Innovation and Technical Change

IP and the patent system in practice
Prof. Bronwyn H. Hall
UC Berkeley

Quiz Tuesday Oct. 5
☐ Length: 45 minutes
☐ Format: questions drawn from study questions
☐ Bring one blue book
☐ Questions?

Outline (Sept 28 and 30)
☐ What is intellectual property?
☐ Overview of IP protection mechanisms
☐ How does the patent system work in practice?
 ■ How do firms protect their IP?
 ■ The strategic use of patents and the increase in patenting
☐ Current policy problems
 ■ Growth in patenting worldwide
 ■ Subject matter expansion
 ■ Research tools
 ■ IP and development
How do firms protect IP?

- Two surveys of industrial R&D
 - Yale survey (Levin, Kleverick, Nelson, and Winter 1983)
- Asked industrial R&D managers about
 - sources of knowledge (domestic, intl, methods)
 - contribution of universities and competitors
 - appropriability conditions
 - nature and role of patents
- Separate questions for product and process innovations

Methods for Appropriating the Returns to Innovation

- Patents
- (Trade) Secrecy
- Lead time (being first to introduce new product)
- Complementary sales and service
- Complementary manufacturing facilities
- Know-how and product complexity

Effectiveness of Appropriability Mechanisms for Product Innovations

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patents</td>
<td>5</td>
<td>6</td>
<td>20</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Secrecy</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Lead time</td>
<td>17</td>
<td>21</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sales & service</td>
<td>24</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patents Yale</td>
<td>5</td>
<td>6</td>
<td>20</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Patents C-M</td>
<td>14</td>
<td>14</td>
<td>7</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Lead time</td>
<td>22</td>
<td>6</td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Sales & service</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>4</td>
<td>14</td>
<td>13</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Share of firms ranking the means 1st, 2nd, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall 2004 (C) B. H. Hall Econ 124/PP 190-5/290-5
Effectiveness of Appropriability Mechanisms for Process Innovations

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yale Survey 1983</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patents</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Secrecy</td>
<td>5</td>
<td>14</td>
<td>21</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lead time</td>
<td>32</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sales & service</td>
<td>6</td>
<td>22</td>
<td>11</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Carnegie-Mellon Survey 1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patents</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>Secrecy</td>
<td>26</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lead time</td>
<td>6</td>
<td>10</td>
<td>19</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Sales & service</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>12</td>
<td>22</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Share of firms ranking the means 1st, 2nd, etc.

Where are patents effective?

- **Product:**
 - 1983: drugs, plastics, chemicals; steel, pumping equipment, auto parts, measuring devices, medical instruments
 - 1994: medical instruments, drugs, special purpose machinery, auto parts

- **Process:**
 - 1983: drugs, oil, chemicals, plastics, steel, pumping equipment – no less effective than other means
 - 1994: none really; drugs, oil, medical instruments highest

A useful taxonomy

- "discrete" product industries
 - food, textiles, chemicals including oil and plastics, pharmaceuticals, metals, and metal products
 - patents used to exclude, and for some licensing; also to prevent litigation

- "complex" product technologies
 - machinery, computers, electrical equipment, electronic components, instruments, and transportation equipment
 - patents used in negotiations (cross licensing and others), to prevent litigation

- Cohen et al define two variables:
 - Player1 – patents used for blocking and for negotiations
 - Player2 – patents used for blocking and negotiations, but not to secure licensing revenue
Hall and Ziedonis (RJE 2001)

- Large increase in US patenting since early 1980s
 - Kortum and Lerner (1998) hypotheses:
 - "friendly court" hypothesis – pro-patent era (CAFC 1982)
 - "regulatory capture" hypothesis
 - "fertile technology" hypothesis
 - "managerial improvements" hypothesis
 - But patents still not considered important for securing returns to innovation for firms in many industries
 - Why did patenting increase even in these industries?

Patent Propensity: Semiconductors vs. All US Manufacturing, 1979-93
Recent changes in the U.S. patent system

- 1980 patentability of artificially engineered genetic organisms
 - Diamond v Chakrabarty
- 1980 increased university patenting
 - Bayh-Dole Act
- 1981 patentability of software
 - Diamond v Diehr
- 1982 creation of CAFC/court
 - Patent validity more likely to be upheld
- 1985/6 TI sues several Japanese semiconductor firms
- 1986 Kodak-Polaroid decision on instant cameras
 - $1B judgment; injunction that shut down Kodak business
- 1994 TRIPS agreement leads to change in term/but not "first to file" or elimination of grace period
- 1998 patentability of business methods
 - State Street and ATT vs Excel

Summary of our interview results - Capital-intensive manufacturers

- Strong demonstration effect of TI and Kodak-Polaroid cases
 - "Ramping up"; "harvesting latent inventions"
 - "If in doubt, patent"
- Safeguard assets; avoid halt in production
 - Semiconductor manufacturing plant costs $1B
 - Expensive to shut down, even for a week
- Improve bargaining position with other patent owners
 - Gain access to technology on more favorable terms
 - Secure royalty income
- Changes in the management of patent process
 - Patent advocacy committees
 - Increased bonuses and targets

