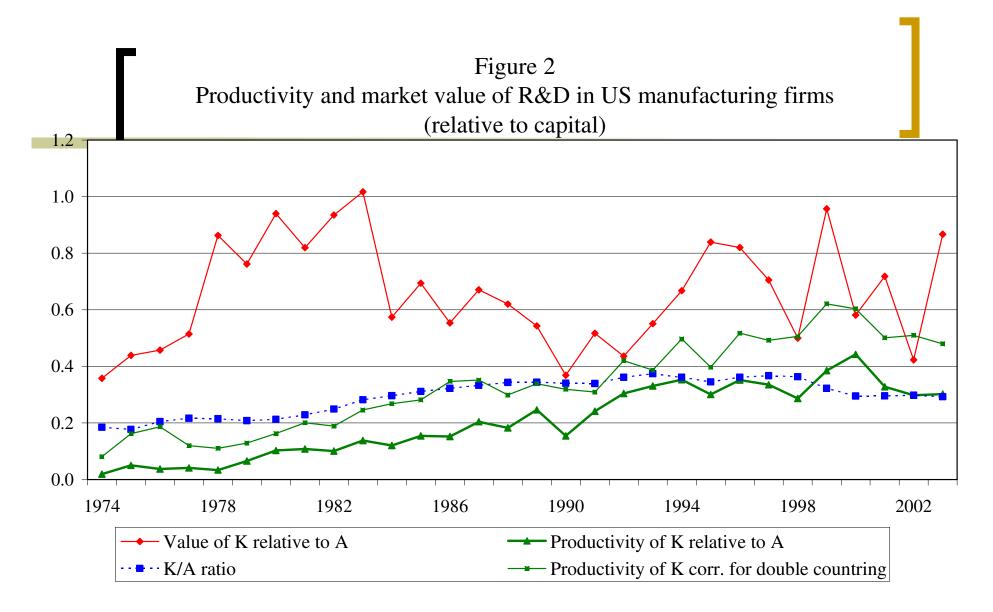
Returns to R&D and the depreciation problem

Bronwyn H. Hall UC Berkeley and NBER

Adding R&D investment to SNA

- Adding R&D to SNA requires
 - Balance sheet: capitalizing R&D need a measure of depreciation
 - Income statement: assumptions on or measurements of net rate(s) of return need a measure of depreciation
 - Real measures do we need an output measure for R&D?


What is R&D depreciation?

- A measure of the extent to which knowledge no longer produces useful output; obsolescence
 - Economy wide (appropriate for SNA) should it be lower than private rate?
 - "An additional loss in value comes from the gradual leakage of information to competitors and the expiration of intellectual property protection that render the R&D asset less valuable to its owner." (Okubo et al, p. 34)
 - Industry level for future SNA
 - Likely to be highly variable across technology
 - Firm level endogenous to the activities of other firms (Schumpeterian competition)
 - Much of R&D is product development, which can become obsolescent quite easily
 - However the knowledge created in the process is cumulative and may still have substantial social (and even private) value

Some firm-level measurements

Methodologies:

- Production function
 - Derived from elasticity estimate
 - Measured directly from R&D intensity coefficient
- Market value
 - Derived from shadow value of R&D
- All measures
 - o private (do not include spillovers)
 - based on publicly-reported FASB-standard R&D (not on Frascati) – but differences are not large, except for foreign-performed R&D

28,938 observations on 3,406 R&D-doing firms

Production function

- Include R&D capital (conventionally depreciated at 15%) as an input; estimate output elasticity
- In growth rates, bias from wrong choice of depreciation rate is small => consistent estimate of y (in principle)
- Health warnings:
 - rate of return formulation assumes zero depreciation, so early reported estimates are strongly downward-biased
 - many reported estimates of *y* do not correct for double counting of labor input, so they are downward-biased by approximately 0.03-0.10 (Schankerman, Hall-Mairesse)

