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1 Introduction 

The	past	two	decades	have	seen	an	enormous	increase	in	patent	filings	worldwide	(Fink	
et	al.,	2013).	There	are	signs	that	the	level	of	patenting	in	certain	sectors	has	become	so	
high	as	to	discourage	innovation	(Federal	Trade	Commission,	2011;	Bessen	and	Meurer,	
2008;	Jaffe	and	Lerner,	2004;	Federal	Trade	Commission,	2003).	The	main	reason	is	that	
companies	 inadvertently	 block	 each	 other’s	 innovations	 because	 of	 multiple	
overlapping	patent	rights	in	so‐called	“patent	thickets”	(Shapiro,	2001).	Patent	thickets	
arise	where	 individual	 products	 draw	on	 innovations	 protected	by	 hundreds	 or	 even	
thousands	 of	 patents,	 often	 with	 fuzzy	 boundaries.	 These	 patents	 belong	 to	 many	
independent	 and	 usually	 competing	 firms.	 Patent	 thickets	 can	 lead	 to	 hold‐up	 of	
innovations,	 increases	 in	 the	 complexity	 of	 negotiations	 over	 licenses,	 increases	 in	
litigation,	 and	 they	 create	 incentives	 to	 add	 more	 and	 weaker	 patents	 to	 the	 patent	
system	(Allison	et	al.,	2015).	This	increases	transaction	costs,	reduces	profits	that	derive	
from	 the	 commercialization	 of	 innovation,	 and	 ultimately	 reduces	 incentives	 to	
innovate.	

There	 is	 a	 growing	 theoretical	 (Bessen	 and	 Maskin,	 2009;	 Clark	 and	 Konrad,	 2008;	
Farrell	and	Shapiro,	2008;	Fershtman	and	Kamien,	1992)	and	legal	literature	on	patent	
thickets	 (Chien	 and	 Lemley,	 2012;	 Bessen	 et	 al.,	 2011).	 Related	work	 analyzes	 firms’	
attempts	to	form	patent	pools	to	reduce	hold‐up	(Joshi	and	Nerkar,	2011;	Lerner	et	al.,	
2007;	Lerner	and	Tirole,	2004)	and	 the	particular	challenges	posed	 in	 this	context	by	
standard	essential	patents	(Lerner	and	Tirole,	2013).		

The	 existing	 empirical	 evidence	on	patent	 thickets	 is	 largely	 concerned	with	 showing	
that	 they	 exist	 and	measuring	 their	 density	 (Graevenitz	 et	 al.,	 2011;	 Ziedonis,	 2004).	
There	 is	 less	 evidence	 on	 the	 effects	 patent	 thickets	 have	 for	 firms.	 Cockburn	 and	
MacGarvie	(2011)	demonstrate	that	patenting	levels	affect	product	market	entry	in	the	
software	 industry.	 They	 show	 that	 a	 1	 per	 cent	 increase	 in	 the	 number	 of	 existing	
patents	is	associated	with	a	0.8	per	cent	drop	in	the	number	of	product	market	entrants.	
This	result	echoes	earlier	findings	by	Lerner	(1995)	who	showed	for	a	small	sample	of	
U.S.	biotech	companies	that	first‐time	patenting	in	a	given	technology	is	affected	by	the	
presence	 of	 other	 companies’	 patents.	Meurer	 and	Bessen	 (2005)	 suggest	 that	 patent	
thickets	 also	 lead	 to	 increased	 litigation	 related	 to	 hold‐up.	 Patent	 thickets	 have	
remained	a	concern	of	antitrust	agencies	and	regulators	in	the	United	States	for	over	a	
decade	 (Federal	Trade	Commission,	 2011,	 2003;	USDoJ	 and	FTC,	 2007).	 Reforms	 that	
address	some	of	the	factors	contributing	to	the	growth	of	patent	thickets	have	recently	
been	introduced	in	the	U.S.	(America	Invents	Act	(AIA)	of	2011)	1	and	by	the	European	
Patent	Office.	

																																																								

1	For further information	see http://www.gpo.gov/fdsys/pkg/BILLS-112hr1249enr/pdf/BILLS-112hr1249enr.pdf 
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In	spite	of	the	available	theoretical	and	empirical	evidence,	it	is	frequently	argued	that	
patent	thickets	are	a	feature	of	rapidly	developing	technologies	in	which	technological	
opportunities	abound	(Teece	et	al.,	2014).	Thickets	are	thus	seen	as	a	reflection	of	fast	
technological	 progress	 that	 is	 paired	 with	 increased	 technological	 complexity	 (Lewis	
and	Mott,	2013).	This	suggests	that	a	trade‐off	between	technological	opportunity	and	
growth	on	the	one	hand	and	increased	transaction	costs	due	to	the	emergence	of	patent	
thickets	on	the	other	may	exist.	The	challenge	in	assessing	this	trade‐off	is	to	develop	a	
framework	that	captures	the	main	incentives	that	lead	to	patent	thickets	as	well	as	the	
most	important	effects	of	thickets.	

This	 paper	 contributes	 to	 the	 literature	 by	 analyzing	 the	 effect	 of	 patent	 thickets	 on	
entry	into	new	technology	areas.	Our	focus	on	entry	into	patenting	captures	the	positive	
effects	of	greater	technological	opportunity	and	negative	effects	of	greater	transaction	
costs	imposed	by	a	complex	patent	landscape	characterized	by	thickets.	We	are	able	to	
quantify	 both	 effects	 empirically.	 The	 paper	 makes	 two	 key	 contributions:	 first,	 we	
extend	 the	 theoretical	 model	 of	 patenting	 in	 complex	 technologies	 introduced	 by	
Graevenitz	 et	al.	 (2013)	 to	 free	 entry	 and	 the	 interaction	 between	 incumbents	 and	
entrants.	Our	model	shows	that	technological	complexity	and	technological	opportunity	
increase	 entry,	 but	 that	 the	 potential	 for	 hold‐up	 in	 patent	 thickets	 reduces	 entry	 in	
complex	 technologies.	 While	 complexity	 and	 opportunity	 are	 shown	 to	 have	
countervailing	effects	on	patenting	 incentives	 in	Graevenitz	et	al.	 (2013),	we	 find	 that	
both	factors	increase	the	incentive	to	enter.	However,	hold‐up	potential	clearly	reduces	
entry	 incentives.	 This	 reflects	 the	 fact	 that	 patent	 thickets	 arise	 due	 to	 rising	
technological	 opportunity	 and	 complexity	 but	 create	 the	 potential	 for	 hold‐up.	 The	
second	contribution	of	the	paper	consists	of	an	empirical	test	of	these	predictions	using	
data	 on	 UK	 firms.	 Our	 analysis	 confirms	 that	 entry	 increases	 in	 technology	 areas	
characterized	by	 greater	 technological	 opportunity	 and	 complexity.	However,	we	 also	
show	 that	 the	 hold‐up	 potential	 of	 patent	 thickets	 has	 negative	 and	 economically	
significant	 effects	 on	 entry	 into	 patenting.	 While	 we	 cannot	 quantify	 the	 overall	 net	
welfare	effect,	our	results	do	suggest	that	thickets	raise	entry	costs	for	large	and	small	
firms	 alike.	 We	 argue	 that	 this	 is	 likely	 to	 have	 negative	 long‐run	 consequences	 on	
innovation	and	product	market	competition.	