Summary of our interview results - Design firms

- Secure rights in niche product markets
 - Traditional exclusion role for patents
- Critical role of patents in attracting venture capital
 - When financing a firm that only has an idea, VC needs assurance that the idea is "owned"
- But... growth in patenting entirely due to manufacturing firms
The patent explosion

- U.S. utility patent grants between 1965 and 2003
 - Application lags => only complete through 1997
- Sharp break in trend in 1983/84
 - Applications and grants were roughly flat, then begin to grow at about 5-6% per year
 - Real R&D increases only 2.4% per year over same period
- Growth slows in 2001

![USPTO Utility Patents](image)

![Growth of patent grants and applications](image)
Sources of the change - regions

- Break it down by regions
 - United States
 - Greater Europe
 - Asia (mostly Japan, Taiwan, and Korea)
 - Other countries: developed (Canada, Israel, etc.) and developing (very few)

- Results
 - Structural break in 1983/1984 due to inventors resident in the U.S.
 - Structural break for Asian inventors was earlier (1981)

Sources of the change - technologies

- Break it down by technology classes
 - No break in chemicals and pharmaceuticals
 - Significant (and in 1984) in other technologies
 - increased 8.4% per annum in electrical, computers, and communication equipment
 - increased 5.5% per annum in mechanical and other technologies
 - Growth accounted for by US firms in electrical, computers, comm. eq., and instruments industries

Conclusions

- Patents are not the most important means for securing returns to innovation, except for products in a few sectors
- One product or innovation \leq one patent can be a misleading model of the innovation process
- Patents are used in a number of ways not foreseen by the original design of the system
Some current policy issues (1)

- Increase in patenting rates and consequent increase in patent office workloads worldwide, traced to
 - Subject matter expansion (business methods/genome)
 - Required inventive step decreasing
 - Increased strategic use (⇒ harvesting existing innovations)
- Research tools and university patenting
 - Negative effects on open scientific research?

Some current policy issues (2)

- IP protection in developing countries
 - Should it be enforced the same way as in developed countries?
 - Indigenous technology; IP for traditional plant forms.
- Subject matter expansion
 - Business method patents
 - Should they be allowed?
 - Do they pass the non-obviousness test?
 - Are they too broad?
 - Gene-sequence and life-form patenting
 - In what form should these be allowed?
- Cumulative and overlapping innovation
 - the patent thicket and increasing transactions costs to innovation

Research Tools

- Examples:
 - Cohen-Boyer patent for method of inserting genes into bacteria
 - Genentech - use of bacteria to express human proteins
 - Computer text editors & spreadsheets
- Used for a non-revenue producing activity
 - Should a license be required simply for research
 - If not, how do we provide incentives to create them?
- Madey v. Duke controversy
Are business methods and software patentable?

- Yes, in the US, Australia, Japan, and Korea
- In Europe including UK, and Canada
 - no business methods patentable
 - software patentable only if it has a "technical effect"
 - European debate now 2 years old, no decision
- Are algorithms patentable?
 - no, but applications of algorithms are
 - How can we tell the difference?
- Until recently, patent examiners not experienced in this area, so low quality patents may have issued
- 2001 – a number of changes made to patent regs with respect to business methods patents
 - Second pair of eyes
 - Prior use defense against infringement

Extra slides (not in lecture)

Systems Innovation

- Examples:
 - Cellphones, in general (chipsets, phone parts, materials, battery technology, etc.)
 - Semiconductor chips (both cumulative and involve a large number of IP pieces owned by different parties)
 - Computer systems
Using IP to Facilitate Systems Innovation

- Helps to negotiate cross-licensing agreements using well-defined technology “packages”
- Enables the establishment of standards with “reasonable” licensing fees
- Grants property rights to small innovative entrants

History of U.S. patent reform efforts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent of obviousness standard; presumption of novelty</td>
<td>recommended</td>
<td>recommended</td>
<td>proposed</td>
<td>proposed</td>
</tr>
<tr>
<td>Patent by examination</td>
<td>considered & rejected</td>
<td>recommended ex parte & pre- and post-grant</td>
<td>recommended reform</td>
<td></td>
</tr>
<tr>
<td>Prosecution</td>
<td>proposed</td>
<td>not considered</td>
<td>recommended</td>
<td>recommended</td>
</tr>
<tr>
<td>Patent reform</td>
<td>considered</td>
<td>not considered</td>
<td>recommended</td>
<td></td>
</tr>
<tr>
<td>Patent trial courts</td>
<td>recommended the use of technical advisors</td>
<td>recommended the use of “Civil Commissioners”</td>
<td>recommended</td>
<td></td>
</tr>
<tr>
<td>Patent licensing</td>
<td>considered & rejected</td>
<td>recommended & recommended</td>
<td>recommended & recommended</td>
<td></td>
</tr>
<tr>
<td>Patent fees</td>
<td>considered</td>
<td>not considered</td>
<td>recommended</td>
<td></td>
</tr>
</tbody>
</table>