providers
- Linked health savings account with direct subsidy
- Non-linear cost-sharing contract: consumers pay 22% on average
- 10-15% market share
- Firm discontinued PPO option for 2013, effectively moving all employees enrolled in the PPO into the HDHP
 - First announcement October 2010, many subsequent
 - Handel & Kolstad (2015)

(ロ) (同) (E) (E) (E)

Insurance Options

Health Plan Characteristics Family Tier		
	PPO	HDHP
Premium	\$0	\$0
Health Savings Account (HSA)	No	Yes
HSA Subsidy	-	\$3,750*
Max. HSA Contribution	-	\$6,250**
Deductible	\$0***	\$3,750*
Coinsurance (IN)	0%	10%
Coinsurance (OUT)	20%	30%
Out-of-Pocket Max.	\$0***	\$6,250*

* These values apply to the employee-only coverage tier. Employees with no (one) dependent have 0.4x (0.8x) the values given in this table.

Single employees have a legal maximum contribution of \$3,100. Employees over 55 can contribute an extra \$1,000 in 'catch-up' contribution. This maximum includes the employer subsidy. *For out-of-network spending, the PPO has a deductible of \$100 per person (up to \$300) and an

out-of-pocket max. of \$400 per person (up to \$1200).

<ロ> <同> <同> < 同> < 同> < 同> <

Primary Sample

- Primary sample uses employees and dependents present over entire five-year sample 2009-2013
- Includes only those who were (i) in PPO 2009-2012 (ii) in HDHP 2013
- Internal selection concerns very limited:
 - ▶ 85% in PPO in pre-period, more than 95% of expenses
 - Robustness to different pre-horizons removes duration selection
 - Limited differential attrition
 - Much of literature relies on structural assumptions to separate AS/MH
- Excludes those enrolled in HMO option (stable 4%)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Primary Sample

	PPO or HDHP in 2012	PPO in 2012	Sample in 2012
N - Employees	52,445	44,711	31,293
N - Emp. & Dep.	147,388	129,183	97,022
Age - Emp.& Dep.			
< 18	34.5%	35.3%	36.8%
18-29	12.3%	11.5%	9.8%
30-54	50.1%	50.1%	50.1%
> 55	3.1%	3.1%	3.3%
Income			
Tier 1 (< \$75K)	1.8%	1.8%	2.0%
Tier 2 (\$75K-\$100K)	6.6%	6.4%	6.2%
Tier 3 (\$100K-\$125K)	30.1%	29.8%	30.5%
Tier 4 (\$125K-\$150K)	34.9%	35.1%	35.3%
Tier 5 (\$150K-\$175K)	15.5%	15.6%	15.2%
Tier 6+ (\$175K+)	11.2%	11.3%	10.8%
Family Size			
1	23.7%	21.4%	17.8%
2	19.6%	19.1%	18.3%
3+	56.7%	59.5%	64.0%
Individual Spending, 2012			
Mean	\$5,020	\$5,401	\$5,811
25th Percentile	\$609	\$687	\$722
Median	\$1,678	\$1,869	\$1,978
75th Percentile	\$4,601	\$5,036	\$5,219
95th Percentile	\$18,256	\$19,367	\$20,201
99th Percentile	\$49,803	\$52,872	\$56,624

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Overview

Data & Environment

Impact on Utilization

3 Decomposition

- 4 Consumer Response to NL Contracts
- 5 Conclusion & Next Steps

▲圖 → ▲ 臣 → ▲ 臣 →

Spending Trends

19.6% drop in nominal spending, 22.9% drop in age and CPI adjusted spending

Anticipatory Spending

Anticipatory intertemporal substitution of claims is apparent, even more apparent in member *median* spending

Anticipatory Spending

Correction for Causal Estimates

Estimate model on months from January 2009 to December 2011:

$$\bar{\mathbf{y}}_t = \alpha + \beta t + \lambda_{month} + \bar{\epsilon}_t \tag{1}$$

• Measure anticipatory spending as deviation from predicted values $(y_{Nov2012} - \hat{y}_{Nov2012}) + (y_{Dec2012} - \hat{y}_{Dec2012})$ (2)

- Limited, insignificant excess mass in prior months
- Deviations from trend include anticipatory spending and idiosyncratic shock $\bar{\epsilon}$
- 95%CI for November-December 2012 'excess mass' of [\$122.57, 212.21], point estimate of \$167.38