The	remainder	of	this	paper	is	organized	as	follows.	Section	2	presents	a	model	of	entry	
into	patenting	 in	a	 technology	area	and	derives	several	 testable	predictions.	Section	3	
describes	 the	data,	 and	 the	 empirical	measurement	 of	 the	 key	 concepts	 in	 the	model.	
Section	4	discusses	our	results	and	Section	5	provides	concluding	remarks.	

2 Theoretical	Model	

This	 section	 presents	 a	 two‐stage	 model	 of	 entry	 into	 patenting	 and	 of	 subsequent	
patenting	decisions.	In	the	first	stage	of	the	model,	firms	choose	to	enter	if	they	expect	
non‐negative	profits	from	entry.	In	the	second	stage	firms	simultaneously	choose	how	
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many	technological	opportunities	to	research	and	how	many	patents	per	opportunity	to	
apply	for.	The	complexity	of	the	technology	determines	how	many	patents	(facets)	per	
opportunity	are	available.	The	degree	of	technological	complexity	also	determines	how	
many	 opportunities	 exist	 and	 therefore	 how	 intense	 competition	 is	 within	 each	
opportunity.	 The	 value	 of	 a	 firm’s	 patent	 portfolio	 within	 a	 given	 technological	
opportunity	 depends	 on	 the	 number	 of	 facets	 in	 that	 opportunity	 that	 have	 been	
patented	overall	and	the	share	of	those	patents	held	by	the	firm.2	In	deciding	how	many	
patent	 applications	 to	 submit	 each	 firm	 takes	 into	 account	 costs	 of	 researching	 an	
opportunity,	 costs	 of	 upholding	 the	 patent	 and	 legal	 costs	 of	 exploiting	 the	 patent	
portfolio	including	expected	costs	of	hold‐up.		

In	order	to	analyze	the	effect	of	technological	complexity,	opportunity,	and	transaction	
costs	 in	 form	of	 thickets	on	entry,	we	extend	 the	model	by	Graevenitz	et	al.	 (2013)	 in	
three	ways:	

1. We	distinguish	between	 the	effect	of	 technological	complexity	and	 the	effect	of	
hold‐up	by	patent‐holders.		

2. We	 allow	 the	 value	 of	 patent	 portfolios	 in	 bargaining	 to	 exhibit	 decreasing	
returns	to	scale.	

3. We	 account	 for	 the	 effects	 of	 increasing	 fixed	 costs	 of	 R&D	 as	 more	 firms	
undertake	R&D	in	the	same	technological	opportunities.	

The	 key	 variables	 of	 the	 model	 are	 the	 complexity	 of	 a	 technology,	 measured	 by	

,	the	degree	of	technological	opportunity,	measured	by	 ,	and	hold‐up	

potential	 hk.	 Complexity	 increases	 when	 the	 number	 of	 patentable	 facets	 Fk	 per	
technological	 opportunity	 Ok	 increases.	 The	 model	 spans	 discrete	 technologies,	 for	
which	Fk	is	1	or	a	very	low	positive	number	and	complex	technologies	for	which	Fk	can	
be	an	arbitrarily	large	positive	number.	Hold‐up	potential	in	form	of	thickets	enters	the	
model	through	the	legal	costs	of	patenting.	This	is	discussed	in	detail	further	below.		

The	value	of	all	Fk	patents	in	an	opportunity	is	Vk.	In	the	simplest	discrete	setting	this	is	
the	value	of	the	one	patent	(facet)	that	covers	each	technological	opportunity.	In	more	
complex	 technologies	 this	 is	 the	 value	 of	 controlling	 all	 patents	 (facets)	 on	 a	
technological	opportunity.	

We	 analyze	 this	 model	 assuming	 that	 firms	 (indexed	 by	 i)	 choose	 the	 number	 of	
opportunities	 oi	 to	 invest	 in	 and	 the	 number	 of	 facets	 fi	 per	 opportunity	 to	 patent,	
subject	to	costs	which	we	discuss	next.	Which	facets	a	firm	can	patent	depends	on	how	
many	 facets	 rival	 firms	 are	 attempting	 to	 patent.	 We	 assume	 that	 firms	 choose	 the	
opportunities	 to	 invest	 in	 and	 facets	 per	 opportunity	 to	patent	 randomly.	 The	 patent	
office	 then	 allocates	 facets	 that	 have	 been	 chosen	 by	 multiple	 firms	 randomly.	 This	
modeling	 structure	 implies	 that	 of	 the	 F୩ 	patents	 available	 per	 technological	
																																																								

2	Note	we	assume	that	all	opportunities	and	facets	are	symmetric.	

0( )F  0(O )



4	

	

opportunity,	only	 	will	be	patented,	where	 	is	the	equilibrium	

number	of	facets	chosen	by	applicants	and	NO	is	the	number	of	firms	that	have	chosen	a	

specific	opportunity.3	Since	 	may	be	smaller	 than	Fk	 the	total	value	of	patenting	 in	a	

technology	is .	The	probability	pk	that	a	firm	obtains	a	given	patent	is:	 	

	
0 0 0

1
( , , ( , , )) 1

1

OO N jN j
O l m

k k Ok k
j l mk k

N f f
p f F N O o N

jj F F



  

  
       
   		 (1)	

Then,	 the	expected	number	of	patents	a	 firm	owns	when	 it	applies	 for	 fi	 facets	 is	γk	≡	
pkfi.	The	properties	of	pk	are	discussed	in	Appendix	C.3.	