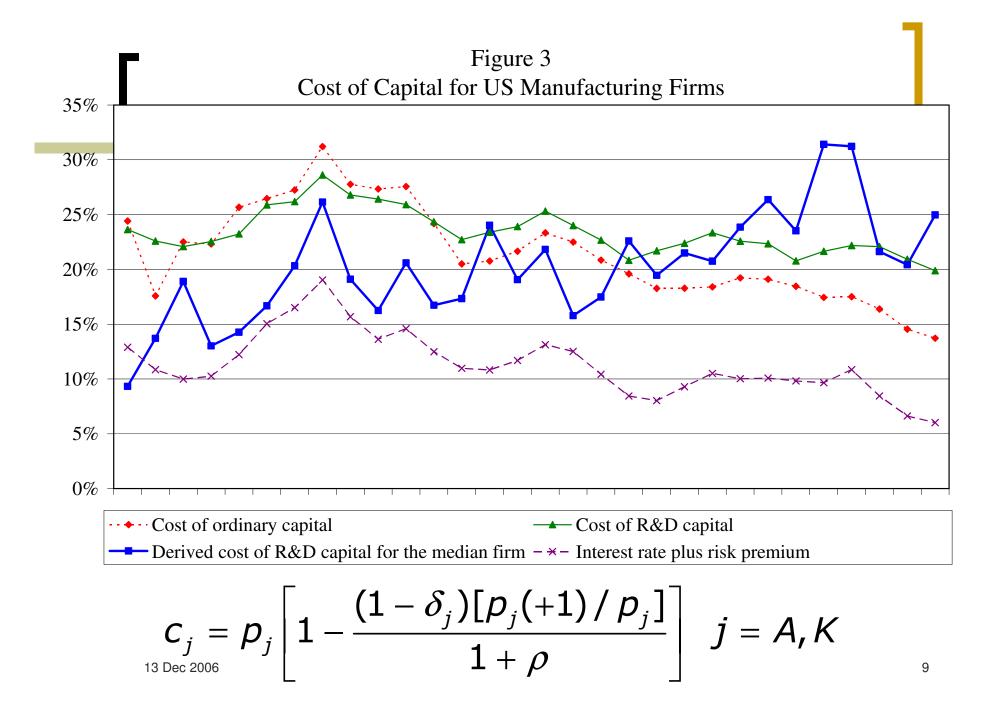
Production function – Hall 2006

Assume:

- 1. cost of tangible capital c_A is observable
- the ratio of the two capital shares (tangible A and R&D K) equals the ratio of the production function coefficients (does not require CRS or price-taking):

 $\frac{\gamma}{\beta} = \frac{c_{K}^{*}K^{*}}{c_{A}A}$

(*s denote the true values)


This approach allows us to do two (different) things:

- 1. Compute the cost of R&D capital implied by measured K
- Assume a cost of R&D capital based on a required rate of return and derive the implied depreciation rate for R&D. (assumed risk premium = 5%)

Deriving depreciation estimates

$$c_{\kappa}^{*}K^{*} = (p_{\kappa}K)\frac{(\rho+\delta_{\kappa})(g_{R}+0.15)}{(g_{R}+\delta_{\kappa})(1+\rho)}$$

 $c_{k}^{*}K^{*}$ is estimated from prod fcn [= (γ/β) $c_{A}A$] $p_{k}K$ is *measured* current R&D capital (using 15%) ρ is the assumed required rate of return g_{R} is the past growth of R&D in the firm Note the difficulty of identifying δ For each year, compute δ firm by firm and take the median

Production function estimates (Least absolute deviations)

Period	Ratio of capital coefficients	Standard error	Implied cost of R&D capital	Implied deprec. Rate	Median standard error
1974-1978	0.111	0.023	11.9%	-11.1%	2.3%
1979-1983	0.215	0.032	24.8%	-1.4%	2.4%
1984-1988	0.240	0.032	16.8%	-9.7%	1.1%
1989-1993	0.363	0.043	21.7%	-6.5%	0.6%
1994-1998	0.405	0.035	22.9%	-7.8%	0.4%
1999-2003	0.559	0.060	36.7%	-4.1%	0.3%
All years	0.258	0.014	19.7%	-6.0%	0.4%

