R&D, Productivity, and Market Value

Bronwyn H. Hall University of California at Berkeley, University of Maastricht, NBER, and IFS London

Overview

- Econometric measurement of private returns to R&D investment
 - dates back to Griliches 1958 JPE article
- Today
 - Sophisticated methodology based on conventional economic modeling
 - Applicable to other innovation investments, not just R&D
 - Important unresolved questions and conundrums

Previous analytic surveys

 Griliches 1979 (Bell Journal of Economics)
Griliches 1996; published as Chapter 4 of Kuznets lectures 1999

Hall 1996 (In Barfield and Smith, AEI/Brookings)

Measurement overview (outline)

- Treat R&D as investment under (considerable) uncertainty
- Ex post evaluation productivity
 - Revenue, output or profits as a function of R&D capital stock
- Ex ante evaluation market value
 - Current financial market value of the firm as a function of R&D capital stock

Depreciation of R&D

- Assumption: R&D creates a stock of knowledge (K)
- What is its depreciation?
 - At the firm level, the rate at which returns to K decline
 - The result of Schumpeterian competition endogenous to the behavior of competitors
 - Sometimes called private obsolescence
- Do we need to estimate it?
 - Yes, to estimate net rate of return
 - Yes, to construct knowledge stock

Trends in R&D Productivity

R&D in US Manufacturing - Unbalanced Panel (controlling for 2-digit industry)

June 2006

ISS - Nice

Some puzzles

- Has the productivity of R&D increased or declined?
 - Or has the pace of Schumpeterian competition increased?
- How do we reconcile
 - Market value and productivity results?
 - R&D intensity and R&D growth versions of production function?
 - Firm and industry results?

Productivity framework

- Cobb-Douglas production (first order log approximation to prod function)
- Line of business, firm or industry level
- Variety of estimating equations:
 - Conventional production function
 - Partial productivity
 - R&D intensity formulation
 - Semi-reduced form (add variable factor demand equations)

Productivity framework (cont.)

 $Y = AL^{\alpha}C^{\beta}K^{\gamma}e^{u}$

where L = labor C = capital K = research or knowledge capital u = random shock

Productivity framework (cont.)

Take logarithms and model the intercept with year and firm (or industry) effects:

$$y_{it} = \eta_i + \lambda_t + \alpha I_{it} + \beta C_{it} + \gamma K_{it} + U_{it}$$
$$i = 1, \dots, N \qquad t = 1, \dots, T$$

Simultaneity: shock u may possibly be correlated with the current (and future) input levels.
Correlated firm effects: η may also be correlated with the input levels.

R&D input measurement

Deflation

No good measure of "real" costs of R&D

With time dummies, little bias from deflation

• Stock computation (δ assumed =15%)

$$K_{t} = (1 - \delta_{\kappa})K_{t-1} + R_{t}$$
$$\implies K_{t} \cong R_{t} / (\delta_{\kappa} + g_{R})]$$

Externalities

How to measure the external knowledge that is useful to a particular firm or industry?

Econometric issues

Co-movements over time and space

 Variables of interest tend to move together for a number of reasons

Simultaneity between outputs and inputs

- Favorable productivity experience leads to increased R&D input
- Low variation of RHS variables within unit over time
 - R&D highly serially correlated, so the lag or depreciation structure difficult to pin down

Output deflation

Productivity growth regressions at the firm level:

- (1) $\Delta y_{it} = \Delta \lambda_t + \alpha \Delta I_{it} + \beta \Delta C_{it} + \gamma \Delta k_{it} + \Delta U_{it}$
- (2) $\Delta S_{it} = \Delta Y_{it} + \Delta p_{it} = \Delta \lambda_t + \alpha \Delta I_{it} + \beta \Delta C_{it} + \gamma \Delta k_{it} + \Delta U_{it}$

where *s* is revenue and *y* is deflated output If (2) is estimated instead of (1), we obtain an estimate of

$$\gamma_S = \gamma_Y + \gamma_P$$

The revenue productivity of R&D is the sum of

- true productivity
- the effect R&D has on the prices at which goods are sold due to
 - quality improvements (decreases)
 - product differentiation (increases)

Interpretation

- Revenue productivity is a determinant of private returns
- True productivity (more constant quality output for a given set of inputs) is relevant for social returns
- The difference represents
 - Negative pecuniary externalities
 - Positive output "stealing" or market power increases due to R&D

Illustration

- Some U.S. deflators at the industry level are hedonic, notably those for the computer industry and now the communications equipment industry (see next slide)
- Deflate firm sales by 2-digit deflators instead of one overall deflator
- Result: true productivity is substantially higher than revenue productivity, because of hedonic price declines in these R&D-intensive industries.