2.1 Assumptions	

Graevenitz	 et	al.	 (2013)	 assume	 that	 the	 value	 function	 	is	 convex	 in	 covered	

facets.	We	show	below	that	this	assumption	can	be	relaxed.	We	generalize	the	model	by	
introducing	 a	 function	 relating	 the	 share	 of	 patents	 the	 firm	holds	 on	 an	 opportunity	
(sik)	to	the	proportion	of	the	value	Vk	the	firm	can	extract	through	licensing	and	its	own	
sales:	 Δ(sik).	 This	 function	 captures	 the	 benefits	 that	 a	 patent	 portfolio	 confers	 in	 the	
market	 for	 technology.	 We	 assume	 that	 these	 portfolio	 benefits	 are	 subject	 to	
decreasing	returns	to	scale.	

Thus	the	assumptions	we	make	on	the	value	function	and	portfolio	benefits	are:	

	 ( ):   (0) 0,   0
k

V
VF V

F


 

 
	 	 (2)	 	 	

	
2

2

( ) ( )
( ):   (0) 0,   0  and  0ik ik

ik ik

d s d s
PB

ds ds

 
    		 	 (3)	 	

The	model	contains	three	types	of	patenting	costs:	

• The	costs	of	R&D	per	opportunity	depend	on	the	overall	level	of	R&D	activity	by	all	

patenting	firms: .	

• Per	granted	patent	a	firm	faces	costs	of	maintaining	that	patent	in	force	equal	to	Ca.	

• The	 coordination	 of	 R&D	 on	 different	 technological	 opportunities	 imposes	 costs	
Cc(ok).	We	assume	that		

	 0c

k

C

o





		 	 	 (4)	 	

																																																								

3	The	properties	of	N0	are	summarized	in	Appendix	C.	

0 1ˆ(1 (1 ( / ) ))N
kF f F    f̂

kF

( ) ( )k kV F V F

( )k kV F

 0
ON

jj
C o
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Note	that	this	implies	that	R&D	costs	are	fixed	costs	and	that	there	is	no	technological	
uncertainty.4	We	do	allow	for	 the	endogenous	determination	of	 the	 level	of	R&D	fixed	
costs,	which	 rise	 as	more	opportunities	 are	 researched	 simultaneously	by	 rival	 firms.	
This	 reflects	 competition	 for	 inputs	 into	 R&D	 that	 are	 fixed	 in	 the	 short	 run.	
Coordination	 costs	 on	 different	 R&D	 projects	 also	 limit	 the	 scope	 of	 the	 firm’s	 R&D	
operations.	

Where	multiple	firms	own	facets	on	an	opportunity,	their	legal	costs	L(γik,	sik,	hk)	depend	
on	the	absolute	number	of	patented	facets	(γik),	on	the	share	of	patents	per	opportunity	
that	a	 firm	holds	(sik),	and	on	the	extent	to	which	they	face	hold‐up	(hk).	The	first	two	
channels	 capture	 the	 costs	 of	 defending	 a	 patent	 portfolio	 as	 the	 number	 of	 patents	
increases,	while	leaving	scope	for	effects	on	bargaining	costs	that	derive	from	the	share	
of	 patents	 owned:5	The	 hold‐up	 parameter	 captures	 contexts	 in	 which	 several	 firms’	
core	 technologies	 become	 extremely	 closely	 intertwined.	 Then	 each	 firm	 has	 to	
simultaneously	 negotiate	 with	 many	 others	 to	 commercialize	 its	 products,	 which	
significantly	raises	costs.	 		

	

2 2

2 2

2 2

( ):   ( , , ),   where  0, 0, 0, 0,

                                              0, 0, 0

ik ik k
ik ik ik ik

k ik k ik k

L L L L
LC L s h

s s

L L L

h h s h


 



   
   

   

  
  

    

	 	(5)	

All	remaining	cross	partial	derivatives	of	the	legal	costs	function	are	zero.		

In	what	follows,	we	use	the	following	definitions:		

( ) ( )
,     ,     ,     ,    and    

( ) ( )
i i k k k k i k

k k k k k
k k k k k k k i

o f F V F s d s f F

O F V F F s ds F f
      

    
  

  
   	.	

2.2 A	Model	of	Patenting	and	Entry	

Firm	 i’s	 profits	 in	 technology	 k,	 	is	 a	 function	 of	 the	 number	 of	

opportunities	oi	 in	which	 the	 firm	 invests,	 the	number	of	 facets	per	opportunity	 fi	 the	
firm	 seeks	 to	 patent,	 the	 total	 number	 of	 patentable	 facets	 per	 opportunity	 Fk,	 the	
number	 of	 technological	 opportunities	 a	 technology	 offers	 Ok,	 the	 number	 of	 firms	
entering	the	technology	Nk,	and	the	degree	of	hold‐up	in	that	technology	hk.	

In	this	section	we	analyze	the	following	two‐stage	game	G*:	

																																																								
4	Introducing	technological	uncertainty	is	possible	but	does	not	change	the	main	comparative	statics	
results.		

5	Graevenitz et al. (2013) analyse	alternative	assumptions	on	legal	costs.	

( , , , , , )ik i i k k k ko f F O N h
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Stage	1:	Firms	enter	until	 ( , , , , , ) 0ik i i k k k ko f F O N h  ;6	

Stage	2:	Firms	simultaneously	choose	the	number	of	opportunities,	oi,	to	invest	in	and	
the	number	of	facets	per	opportunity,	fi,	to	patent	in	order	to	maximize	profits	πik.	

We	solve	the	game	by	backward	induction	and	derive	local	comparative	statics	results	
for	 the	 symmetric	 extremal	 equilibria	 of	 the	 second	 stage	 game.	 For	 the	 subsequent	
analysis	 it	 is	 important	 to	 note	 that	 all	 equilibria	 of	 this	 second	 stage	 game	 are	
symmetric.	In	case	that	the	second	stage	game	has	multiple	equilibria	we	focus	on	the	
properties	 of	 the	 extremal	 equilibria	 when	 providing	 comparative	 statics	 results	
(Milgrom	 and	 Roberts,	 1994;	 Amir	 and	 Lambson,	 2000;	 Vives,	 2005).	 Equilibrium	
values	of	the	firms’	choices	are	denoted	by	a	superscript	and	we	drop	the	firm	specific	

subscripts	in	what	follows,	e.g.,	 .	

