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Appendix A: The time series behavior of employment growth 
 

In this paper I present evidence that sample selection or attrition introduces very little bias 

into growth rate equations over time periods of approximately five to ten years. In this 

appendix I present the results of a time series analysis of three sets of firms (those in the 

sample from 1972 to 1979, from 1976 to 1983, and the combined sample from 1972 to 

1983) with some confidence that these results are not very biased by the exclusion of 

entrants and exiters.  

 

In Tables A1 and A2 I show the covariance matrix of the logarithm of employment over time 

for the first two samples of firms, both in levels and in first differences. Note that in both 

cases, the overall mean for each year has been removed from the data.1 These tables suggest 

that the log employment time series has the following characteristics: it has an AR 

component with a root near one, and possibly a small MA component or higher order AR 

terms. In addition, the hypothesis that the variance of growth rates is equal across the years 

can be rejected. Accordingly, I parametrize the process as a standard ARMA model with the 

variance of the innovation changing over time:  
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Under the assumption of multivariate normality of the εt, it is possible to estimate the 

parameters of this process by maximum likelihood and the covariance matrices are a 

sufficient statistic for the problem. The method by which I perform this estimation is 

described in Hall (1979).2 Macurdy (1981) has shown that these estimates consistent even 

if the disturbances are not multivariate normal, although the estimated standard errors will 

no longer be correct.  

 

                                                             

 

1 The differenced matrix was also estimated with industry means removed for each year to control 
for possible industry effects of the oil price shocks in 1973-74 and 1978-79, but this made little 

difference, reducing the diagonal elements by about five percent and leaving the off-diagonal 

elements essentially unchanged.  

 
2 The likelihood function being maximized can be written as follows: 

( ) ( )1log log 2 log ( ) ' ( )
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N is the number of firms, T is the number of time periods, and Y’Y and Ω(θ) are the observed 

covariance matrix of the data and predicted covariance matrix from the model respectively.  
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Before describing the result of my estimation of the model, I need to say something about 

the treatment of initial conditions. I have assumed that the process for each firm began at a 

random time in the past and at a random level, and accordingly, have estimated the initial 

variance as a free parameter (and, in the case of AR(2) or ARMA(2,1), two initial variances 

and a covariance are free). Justification for this procedure is provided both by Anderson and 

Hsiao (1981) and Macurdy (1985). It will not be correct if the unknown initial condition is a 

fixed constant. It is difficult to conceive of an experiment with these data that would 

distinguish the two possibilities, although the smooth lognormality of the size distribution 

gives me some confidence that the first assumption is not unreasonable. The consequence 

of this treatment of initial conditions is to add two or three more parameters when the 

model is expanded to include a second order term, rather than only one. This procedure has 

a tendency to increase the log likelihood by more than is accounted for by the additional AR 

parameter, due to the fact that the first two variances and the associated covariance are 

now estimated freely. For example, this accounts for the fact that the 1972-79 data prefers 

the ARMA(2,1) strongly, even though this model seems to have redundant roots (compare 

1.757 and 1.748).  

 

Using these assumptions about initial conditions, I estimated the ARMA model on three sets 

of data: the two samples from 1972 to 1979 and 1976 to 1983 shown in Tables A1 and A2, 

and a longer sample from 1972 to 1983 that contained 962 firms. The results are shown in 

Tables A3 and A4 and they are essentially the same across the three samples. In Table A3 I 

show the value of the log likelihood obtained for six different ARMA models, including 

ARMA (0,0) or Martingale/random walk, as well as an unconstrained model that allows for 

a free covariance matrix across time. In the table it can be seen that the gain in the 

likelihood per degree of freedom is vastly greater going from a simple random walk to an 

ARMA(2,1) model than from the ARMA(2,1) to the unconstrained model. The Akaike 

information criteria suggest that either AR(2) or ARMA(2,1) are to be preferred among the 

levels models, while ARMA(1,1) is preferred for the first differenced data.  

 

In Table A4 I show the estimated values of the roots of the different processes. For example, 

the ARMA(2,1) estimates for 1972-1979 suggest that the employment process be described 

as follows: 

 

 (1 1.76 )(1 0.98 ) (1 1.75 )
t t

L L Y L ε− − = −  

  

It can be seen from this table that the estimates obtained with first differenced data are 

entirely consistent with those obtained using levels, because the dominant effect in the 

latter case is one autoregressive root near unity. It is also the case that both the ARMA(2,1) 

in levels and ARMA(1,1) in differences have near redundant roots for the 1972 to 1979 

period (the t-statistic for equality is 0.9), while in the later period the roots are stable and 

significantly different from each other. I conclude that an adequate representation of the 

time series behavior of the data is ARIMA(1,1,1), with a possible preference for a slightly 

simpler model in the case of the earlier period because of the unstable and near redundant 

roots. In the paper I interpret these time series results in the context of several slightly 

more informative models.  