Hedonic Price Deflator for Computers

ISS - Nice

Estimated R&D Elasticity – U.S. Manufacturing Firms

		Dep. Var = Log	
//_	Dep. Var = Log	Sales, 2-digit	Difference
Period	Sales	deflators	("price effect")
1974-1980	003 (.025)	.102 (.035)	0.099
1983-1989	.035 (.030)	.131 (.049)	0.096
1992-1998	.118 (.031)	.283 (.041)	0.165

Method of estimation is GMM-system with lag 3 and 4 instruments. Sample sizes for the three subperiods are 7156, 6507, and 6457.

Estimating returns

Difference to remove firm effect:

 $\Delta Y_{it} = \Delta \lambda_t + \alpha \Delta I_{it} + \beta \Delta C_{it} + \gamma \Delta k_{it} + \Delta U_{it}$

R&D intensity:

$$\Delta k_{it} = \frac{R_{it} - \delta K_{i,t-1}}{K_{i,t-1}} \cong \frac{R_{it}}{K_{i,t-1}}$$
$$\Rightarrow \gamma \Delta k_{it} \cong \rho \frac{R_{it}}{V}$$

it

if depreciation δ is near zero

where ρ is the gross rate of return to R&D capital

Two methods

(1) estimate y and derive ρ (Δk) (2) estimate ρ directly (R/Y) Net rate of return is ρ - δ (minus a possible capital gain or loss) Regardless of method, result depends on choice of δ in several ways Using $K \cong R/(\delta + g)$, can derive δ from estimates. Resulting estimates of δ are typically inconsistent, imprecise, and too low (negative?) – why?

Estimating depreciation

Simple neoclassical framework:

$$c_{\kappa} = r + \delta_{\kappa}$$

 c_J = cost of capital *J*, *r* = required rate of return, δ_K = depreciation, g_R = growth of R&D, ~ = "true" Profit maximization implies

$$\frac{\gamma}{\beta} = \frac{c_{\kappa}\tilde{K}}{c_{A}A} = \frac{(r+\delta_{\kappa})}{c_{A}}\frac{(0.15+g_{R})}{(\delta_{\kappa}+g_{R})}\frac{K}{A}$$

Interest rate close to growth rate => δ hard to identify even if we assume a normal rate of return

Market value model

- Assumes market efficiency
- Two versions
 - Theoretical value function from firm's dynamic program as a function of state variables (capital, R&D, etc.)
 - Hedonic value of a set of goods that have a lower-dimensional vector of characteristics – yields a measure of current shadow value of the assets (not stable over time)

Hedonic regression for market value $V_{it}(A_{it}, K_{it}) = b_t [A_{it} + \gamma K_{it}]$

Non linear: $log(V_{it}/A_{it}) = logQ_{it} = log b_t + log(1+\gamma_t K_{it}/A_{it})$

Linear approx.: $\log Q_{it} = \log b_t + \gamma_t K_{it}/A_{it}$

Interpretation: $Q_{it} = V_{it} / A_{it}$ is Tobin's q for firm i in year t b_t = overall market level (approximately one). γ_t = relative shadow value of K assets (γ = 1 if depreciation correct, investment strategy optimal, and no adjustment costs => no rents). June 2006

Summary of past results

- Market value positively related to R&D
- Range of estimates for shadow value
 - R&D expenditure coefficient: ~1.5 to 8 or 9
 - R&D stock coefficient: 0.2 to 2
- Wide variability over time and industry
- Substantial variability in specification, making comparisons difficult
 - Intangibles, patents, trademarks
 - Leverage, sales growth, market share

Extracting depreciation rate

Strong assumptions:

- Equilibrium in R&D
- Market efficiency
- Negligible adjustment costs
- Only mismeasurement in K is using wrong depreciation rate to construct it

$$\Rightarrow \hat{\delta}_{it} = \frac{(.15 + g_{it})}{\hat{\gamma}_t} - g_{it}$$

Market value estimates – US manufacturing sector

	K/A		Median	
Period	Coefficient	(s.e.)	depreciation	(s.e.)
1974-1978	0.398	0.028	42.8%	9.2%
1979-1983	0.573	0.028	30.3%	4.9%
1984-1988	0.362	0.029	54.0%	9.0%
1989-1993	0.352	0.033	55.3%	7.8%
1994-1998	0.507	0.040	37.8%	5.5%
1999-2003	0.745	0.044	21.8%	2.9%

Estimated depreciation of R&D for selected sectors

	Drugs & medical	Computers &
Period	instruments	electronics
1974-1978	9.9% (4.2%)	31.9% (8.1%)
1979-1983	19.6% (7.9%)	50.1% (14.5%)
1984-1988	5.8% (3.1%)	88.1% (27.6%)
1989-1993	20.6% (6.6%)	51.3% (8.6%)
1994-1998	18.8% (5.6%)	51.2% (11.6%)
1999-2003	18.9% (5.6%)	25.2% (5.3%)

Conclusion

Still a puzzle?

- Market value gives more reasonable estimates of depreciation, but required assumptions very strong
- R&D has become more revenue-productive, as suggested by its higher share; suggests
 - Either convergence to equilibrium
 - Or increased depreciation