At	stage	two	of	the	game	each	firm	maximizes	the	following	objective	function:	

	  0( , ) ( ) ( ) ( , , ) ( ) ( )ON

ik i i i k ik ik ik k j i k a c ij
o f o V F s L s h C o f p C C o       		 (6)	

This	 expression	 shows	 that	 per	 opportunity	k,	 the	 firm	derives	profits	 from	 its	 share	

	of	patented	facets,	while	facing	legal	costs	L	 to	appropriate	those	profits,	

as	well	as	costs	of	R&D	C0,	costs	of	maintaining	its	patent	portfolio	Ca,	and	coordination	
costs	across	opportunities	Cc.	

As	noted	above	we	generalize	 the	model	of	Graevenitz	 et	 al.	 (2013)	by	allowing	each	
firm's	proportion	of	profits	to	be	a	non‐linear	function	of	the	share	(sik)	of	patents	each	
firm	obtains	per	opportunity.	This	allows	us	to	analyse	effects	of	entry	on	patenting,	by	
generalizing	 the	 conditions	 for	 supermodularity	 of	 the	 second	 stage	 of	 game	 G*	 (Cf.	
Footnote	 7).	 We	 then	 draw	 on	 this	 to	 show	 when	 the	 equilibrium	 is	 unique	 (Cf.	
Appendix	D.2).	

2.3 Simultaneous	Entry	with	Multiple	Facets	

2.3.1 Comparative	statics	of	patenting	

We	show	that	the	second	stage	of	this	game	is	smooth	supermodular:	

Proposition	1	

The	 second	 stage	game,	defined	 in	particular	by	assumptions	 (VF,	eq.	2),	 (PB,	eq.3)	and	

(LC,	eq.	5)	is	smooth	supermodular	if	 ik  	and	if	ownership	of	the	technology	is	expected	

to	be	fragmented.		

																																																								
6	We	treat	Nk	as	a	continuous	variable	here,	which	is	an	abstraction	that	simplifies	our	analysis.	

k̂

/ik k i ks p f F 
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The	 second	 order	 conditions	 from	which	 we	 derive	 the	 supermodularity	 of	 game	G*	
contain	the	following	expressions:	

	
ˆˆ( ) ˆ ˆ( ) 0  and  1 2 0

ˆˆ ˆ 1
k k

k k k
k k k

s L
V

s s

  


   
             

		 (7)	

These	 jointly	 determine	 the	 sign	 of	 the	 second	 order	 conditions	 characterizing	
equilibria	 of	 the	 second	 stage	 game.	 The	 first	 and	 second	 order	 conditions	 for	 the	
second	stage	of	game	G*	are	set	out	in	Appendix	D.1.	

We	discuss	each	condition	in	turn:	

1. Given	 our	 assumptions	 about	 the	 legal	 cost	 function	 (LC,	 eq.	 5),	 the	 condition	

ˆ ˆ( ) ( )ˆ ˆ( ) 0 ( )
ˆ ˆ ˆ ˆ

k k
k k k k

k k k k

s sL L
V V

s s s s
   

   
         

implies	 that k̂  .	 The	

elasticity	 of	 the	 value	 function	w.r.t.	 additional	 covered	 patents	must	 exceed	 the	
elasticity	 of	 the	portfolio	 benefits	 function	w.r.t.	 the	 share	of	 patents	held	by	 the	
firm.7	

2. 0( 1)
ˆ

ˆ ˆˆ1 2 0 (1 2 ) (1 )
ˆ1

Nk
k k k

k

  


 
         

.	 This	 holds	 for	 any	
1ˆ
2k  	and	 NO	

sufficiently	 large.	 These	 restrictions	 imply	 a	 setting	 in	 which	 the	 ownership	 of	
patents	 that	 belong	 to	 each	 opportunity	 is	 fragmented	 among	 many	 firms.	 It	 is	
more	 likely	 to	 arise	 if	 the	 technology	 is	 highly	 complex,	 otherwise	 the	 condition	

that	
1ˆ
2k  	is	less	likely	to	hold.	

In	Appendix	D.2	we	derive	 the	 conditions	 under	which	 the	 equilibrium	of	 game	G*	 is	
unique.	 If	 there	 is	a	unique	solution	 to	 the	optimization	problem	of	 the	 firm	at	which	

profits	are	maximized,	then	this	requires	that	 2 2ˆ/ 0k f   .	The	restrictions	that	(i)	μk	<	

1	and	(ii)	the	share	of	overall	profits	which	the	firm	obtains	is	decreasing	at	the	margin	

in	the	share	of	patents	the	firm	holds	( 2 2ˆ/ 0ks   	)	ensure	that	there	is	always	such	a	

unique	interior	solution.	

In	 game	G*	 the	 comparative	 statics	 of	 patenting	 are	 the	 same	 as	 in	 the	 main	 model	
analyzed	in	Graevenitz	et	al.	(2013).	Specifically,	we	can	show	that	the	following	holds	
in	this	game:	

																																																								

7	This	condition	is	less	restrictive	than	the	assumption	in	Graevenitz	et	al.	(2013)	that	 1k  ,	since	we	

are	allowing	for	the	possibility	that	 ˆ 1k  ,	see	(PB,	eq.	3).	
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2 2 2 2

0, 0, 0, 0
i k i k i k i ko F f F o O f O

      
   

       
		 (8)	

Explicitly	considering	the	effect	of	hold‐up	on	the	incentives	to	patent,	we	find	that:	

Proposition	2	

Hold‐up	in	complex	technologies	reduces	patenting	incentives.		