Corrected for double counting (linear function of R/S) Not very sensitive to risk premium assumption

By sector

Period	Chemicals & chem-based	Drugs & med inst	Electrical	Computers & inst	Metals & machinery	Miscella neous
1974-1978	1.9%	-9.0%	-12.5%	-12.3%	2.7%	3.7%
1979-1983	1.0%	-3.6%	-14.9%	-2.0%	0.6%	-1.3%
1984-1988	-11.3%	-13.7%	-3.5%	-6.4%	-4.2%	-4.2%
1989-1993	-6.1%	-8.9%	-4.2%	-6.0%	-3.2%	-5.2%
1994-1998	-4.7%	-8.4%	-9.4%	-7.6%	-5.6%	-7.2%
1999-2003	-1.2%	-6.8%	-4.3%	-5.3%	-3.7%	-2.9%
All years	-2.3%	-10.9%	-3.0%	-5.0%	-1.8%	-2.3%

Relative magnitudes are somewhat sensible

Overall, values too low!

Market value approach

Estimate a hedonic market value equation:

 $logQ_{it} = log q_t + log(1 + \gamma_t K_{it}/A_{it})$

Assume true shadow values of *K* and *A* are equal and *A* measured correctly.

(Relative risk? Adjustment costs? Taxes?)

Derive depreciation from the following equation and take the median:

$$\hat{\delta}_{it} = \frac{0.15 + g_{it}}{\hat{\gamma}_t} - g_{it}$$

13 Dec 2006

Nonlinear least squares estimates

	K/A		Implied depreciation rate	
Period	Coefficient	Std. err.	Median	Median s.e.
1974-1978	0.526	0.025	31.2%	5.1%
1979-1983	0.595	0.025	28.8%	4.1%
1984-1988	0.385	0.028	49.9%	7.3%
1989-1993	0.382	0.031	50.0%	6.2%
1994-1998	0.551	0.037	33.8%	4.5%
1999-2003	0.794	0.040	20.1%	2.4%
All years	0.503	0.032	27.5%	1.2%

By sector

Period	Chemicals	Drugs & med inst	Electrical	Computers & inst	Metals & machinery	Misce- llaneous
1974-1978	25.2%	7.0%	47.1%	27.8%	<-100%	35.7%
1979-1983	11.6%	16.9%	19.7%	58.6%	20.4%	40.1%
1984-1988	11.1%	6.6%	24.8%	91.4%	>100%	>100%
1989-1993	39.8%	22.3%	>100%	52.8%	>100%	60.3%
1994-1998	24.1%	20.1%	62.4%	44.2%	39.5%	4.7%
1999-2003	36.8%	18.0%	55.1%	23.9%	15.5%	3.4%
All years	22.2%	16.1%	52.1%	42.0%	43.0%	24.1%

Relative magnitudes are somewhat sensible

Overall, values too high?

Conclusion from these estimates

- Large comprehensive sample of firms
- Robust estimation methods
- Nevertheless, rates of return and depreciation still highly variable over time and sector
 - Suggests caution in using these methods as direct input to R&D satellite accounts
 - Might it be useful to explore prod fcn approach at a more aggregate level?
 - We need R&D by technology or industry (LOB)
- Caveat:
 - firm-level estimates ignore the output deflation problem (as they should)
 - Once we move to the economy level, the "productivity" of R&D becomes important
 - Allocation of benefits between sectors strongly affected by market structure (prices) but aggregate bottom line is not.

Do we need an output measure for R&D?

- I am skeptical that this is an achievable goal
- It is difficult to conceive of a measure that is distinct from its effects on productivity or prices
 - Encouraging that scenarios B,C,D give approximately the same results
- Ignore the problem for the moment and let increased productivity show up in MFP (as in the case of spillovers)?