 

 

  



3 

 

 

Appendix B: Sample selection and stochastic threshold models 
 

In this appendix I derive the relationship of the stochastic threshold model to the 

generalized Tobit (sample selection) model and discuss the consequences of the identifying 

assumptions used in estimating each model. Although there is nothing new here, the 

literature on Tobit models (Amemiya 1984, Maddala 1983) does not seem to contain a 

discussion of the connection between the two models. Such a connection is useful, because 

it implies that the same computer program can be used to estimate either model.  

 

First I present the standard censored regression model with a stochastic threshold due to 

Nelson (1977). Denote the size of the firm in the second period as y1i and the unobserved 

threshold below which the firm will drop out of the sample as y*2i. Then the model can be 

written as follows:  
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The disturbance vector u = (u1i, u2i) has a bivariate normal distribution with mean zero and 

variance  
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The Xi includes all the exogenous and predetermined variables for the model, including the 

size in the initial period. Some of the β’s may be zero if there are exclusion restrictions. 

Nelson shows that this model requires at least one exclusion restriction or the restriction ρ 

= 0 in order to identify all the parameters.  

 

The above model can be rewritten as a standard generalized Tobit model of the following 

form: 
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The covariance matrix of the disturbances is now the following: 
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It is customary when estimating this model to normalize the residual variance of the 

unobserved latent variable z2i to be unity so that its disturbance is ν2iω2 and the coefficient 

vector estimated is δ/ω2. Because z2 is completely unobserved, this normalization is 

innocuous and β1 is still completely identified.  

 

However, estimation of the sample selection model is not sufficient to identify the 

parameters of the stochastic threshold model. It can be easily shown that the relationship 

between the covariance matrices of the two sets of disturbances is the following:  
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So that we have  
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Given estimates of δ/ω2, λ, and σ1, we will need ω2 in order to identify the parameters of the 

stochastic threshold model. As Nelson showed, identification can be achieved either with an 

exclusion restriction on one of the β’s or by setting the correlation between the two 

equations, ρ, to zero. Therefore, the identifying assumption I used in the sample selection 

model is not sufficient to identify the parameters of the stochastic threshold model.  

 

On the other hand, in the presence of one of the identifying assumption for the Nelson 

model, it is no longer necessary to normalize the variance of ν2i to unity. Thus the stochastic 

threshold is in some sense a special case of the more general sample selection model. In this 

paper I chose to use the more general model in order to capture the notion that the firm 

may drop out of the sample for reasons other than a size threshold.  

 

 

 

Appendix C: Testing for heteroskedasticity in the sample selection 

model 
 

This appendix develops a Lagrange Multiplier test for heteroskedasticity of the disturbance 

in the regression equation of the sample selection model, following a test suggested by Lee 

and Maddala (1985) for the Tobit model. The alternative being considered is that the 

disturbance ν1i of the growth rate equation has a variance that is a (possibly nonlinear) 

function of the regressors, in particular, of firm size: 
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Under the null hypothesis, the vector γ is zero and the disturbance therefore 

homoskedastic. This test has the usual properties of an LM test: it is asymptotically locally 

most powerful under the alternative being considered. As in Lee and Maddala, it turns out 

that the exact form of G goes not matter, since it is being approximated by linear functions 

of Xi near γ=0.  

 

The likelihood function for the generalized Tobit model outlined in the text is the following: 
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where the summation over 0 and 1 denotes the sum over not observed and observed data 

respectively. Φ(.) denotes the standard normal cumulative distribution function.  

 

Differentiating with respect to σ2 (under the null of homoskedasticity), I obtain the 

following expression for the score: 
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where λ(.) denotes the inverse Mills’ ratio, φ(.)/Φ(.). The LM (score) test for γ = 0 is then a 

test of the following form: 
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where the degrees of freedom for the test are the number of regressors in Xi and all 

quantities are evaluated at the maximum likelihood estimates obtained under the null 

hypothesis.  

 

Note that because we are testing for heteroskedasticity of ν1i only and not of ν2i, only the 

observations for which y1i is observed enter the test statistic, in contrast to the Tobit model 

case, where the disturbance of the selection equation and regression equation are the same. 

To perform the actual test, I use the regression methodology of Breusch and Pagan (1979), 

which implicitly estimates the variance of this statistic from its sample variance. This 

computation is invariant to any renormalization which does not depend on the observations 

so that the G’(α) term drops out. The quantity which is regressed on the Xi to perform the 

test is given in the square brackets of equation (2). Note that if the estimated ρ is zero, this 

is the conventional LM test for heteroskedasticity, where ν1i
2 is regressed on a constant and 

the Xi.  