To	see	this	consider	the	following	cross‐partial	derivatives	for	the	effects	of	higher	legal	
costs	L	due	to	hold‐up:		

	
2

)ˆ ˆ( , ,
0k k k

k k

L s h

o h h

 
  

  
		 (9)	

	
2 2 2ˆ

ˆ(1 ) 0
ˆ ˆ ˆ

k
k k

k k k k kk

op L L
F

F h s hf h

 


   
           


 		 (10)	

The	first	of	these	conditions	shows	that	in	equilibrium	the	expected	legal	costs	of	hold‐
up	 reduce	 the	 number	 of	 opportunities,	 which	 firms	 invest	 in.	 The	 second	 condition	
shows	 that	 firms	with	 larger	portfolios	 are	more	 exposed	 to	hold‐up	 and	benefit	 less	
from	the	share	of	patents	they	have	patented	per	opportunity.	Both	effects	combine	to	
reduce	the	number	of	facets	each	firm	applies	for.	

2.3.2 Comparative	statics	of	entry	

Next	we	consider	the	first	stage	of	the	game	G*.	We	derive	how	the	equilibrium	number	
of	entrants	Nk	changes	as	the	complexity	and	degree	of	technological	opportunity	that	
characterize	a	technology	change.	We	derive	the	following	propositions:	

	

Proposition	3	

There	is	a	free	entry	equilibrium	at	which	the	marginal	entrant	can	just	break	even,	if	R&D	
fixed	costs	per	opportunity	(C0)	increase	in	the	number	of	entrants.	

In	the	model	entry	benefits	firms	as	long	as	entrants	contribute	to	the	probability	that	a	
technological	opportunity	will	be	 fully	developed.	This	 is	counteracted	by	competition	
between	firms	on	markets	for	R&D	inputs.	

This	 proposition	 can	 be	 derived	 from	 the	model	 using	 the	 implicit	 function	 theorem.	
Consider	 how	 entry	 affects	 profits.	 A	 free‐entry	 equilibrium	 exists	 if	 the	 following	
conditions	hold:	

ˆ ˆˆ ˆˆ ˆ( , , ) 0   and   ( , , 1) 0k k k k k k k ko f N o f N    		 	 (11)	

The	 effect	 of	 entry	 on	 profits	 at	 the	 first	 stage	 of	 game	 G*	 can	 be	 shown	 to	 be	 the	
following:	
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0

ˆ ˆ ˆ ˆˆ ( ) ( )( , )
ˆ ( ) ( )

ˆ ˆ ˆ

ˆ ˆ( )
ˆ( )

ˆˆ ˆ ˆ

O k k k k
k

k k k O k k k

k k
k k a

O k k k k O

N s F s d so f L
o V F V F

N N F N s ds s

p d s Cf L L
V F F C o

N F ds s N o

 



       
          

       
                  

  


 


		 (12)	

This	expression	can	be	further	simplified	using	some	results	from	Appendix	C:	

	 0
, p ,,

ˆ ˆ ˆ ˆˆ ( )( , ) ˆˆˆ ( ) ( ) ( )
ˆ ˆ ˆ ˆO k Ok O

k k O
N N N k k kF N

k k k O k

s s C N oo f L
o V F

N N s s N o s

      
     

          


 	(13)	

The	first	two	terms	in	brackets	in	this	derivative	are	positive	and	so	is	the	third	term.	
We	 can	 show	 that	 the	 limits	 of	 and	 	in	N0	 are	 both	 zero.	 Therefore	 the	 above	

derivative	is	negative	as	 long	as	the	R&D	fixed	costs	per	opportunity	are	increasing	in	
N0.	This	is	the	condition	set	out	in	Proposition	3.	

	

Proposition	4	

Under	free	entry	greater	complexity	of	a	technology	increases	entry.	

In	 the	 model,	 complexity	 has	 countervailing	 effects:	 first	 of	 all	 it	 increases	 profits,	
because	 it	 is	 less	 likely	 that	 duplicative	 R&D	 arises	 making	 each	 opportunity	 more	
valuable,	 this	 clearly	 increases	 incentives	 to	 enter.	 Next,	 given	 the	 level	 of	 patent	

applications	( f̂
k
),	complexity	reduces	the	probability	that	each	facet	is	patented,	which	

reduces	profits	and	entry	 incentives.	Finally,	 complexity	reduces	competition	 for	each	
facet,	which	increases	the	probability	of	patenting	and	increases	innovation	incentives.	
Overall	we	show	that	 the	positive	effects	outweigh	the	negative	effects	and	 incentives	
for	entry	rise	with	complexity	of	a	technology.	

To	 derive	 Proposition	 4,	 continuing	 directly	 from	 Proposition	 3,	 consider	 how	
equilibrium	profits	 are	 affected	by	 the	 complexity	 of	 the	 technology	Fk,	 the	 degree	 of	
technological	opportunity	Ok,	and	the	potential	for	hold‐up	hk:	

,,

ˆ ˆˆ ( )( , ) ˆˆˆ ( ) ( ) ( ) 0
ˆ ˆk kk k

k k
p F k k k kF F

k k k k

s so f L
o V F

F F s s

     
   

          


 	 (14)	

,,

ˆ ˆ ˆ ˆˆ ( )( , ) ˆˆˆ ( ) ( ) ( ) 0
ˆ ˆ ˆ ˆk Ok O

O k k O O
p N k k k kF N

k k O k k O k

N s s C N oo f L
o V F

O O N s s N o s

     
     

             


 	 (15)	

ˆˆ( , )
ˆ 0

k k

o f L
o

h h

 
  

 
		 	 (16)	

Propositions	4	follows	from	the	Implicit	Function	theorem	once	we	know	the	sign	of	the	
derivative	of	profits	w.r.t.	F.	Under	free	entry	firms’	profits	decrease	with	entry:	

0,kF N
  ˆk
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k kk

N

F NF

   
 

 
		 (17)	

Therefore,	 the	 Implicit	 Function	 theorem	 implies	 that	 the	 sign	 of	 the	 effect	 of	
complexity	F	on	entry	depends	on	the	sign	of	the	effect	of	complexity	on	profits.	

Equation	(14)	shows	that	the	effect	of	complexity	on	profits	depends	on	the	difference	
between	the	elasticities	 	and .	The	elasticity	 	is	derived	in	Appendix	C.3:	

	 2
,

1 1ˆ 1
2

ˆ1k k

k
O

p F O

k

N
N






 
  

 


		 (18)	

This	elasticity	is	negative	for	 .	The	result	implies	that	the	first	term	in	brackets	in	

equation	(14)	 is	positive.	The	second	term	is	positive	when	game	G*	 is	supermodular.	