Treatment Effect of Policy Change

- Calculate 'treatment effect' taking % change in mean spending between 2012 and 2013, with adjustments
- Use treatment effect, extrapolated to whole firm, to compute % total medical savings from forced HDHP switch

HDHP Switch			Model			
Year	(1)	(1) (2) (3) (4) - CPI Intertemp. Early Switcher Substitution Diff in Diff				
2009	4372 54	4244 68	4244.68	_		
2010	4709.95	4273.05	4273.05	_		
2011	5159.41	4434.72	4434.72	-		
2012	5811.48	4764.97	4597.58	-		
2013	4671.73	3673.75	3841.14	_		
% Decrease,						
2012-2013	-19.61%	-22.90%	-16.45%	-20.12%		
\$ Impact						
(million)	-\$147.09	-\$171.76	-\$123.40	_		

< 日 > < 同 > < 回 > < 回 > < 回 > <

Heterogeneity: Health Status

- Classify consumers into ex ante health status quartiles at beginning of each year
- Sickest consumers reduce spending by large magnitude (26%)
- Why do rich / sick consumers reduce spending?

Brot-Goldberg et al.

Heterogeneity: Medical Services

Heterogeneous HDHP Spending Impact						
3 1					Treatment Ef	fect
				(1)	(2)	(3)
	Group %	Spending %	2012 Mean Spending	Nominal Spending	CPI	Intertemp. Substitution
Inpatient		19.20	1115.71	-0.14	-0.17	-0.09
Outpatient Hosp.		17.67	1026.84	-0.18	-0.22	-0.12
ER		2.92	169.41	-0.27	-0.30	-0.29
Office Visit		7.02	407.99	-0.19	-0.22	-0.17
RX		12.25	712.14	-0.22	-0.25	-0.22
RX-Brand		11.70	679.94	-0.20	-0.23	-0.20
RX-Generic		3.87	224.88	-0.19	-0.23	-0.21
Mental Health		9.02	524.21	-0.09	-0.13	-0.16
Preventive		8.87	515.32	-0.11	-0.15	-0.11
Other		23.06	1339.86	-0.31	-0.33	-0.24

• Relationship to income, dependants, chronic conditions

・ロ・・(型・・モー・・モー・)

Overview

Data & Environment

- Impact on Utilization
- 3 Decomposition
- 4 Consumer Response to NL Contracts
- 5 Conclusion & Next Steps

< 回 > < 回 > < 回 >

Prices vs. Quantities in Reduced Utilization

- Significant reduction in total utilization, especially for sick
- We analyze whether drop in utilization is from:
 - Providers reducing prices (potential equilibrium effects)
 - Price shopping by consumers
 - Quantity reductions by consumers
- Decompose different effects by holding prices or quantities constant (in the spirit of Oaxaca (1973), Blinder (1973))
- Analysis leverages detailed data on procedure-provider combinations to investigate
 - Over 15 observations in 2012 / 2013 (90% spending)
- Short-run analysis: 2014 coming as well

Provider Price Changes

6

- Compute mean price for provider-procedure combinations in 2012 and in 2013
- Compare the following statistics:
 - ▶ Total spending for 2012 choices at 2012 prices: TS_{2012,2012}
 - Total spending for 2012 choices at 2013 prices: TS_{2013,2012}
- Provider price changes equal:

$$\frac{TS_{2013,2012} - TS_{2012,2012}}{TS_{2012,2012}}$$

(3)

Not saying why prices changes happened, just that they did

Price Shopping

- The extent to which HDHPs induce price shopping is an important policy question [e.g. Lieber (2014)]
- We compute this effect as follows:

$$PS_{m,t+1,t} = \frac{\mathbf{P}_{m,Q,t+1} \cdot \mathbf{C}_{m,Q,t+1} - \mathbf{P}_{m,Q,t+1} \cdot \mathbf{C}_{m,Q,t}}{\mathbf{P}_{m,Q,t+1} \cdot \mathbf{C}_{m,Q,t}}$$
$$PS_{t+1,t} = \Sigma_{m=1}^{M} \frac{Y_{m,t}}{Y_t} PS_{m,t+1,t}$$