 



1972 1973 1974 1975 1976 1977 1978 1979

1972 2.762

1973 2.704 2.678

1974 2.695 2.670 2.705

1975 2.655 2.631 2.666 2.655

1976 2.610 2.587 2.623 2.612 2.602

1977 2.575 2.559 2.594 2.586 2.577 2.582

1978 2.546 2.531 2.568 2.600 2.552 2.560 2.566

1979 2.541 2.530 2.573 2.563 2.557 2.570 2.582 2.643

1973-72 1974-73 1975-74 1976-75 1977-76 1978-77 1979-78

1973-72 0.0314

1974-73 0.0019 0.0427

1975-74 0.0012 -0.0001 0.0273

1976-75 -0.0013 -0.0006 -0.0007 0.0323

1977-76 0.0038 -0.0002 -0.0029 -0.0010 0.0295

1978-77 0.0030 0.0018 0.0000 -0.0012 -0.0035 0.0275

1979-78 0.0041 0.0066 -0.0023 -0.0023 -0.0039 -0.0059 0.0466

The asymptotic s.e. is approximately 0.09 for the levels and 0.002 for the first differences.

Levels

1349 Firms

Table A1: Log Employment Covariance Matrix

First differences

Overall year means removed. 



1976 1977 1978 1979 1980 1981 1982 1983

1976 2.95

1977 2.91 2.90

1978 2.87 2.86 2.84

1979 2.83 2.81 2.81 2.82

1980 2.81 2.81 2.79 2.81 2.83

1981 2.80 2.79 2.78 2.80 2.83 2.87

1982 2.78 2.78 2.77 2.79 2.82 2.86 2.91

1983 2.73 2.74 2.73 2.75 2.78 2.82 2.87 2.89

1977-76 1978-77 1979-78 1980-79 1981-80 1982-81 1983-82

1977-76 0.0333

1978-77 0.0035 0.0234

1979-78 0.0040 0.0013 0.0347

1980-79 -0.0012 0.0028 0.0054 0.0405

1981-80 0.0000 0.0014 0.0040 0.0086 0.0345

1982-81 0.0029 0.0011 0.0000 0.0064 -0.0005 0.0561

1983-82 0.0042 0.0035 -0.0016 -0.0052 -0.0001 0.0058 0.0597

The asymptotic s.e. is approximately 0.011 for the levels and 0.0025 for the first differences.

Table A2: Log Employment Covariance Matrix

1098 Firms

Levels

First differences

Overall year means removed. 



Model # params Log L* # params Log L* # params Log L*

Random walk 8 -151.3 8 -140.9 12 -207.0

AR(1) 9 -107.0 9 -115.7 13 -165.9

MA(1) 10 -111.9 10 -96.3 14 -162.7

ARMA(1,1) 11 -86.0 11 -76.1 15 -133.7

AR(2) 11 -85.2 11 -69.9 15 -132.2

ARMA(2,1) 13 -36.4 13 -55.8 17 -117.2

Unconstrained 36 0.0 36 0.0 78 0.0

(225.2) (406.6) (892.0)

Random walk 7 -87.6 7 -127.9 11 -193.4

MA(1) 9 -74.7 9 -89.9 13 -162.9

ARMA(1,1) 10 -29.9 10 -73.2 14 -142.6

Unconstrained 28 0.0 28 0.0 66 0.0

(2757.4) (1729.6) (3226.0)

Table A3: Time Series Estimates for Log Employment

First differences

*The logarithm of the likelihood is measured relative to the unconstrained model, which freely fits 

each covariance to a separate parameter. The actual values of the unconstrained log likelihoods are 

shown in parentheses below each column. 

Levels

1972-79 1976-83 1972-83



1972-79 0.989 (0.001) 0 0

AR(1) 1976-83 0.991 (0.001) 0 0

1972-83 0.990 (0.001) 0 0

1972-79 1 0 -0.053 (0.011)

MA(1) 1976-83 1 0 -0.095 (0.012)

1972-83 1 0 -0.074 (0.010)

1972-79 0.991 (0.001) 0 -0.0553 (0.011)

ARMA(1,1) 1976-83 0.990 (0.002) 0 -0.1025 (0.013)

1972-83 0.991 (0.001) 0 -0.0765 (0.011)

1972-79 0.991 (0.017) 0.060 (0.018) 0

AR(2) 1976-83 0.990 (0.018) 0.120 (0.022) 0

1972-83 0.990 (0.003) 0.082 (0.006) 0

1972-79 0.984 (0.414) 1.757 (0.294) 1.748 (0.138)

ARMA(2,1) 1976-83 0.991 (0.175) 0.574 (0.388) 0.449 (0.096)

1972-83 1.000 (0.767) 0.939 (0.012) 0.919 (0.057)

1972-79 1 0 -0.054 (0.012)

MA(1) 1976-83 1 0 -0.105 (0.015)

1972-83 1 0 -0.076 (0.011)

1972-79 1 1.745 (0.147) 1.737 (0.150)

ARMA(1,1) 1976-83 1 0.553 (0.097) 0.432 (0.101)

1972-83 1 0.878 (0.051) 0.821 (0.056)

Roots of AR process Roots of MA process

Levels

Table A4: Parameter Estimates for the Time Series Models

First differences