Overall	 this	 implies	 that	 greater	 complexity	 induces	 entry.	 	is	 one	 of	 two	

restrictions	 required	 for	 supermodularity	 of	 game	 G*.	 This	 demonstrates	 that	
complexity	increases	entry	in	settings	in	which	firms	are	playing	a	supermodular	game	
and	in	which	complexity	also	induces	more	patenting.	

	

Proposition	5	

Under	free	entry	greater	technological	opportunity	increases	entry.	

For	 any	 given	 number	 of	 entrants	 an	 increase	 in	 technological	 opportunity	 reduces	
competition	 between	 firms	 for	 patents.	 This	 increases	 firms’	 expected	 profits	 and	
increases	entry.	

Continuing	from	the	proof	of	Proposition	4	above,	by	the	Implicit	Function	theorem	the	
sign	of	the	derivative	of	profits	w.r.t.	technological	opportunity	determines	the	effect	of	
technological	opportunity	on	entry:	

	 	
k kk

N

O NO

    
 

	 (19)	

Equation	(15)	shows	that	the	effect	of	technological	opportunity	on	profits	has	exactly	
the	 opposite	 sign	 to	 the	 effect	 of	 additional	 competition	 on	 profits,	 because	 the	
expression	 in	 brackets	 is	 the	 same	 as	 for	 equation	 (13).	 The	 sign	 is	 reversed	 here	
because	 more	 opportunity	 reduces	 the	 number	 of	 firms	 active	 in	 each	 opportunity,	
given	N.	

	

Proposition	6		

,k kF F
  ˆ

k ,kp F

1ˆ
2k 

1ˆ
2k 
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Under	free	entry	the	potential	for	hold‐up	reduces	entry.	

An	increase	in	the	potential	for	hold‐up	raises	firms’	expected	legal	costs.	This	reduces	
expected	profits	and	lowers	potential	for	entry.	

To	 derive	 this	 prediction,	 note	 that	 by	 the	 Implicit	 Function	 theorem	 the	 sign	 of	 the	
derivative	of	profits	w.r.t.	the	level	of	hold‐up	in	a	technology	area	determines	the	effect	
of	hold‐up	on	entry:	

	
k kk

N

h Nh

    
 

		 (20)	

Hence,	equation	(16)	shows	that	the	effect	of	hold‐up	on	entry	derives	from	the	
increased	legal	costs	that	the	possibility	of	hold‐up	imposes	on	affected	firms.	

2.4 Entry and Incumbency 

The	previous	section	sets	out	a	model	 in	which	all	 firms	entered	and	then	 invested	 in	
patents.	At	both	stages	firms’	decisions	were	simultaneous.	Here	we	extend	the	model	

to	 a	 setting	 in	 which	 some	 firms,	 the	 incumbents,	 face	 lower	 costs	 ( ,	 where	

)	of	entering	opportunities.	This	captures	the	fact	that	incumbents	have	previous	
experience	 of	 doing	 R&D	 in	 a	 technology	 area.	We	 analyze	 how	 this	 affects	 all	 firms’	
incentives	to	patent.	

We	assume	that	a	fraction	λ	(where	 )	of	the	previously	active	NP	 firms	remain	
as	 incumbents.	 The	 remaining	 firms	 enter	 until	 the	 marginal	 profit	 from	 entry	 is	
reduced	to	zero.	

Objective	Functions	

First,	 consider	 the	 objective	 functions	 of	 incumbents	 and	 entrants	 and	 the	 patenting	
game	 in	which	 they	 are	 involved.	 Given	 symmetry	 of	 technological	 opportunities	 the	
expected	 value	 of	 patenting	 for	 entrant	 and	 incumbent	 firms	 in	 a	 specific	 technology	
area	k	is:	

1

0
1

( , ) ( ) ( ) ( , ) ( ) ( )
P EN N

I I I I I I I I I
ik i i i k ik ik ik j i k a c i

j

o f o V F s L s C o f p C C o


 
 



  
           

 	 (21)	

1

0
1

( , ) ( ) ( ) ( , ) ( ) ( )
P EN N

E E E E E E E E E
ik i i i k ik ik ik j i k a c i

j

o f o V F s L s C o f p C C o


 
 



  
          

 	 (22)	

Define	a	game	GE	in	which:	

• There	are	λNP	 incumbent	firms	and	the	number	of	entrants	(NE)	is	determined	by	
free	entry.	

OC 

0 

0 1 
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• Entrants	 and	 incumbents	 simultaneously	 choose	 the	 number	 of	 technological	

opportunities	 	and	the	number	of	facets	applied	for	per	opportunity

.	Firms’	strategy	sets	Sn	are	elements	of	R4.	

• Firms’	 payoff	 functions	 πik,	 defined	 by	 (21)	 and	 (22),	 are	 twice	 continuously	
differentiable	and	depend	only	on	rivals’	aggregate	strategies.	

• Assumptions	 (VF,	eq.	2)	 and	 (LC,	eq.	5)	 describe	 how	 the	 expected	 value	 and	 the	
expected	cost	of	patenting	depend	on	the	number	of	facets	owned	per	opportunity.	

Firms’	 payoffs	 depend	 on	 their	 rivals’	 aggregate	 strategies	 because	 the	 probability	 of	
obtaining	a	patent	on	a	given	 facet	 is	a	 function	of	all	 rivals’	patent	applications.	Note	
that	 the	game	 is	 symmetric	 as	 it	 is	 exchangeable	 in	permutations	of	 the	players.	This	
implies	 that	 if	 the	game	can	be	shown	to	be	supermodular,	symmetric	equilibria	exist	
(Vives,	2005).8	

First	order	conditions	for	game	GE:	

1

0

( ) ( ) L( , ) 0
P EI N N

ik c
k ik ik ik O j ik aI I

ji i

C
V F s s C o C

o o

  
 



   
             

 	 (23)	

( ) ( )
( ) F (1 ) 0

I I
ik i k ik ik

k k ik k a ikI
i k ik ik ik ik

o p s d sL L
V F C V

f F s ds s

   


        
                   

 
 	 (24)	

1

0

( ) ( ) L( , ) 0
P EE N N

ki c
k ik ik ik O j ik aE E

ji i

C
V F s s C o C

o o

  
 



   
             

 	 (25)

( ) ( )
( ) F (1 ) 0

E E
ik i k ik ik

k k ik k a ikE
i k ik ik ik ik

o p s d sL L
V F C V

f F s ds s

   


        
                   

 
 	 (26)	

	

Proposition	7	

In	game	GE	 the	equilibrium	number	of	 facets	 chosen	by	 incumbents	and	 entrants	 is	 the	

same:	 .	