- *m* is procedure, *Q* providers offering procedure
- First step is, for each class of procedures compare:
 - Mean provider-procedure prices for 2012 choices at 2013 prices
 - Mean provider-procedure prices for 2013 choices at 2013 prices
- Second step computes aggregate price-shopping effect across all procedures, holding procedure-specific revenue share constant

Price Shopping

Interpretation

6

- Approach nets out provider price changes and focuses on incremental sorting given 2013 prices
 - If prices re-order over time, will bias coefficient towards more price shoping
- Our approach is *conditional on procedure*
- Could also do conditional on episode of illness
- Example: in our case, substitution to different procedures, that are lower price, enters through quantity impact
- With episode of illness, proecedure substitution in price shopping
- E.g. Surgery vs. management, brand vs. generic

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ⊙ < ⊙

Quantity Reductions

6

- We compute % decrease from quantity reductions as remainder of total effect taking out other two mechanisms
- Compute year to year % change in total spending as:

$$\Delta TS_{t+1,t} = \frac{\mathbf{P}_{t+1} \cdot \mathbf{C}_{t+1} - \mathbf{P}_t \cdot \mathbf{C}_t}{\mathbf{P}_t \cdot \mathbf{C}_t}$$

Effect of quantity reduction:

$$QE_{t+1,t} = \Delta TS_{t+1,t} - PPI_{t+1,t} - PS_{t+1,t}$$

- Remember: this incorporates procedure substitution
- Also compute directly, with very similar results

Results Decomposition

6

• Change for 2013 is large departure from trend of increasing health expenditures, and increasing service quantities

Total Spending Change Decomposition				
	$\Delta TS_{t+1,t}$	PPI _{t+1,t}	$PS_{t+1,t}$	$QE_{t+1,t}$
2009-2010	11.3%	3.7%	-0.8%	8.4%
2010-2011	11.9%	3.5%	2.2%	6.2%
2011-2012	10.2%	0.4%	0.0%	9.8%
2012-2013	-16.4%	1.7%	4.3%	-22.4%

• Also, for new employees (approx. 2,000):

- Quantity reduction of 22.3%
- Price index rises by 2.7%
- Price shopping gives 1.7% higher spend

<ロ> <四> <四> <四> <三< => < => < => < => < =>

Decomposition: Sickest Consumers

 Surprising that sick and high income consumers reduce spending by quite a bit, and that all of reduction from reduced service quantities

Specific Effects Spending Decomposition					
	% Tot. Spend	$\Delta TS_{t+1,t}$	PPI _{t+1,t}	<i>PS</i> _{<i>t</i>+1,<i>t</i>}	$QE_{t+1,t}$
Sickest Quartile					
2009-2010	52.1%	18.4%	3.9%	-1.4%	15.9%
2010-2011	57.3%	25.1%	4.0%	1.1%	20.0%
2011-2012	54.7%	-7.2%	-0.5%	-1.1%	-5.6%
2012-2013	47.3%	-23.1%	0.6%	5.1%	-28.8%

Decomposition: Imaging Services

 Imaging services (e.g.MRIs / CT scans) thought to be one source of 'moral hazard'

Specific Effects Spending Decomposit	ion				
	% Tot. Spend	$\Delta TS_{t+1,t}$	PPI _{t+1,t}	$PS_{t+1,t}$	$QE_{t+1,t}$
Imaging					
2009-2010	10.5%	9.3%	5.8%	1.5%	2.0%
2010-2011	9.9%	6.2%	4.1%	-1.1%	3.2%
2011-2012	10.5%	12.0%	0.7%	1.7%	9.6%
2012-2013	11.5%	-20.6%	0.1%	0.9%	-21.6%
Preventive Always					
2009-2010	7.0%	5.9%	3.5%	-1.6%	4.0%
2010-2011	7.3%	5.0%	-1.8%	8.2%	-1.4%
2011-2012	7.5%	1.4%	6.7%	-2.6%	-2.7%
2012-2013	8.7%	-3.0%	8.6%	4.4%	-16.0%

Decomposition: Top 30 Procedures

• Reproduce decomposition analysis for:

- 30 top procedures by revenue
- 30 top procedures by count
- Substantial difference in changes for 2013 for these top 30 procedures, relative to earlier years

Total Spending Change Decomposition High Spend Procedures					
	% Total Spend	$\Delta TS_{t+1,t}$	$PPI_{t+1,t}$	$PS_{t+1,t}$	$QE_{t+1,t}$
No. top 30 w/ Positive Value					
2010-2011	-	26	23	15	22
2011-2012	-	24	19	17	23
2012-2013	-	4	13	17	7

Overview

Data & Environment

- Impact on Utilization
- 3 Decomposition
- 4 Consumer Response to NL Contracts
- 5 Conclusion & Next Steps

Consumer Responses to Non-Linear Contracts

- Switching to the HDHP not only increases prices, but forces employees to respond to multi-part non-linear contract
- Non-linear contracts are more complicated than typical price (e.g. Aaron-dine, et al., 2013). Are consumers responding to:
 - Marginal price (expected EOY)
 - Spot price
 - Average price

Coverage Tier	Avg. HDHP Price	% Under Deductible	% Over Ded., Under OOP Max.	% Over OOP Max.	Actuarial Value	
0 Dependents	0.428	37.92% (< \$1,500)	49.16% (\$1,500 - \$11,500)	12.92% (> \$11,500)	78.31%	
1 Dependent	0.293	23.22% (< \$3,000)	61.08% (\$3,000 - \$23,000)	15.70% (> \$23,000)	76.59%	
2+ Dependents	0.201	13.30% (< \$3,750)	68.40% (\$3,750 - \$28,750)	18.30% (> \$28,750)	78.24%	
All Tiers	0.249	18.42%	64.46%	17.12%	78.05%	

Advantage of Our Setting

- Our setting is uniquely well-suited to answer this question:
 - Same large population of consumers over five years
 - First four years in free plan, last in non-linear contract
- Key assumption: Constant population health

 $F_{2013}[s_t|H,X] = F_{2011}[s_t|H,X], \forall t1....12$

- H is ex ante health status, X is demographics, st is health status for month t
- Key Feature: Dynamics in health status from lower spending bias against incremental spending reductions for low spending consumers
 - Will bring in 2014 data to assess longer run

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● つくで

Approach

• Mapping from H to monthly spending at each point in time:

$$G[M_{t+1} - M_t | s_t, H, X, Ins_t]$$

- Inst can be decomposed into non-linear contract prices
- We observe everything except for s_t
- Consider distribution of incremental spending, based on observables, at date t for duration x:

$$G(M_{t+x} - M_t | H, X, Ins_t)$$

• For any (*H*, *X*), look at incremental behavior for people in given position in contract in month *t*, and compare to incremental spending of *associated quantiles* in 2011

Prices

Spot vs. Marginal vs. Average

- Reduce contract position conditional on (H,X) to three prices
- Spot price P_t^s : Either 1, 0.1, or 0 depending on NLC arm
- Expected EOY price P_t^e : $E_t[P_t^s|M_{t-1}, H, X, Ins_t]$
- Average price P^a_t: Ex ante expectation of expected price at beginning of year, conditional on (H, X)
- Other things coming......

Expected EOY Marginal Price

- Use minimal assumptions to get expected EOY marginal price
 - Rational expectations is benchmark, in essence testing this
- Step 1: For each individual *i* and each point in time *t* define cell by triple (*H*, *X*, *M*_{t-1})
- Step 2: Form non-parametric distribution of EOY spending $f_i(M_{i,T}|H, X, M_{i,t-1})$
- Step 3: Combine individual distributions within family:

$$f_{J(i)}(M_{\mathcal{T}}) = \sum_{\sum_{M_{i,t}=M_{\mathcal{T}}}} \prod_{i}^{J(i)} f_i(M_{\mathcal{T}})$$
(4)

• Step 4: Form expected EOY marginal price:

$$P_{j,t}^{e} = \int_{R_{+}^{J(i)}} P_{J(i)}^{s}(M_{T}) dF_{J(i)}(M_{t})$$

Incremental Spending Above OOP Max

Good test of average vs. combined margin and spot priceCharts for families

Incremental Spending: Deductible Region

 Very large and meaningful decrease in ROY spending, suggestive of dynamic effects of economizing now and then being under deductible later

Incremental Spending: Deductible Region

Spot vs. Expected EOY Price

Average expected EOY marginal price in February is 0.09
 Average expected EOY marginal price in March is 0.10

Brot-Goldberg et al.

Incremental Spending: Deductible Region

Spot vs. Expected EOY Price

 Drop in ROY spending of approximately 20%, despite fact that they are very likely to spend a lot!