We	show	 in	Appendix	C.1	 that	 in	 the	game	with	 incumbents	 the	number	of	 rivals	per	

opportunity	 	becomes	 a	 function	 of	 both	 	and	 .	 The	 first	 order	 conditions	

determining	 	and	 	both	depend	on	the	total	number	of	entrants	per	technological	

																																																								
8Note	also	that	only	symmetric	equilibria	exist	as	the	strategy	spaces	of	players	are	completely	ordered.	

, 0,I E n
i io o O   

, f 0,FI E n
i if    

ˆ ˆI Ef f

ˆ
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opportunity	 	and	so	on	both	 	and	 .	This	is	the	only	way	in	which	rivals’	choices	

of	the	number	of	opportunities	to	pursue	enter	these	first	order	conditions.9	Therefore	
the	two	conditions	are	identical	and	Proposition	7	holds.	

	

Proposition	8	

The	 second	 stage	of	game	GE	 is	 smooth	 supermodular	under	 the	 same	conditions	as	 the	
game	without	incumbents.	Comparative	statics	results	for	game	G*	also	apply	to	game	GE.	

The	 first	 order	 conditions	 characterizing	 the	 game	with	 incumbents	 and	 entrants	 are	
identical	to	those	for	the	game	without	incumbents	as	long	as	Ψ=0.	As	this	variable	is	a	
constant	it	does	not	enter	into	the	second	order	conditions	which	we	need	to	analyze	to	
establish	 supermodularity	 and	which	 underpin	 the	 comparative	 statics	 predictions	 in	
propositions	4‐6.	

	

Proposition	9	

In	the	second	stage	of	game	GE	incumbents	enter	more	technological	opportunities,	if	they	
have	a	cost	advantage	in	undertaking	R&D	(Ψ	>	0).	

The	first	order	conditions	determining	the	equilibrium	number	of	opportunities	chosen	
by	incumbents	and	entrants	are	 identical	 if	 firms	R&D	fixed	costs	per	opportunity	are	
the	 same	 (Ψ	 =	 0).	 Therefore .	 As	 the	 cost	 advantage	 of	 incumbents	 in	

undertaking	 R&D	 grows,	 this	 increases	 the	 number	 of	 opportunities	 chosen	 by	
incumbents:		

	
2

1 0
I
ik

I
io


 

 
		 (27)	

Proposition10	

In	the	second	stage	of	game	GE	the	number	of	entrants	decreases	as	the	cost	advantage	of	
incumbents	increases.	

Due	to	the	supermodularity	of	the	second	stage	game,	increases	in	incumbents’	choices	
of	the	number	of	opportunities	in	which	to	invest	will	raise	the	number	of	opportunities	
entrants	invest	in	as	well	as	the	number	of	facets	both	entrants	and	incumbents	will	

seek	to	patent	in	equilibrium.	The	increases	in	 and	 will	increase	the	fixed	costs	of	
entry	into	new	opportunities	CO,	which	then	reduces	entry.		

																																																								
9Clearly	the	factors	outside	the	brackets	in	equations	(24)	and	(26)	also	depend	on	these	variables,	but	

these	do	not	affect	the	equilibrium	values	of	 	.	
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2.5 Predictions of the Model 

The	model	discussed	above	provides	predictions	for	the	level	of	patent	applications	and	
for	the	probability	of	entry	into	patenting	which	is	defined	as	patenting	for	the	first	time	
in	a	given	technology	area.	For	our	empirical	analysis,	we	focus	on	the	predictions	for	
entry	that	follow	from	the	propositions	derived	above:10	

Prediction	1	

Greater	technological	opportunity	increases	the	probability	of	entry.	

Greater	 technological	opportunity	 reduces	 competition	 for	 facets	 in	each	opportunity,	
which	raises	expected	profits	and	thereby	attracts	entry.	See	Propositions	5	and	8.	

Prediction	2	

Greater	complexity	of	a	technology	increases	the	probability	of	entry.	

Greater	complexity	has	countervailing	effects:	 it	reduces	competition	per	facet	as	well	
as	 duplicative	 R&D,	 attracting	 entry.	 It	 also	 increases	 the	 likelihood	 that	 some	 of	 a	
technology	remains	unpatented,	reducing	its	overall	value	and	entry.	Our	model	shows	
that	overall	complexity	increases	entry.	See	Proposition	4	for	more	detail.	

Prediction	3	

Greater	potential	for	hold‐up	reduces	the	probability	of	entry.	

Hold‐up	potential	increases	expected	costs	of	entry,	reducing	it.	See	Proposition	6.	

Prediction	4	

More	experienced	incumbents	are	more	likely	to	enter	technological	opportunities	new	to	
them.	

See	Propositions	9	and	10.	Proposition	9	shows	that	 incumbency	advantage	raises	the	
number	of	opportunities	 that	 incumbents	enter.	This	 implies	that	 they	also	enter	new	
opportunities,	which	they	have	not	previously	been	active	in.	This	expansion	of	activity	
by	incumbents	crowds	out	entry	by	new	entrants	(Proposition	10).	

3 Data	and	Empirical	Model	

This	 section	 of	 the	 paper	 describes	 the	 data	 we	 use	 in	 the	 empirical	 test	 of	 our	
theoretical	predictions.	In	particular,	we	discuss	how	we	measure	entry,	how	the	set	of	
potential	entrants	is	identified,	and	which	measures	and	covariates	are	used.	