Brot-Goldberg et al.

Impact of Cost-Sharing

Contribution to ROY Spending Changes by Contract Arm

 Primary reduction due to individuals under the deductible, particularly early in year

æ

(日)

NLC Analysis: Regressions Analysis

 Regressions that decompose effects of three potentially different prices that consumer respond to:

$$log(Y_{i,t}) = \alpha_{2013}I_{2013} + \alpha_t I_t + [\theta_s P_{i,t}^s + \theta_e P_{i,t}^e]I_{2013} + [\beta_s P_{i,t}^s + \beta_e P_{i,t}^e] + \gamma_h H_i + \gamma_X X_i + \gamma_L log(Y_{i,t-1}) + \epsilon_{i,t}$$

- $Y_{i,t}$: Log total incremental spending for next month
- Independent variables: Prices faced at beginning of month, health status, demographics, spending to date / recent spending
- Construct counterfactual prices for 2011 consumers to control for history dependent unobserved heterogeneity
- Current specification for July only. Coming:
 - Pooled regression over all months
 - ROY spending

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

Impact of Specific Pricing Components

	(1)	(2)	(3)
VARIABLES	Includes all Controls	Excludes Previous Spending Controls	Excludes Health Controls
2013	0.0562	0.0183	0.0434
	(0.0936)	(0.0962)	(0.0966)
(Spot MP = 1) x 2013	-0.266**	-0.333**	-0.251* [´]
((0.136)	(0.140)	(0.141)
(Spot MP = 0.1) x 2013	-0.137	-0.174	-0.148
() <i>,</i>	(0.104)	(0.107)	(0.107)
2nd guantile E[EOY MP] x 2013	-0.113*	-0.167**	-0.169**
	(0.0644)	(0.0661)	(0.0664)
3rd guantile E[EOY MP] x 2013	`-0.104´	-0.140 [′]	-0.195**
	(0.0902)	(0.0926)	(0.0930)
4th guantile E[EOY MP] x 2013	-0.0568	-0.149 [′]	-0.196*́
	(0.110)	(0.113)	(0.113)
Top quantile E[EOY MP] x 2013	0.0220	-0.00252	-0.0511
	(0.110)	(0.113)	(0.114)
Log Spending Last Month	0.170***	-	- /
	(0.00568)	-	-
Log Spending 2 Mths. Ago	0.123***	-	-
	(0.00686)	-	-
Observations	60.407	60.408	60.409
Desuered	0,407	00,408	0,408
R-squareu	0.368	0.333	0.326
	Standard	errors in parentneses	

*** p<0.01, ** p<0.05, * p<0.1

- Other controls have intuitive / predictive power / signs
- Clear emphasis on spot prices

Brot-Goldberg et al.

40/43

・ロン ・四 と ・ ヨ と ・ ヨ と

Overview

Data & Environment

- Impact on Utilization
- 3 Decomposition
- 4 Consumer Response to NL Contracts
- 5 Conclusion & Next Steps

< 回 > < 回 > < 回 >

Conclusion

- Overall causal impact of HDHP equal to 16.45% reduction in spending, off spending base of \$750 Million
 - Important to account for anticipatory spending
 - Meaningful spending drop for for high income, compensated pop.
 - Sickest consumers reduce spending by over 20%
- Decomposition into quantity effects vs. price shopping
 - Large quantity implications, with potentially meaningful implications for welfare
 - Limited to no price shopping effect in short run (2014 coming)
 - Sickest consumers substantially reduce quantities
- Consumers substantially reduce spending when under deductible (30%), somewhat when in coinsurance arm, not at all above OOPMax
 - Sick consumers reduce spending a lot under deductible, even when expected EOY price is low!!

(ロ) (四) (E) (E) (E) (E)

Next Steps

- Optimal menu design depending on:
 - Consumer price response heterogeneity
 - Heterogeneity in medical services responses
 - Dynamic responses to non-linear contracts
 - Leverage machine learning algorithms
- Welfare a la Baicker et al. (2015):
 - Informed consumers vs. uninformed consumers
 - Rational price responses
 - Categorization of services
- Mechanism underlying dynamic responses
 - Beliefs about health risk
 - Knowledge of contract
 - Myopia
 - Learning
- Long-term price shopping and offsets

★ E ► ★ E ► E