Our	empirical	model	is	a	hazard	rate	model	of	firm	entry	into	patenting	in	a	technology	

																																																								

10	Graevenitz	et	al.	(2013)	tested	predictions	from	a	more	restrictive	version	of	the	model	on	the	level	of	
patent	applications	using	data	from	the	European	Patent	Office.		
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area	 as	 a	 function	 of	 technological	 opportunity,	 technological	 complexity,	 hold‐up	
potential	that	characterize	a	technology	area.	We	test	the	predictions	set	out	at	the	end	
of	the	previous	section	for	these	variables	and	for	the	effect	of	a	firm’s	prior	experience	
in	 patenting.	 Additional	 firm	 level	 covariates	 include	 the	 age	 and	 size	 of	 firms.	 The	
models	we	estimate	are	stratified	at	the	industry	 level.	That	is,	the	unit	of	observation	
for	 each	 entry	hazard	 is	 a	 firm‐technology	 area,	 but	 the	hazard	 shapes	 and	 levels	 are	
allowed	 to	 vary	 by	 the	 industry	 that	 the	 firm	 is	 in.	 This	 approach	 recognizes	 that	
patenting	propensities	vary	across	industries	for	reasons	that	may	not	be	technological	
(e.g.,	strategic	reasons,	or	reasons	arising	from	the	historical	development	of	the	sector).		

We	use	a	combination	of	firm	level	data	for	the	entire	population	of	UK	firms	registered	
with	Companies	House	and	data	on	patenting	at	the	European	Patent	Office	and	at	the	
Intellectual	 Property	 Office	 for	 the	 UK.	 The	 firm	 data	 comes	 from	 the	 data	 held	 at	
Companies	 House	 provided	 by	 Bureau	 van	 Dijk	 in	 their	 FAME	 database.	 European	
patent	 registers	 do	 not	 include	 reference	 numbers	 from	 company	 registers,	 nor	 does	
Bureau	 van	Dijk	 provide	 the	 identification	 numbers	 used	 by	 patent	 offices	 in	Europe.	
Linking	 the	 data	 from	 patent	 registers	 to	 firm	 register	 data	 requires	 matching	 of	
applicant	 names	 in	 patent	 documents	 and	 firm	 names	 in	 firm	 registers.	 In	 our	 work	
both	a	firm’s	current	and	previous	name(s)	were	used	for	matching	in	order	to	account	
for	changes	 in	 firm	names.	For	more	details	on	 the	matching	of	 firm‐	and	patent‐level	
data	see	Appendix	A.	

Economic	 studies	of	 entry	 are	 frequently	hampered	by	 the	problem	of	 identifying	 the	
correct	set	of	potential	entrants	(Bresnahan	and	Reiss,	1991;	Berry,	1992).	In	our	case	
this	 problem	 is	 slightly	 mitigated	 by	 the	 fact	 that	 one	 set	 of	 potential	 entrants	 into	
patenting	in	a	specific	technology	area	consists	of	all	those	firms	that	currently	patent	in	
other	 technology	 areas.	We	 complement	 this	 group	 of	 firms	with	 a	 set	 of	 comparable	
firms	from	the	population	of	UK	firms	that	have	not	patented	previously.		

To	construct	 the	sample	we	deleted	all	 firms	 from	the	data	 for	which	we	have	no	size	
measure,	because	of	missing	data	on	assets.	We	select	previously	non‐patenting	 firms	
from	 the	 population	 of	 all	 UK	 firms	 in	 two	 steps:	 1)	we	 delete	 all	 firms	 in	 industrial	
sectors	with	little	patenting	(amounting	to	less	than	2	per	cent	of	all	patenting);	and	2)	
we	choose	a	sample	of	non‐patenting	firms	that	matches	our	sample	of	patenting	firms	
by	 industry,	 size	 class,	 and	 age	 class.	 In	 principle,	 this	 approach	 will	 result	 in	 an	
endogenous	 (choice‐based)	 sample.	However	our	 focus	 is	 on	 industry	 and	 technology	
area	level	effects	rather	than	firm‐level	effects.	Therefore	we	do	not	expect	the	sampling	
approach	 we	 adopt	 to	 introduce	 systematic	 biases	 into	 the	 estimates	 we	 report.	 We	
provide	 a	 number	 of	 robustness	 checks	 to	 ensure	 that	 our	 results	 are	 stable.	 These	
reveal	 that	 sample	 composition	 does	 not	 affect	 the	 key	 results	we	 present	 below.	 All	



16	

	

estimates	are	based	on	data	weighted	by	the	probability	that	a	firm	is	in	our	sample.11	

The	 sample	 that	 results	 from	our	 selection	 criteria	 is	 a	 set	 of	 firms	with	non‐missing	
assets	 in	 manufacturing,	 oil	 and	 gas	 extraction	 and	 quarrying,	 construction,	 utilities,	
trade,	 and	 selected	 business	 services	 including	 financial	 services	 that	 includes	 all	
(approximately	 10,000)	 firms	 applying	 for	 a	 patent	 at	 the	 EPO	 or	 UKIPO	 during	 the	
2001‐2009	period	and	another	10,000	firms	that	did	not	apply	for	a	patent.	

The	definition	of	technology	areas	that	we	use	is	based	on	the	2008	version	of	the	ISI‐
OST‐INPI	technology	classification	(denoted	TF34	classes).	The	list	is	shown	in	Table	1,	
along	with	the	number	of	EPO	and	UKIPO	patents	applied	for	by	UK	firms	with	priority	
dates	between	2002	and	2009.	A	comparison	of	the	frequency	distribution	of	patenting	
across	the	technology	areas	from	the	two	patent	offices	shows	that	firms	are	more	likely	
to	 apply	 for	 patents	 in	 Chemicals	 at	 the	 EPO,	 while	 Electrical	 and	 Mechanical	
Engineering	predominate	in	the	national	patent	data	(see	the	bottom	panel	in	Table	1).	

We	 treat	 entry	 into	each	 technology	area	as	a	 separate	decision	made	by	 firms.	More	
than	half	of	 firms	we	observe	patent	 in	more	than	one	area	and	10	per	cent	patent	 in	
more	 than	 four.	 From	 the	20,000	 firms	observed,	 each	of	which	 can	potentially	 enter	
into	each	one	of	the	34	technology	areas,	we	obtain	about	700,000	observations	at	risk.	
We	 cluster	 the	 standard	 errors	 by	 firm,	 so	 our	 models	 are	 effectively	 firm	 random	
effects	 models	 for	 entry	 into	 34	 technology	 areas.	 Allowing	 firm	 choices	 to	 vary	 by	
technology	 area	 is	 sensible	 under	 the	 assumption	 that	 firms’	 patenting	 strategies	 are	
contingent	upon	technology	and	industry	level	factors	and	are	not	homogeneous	across	
technology	areas.	We	confirmed	the	validity	of	this	assumption	through	interviews	with	
leading	UK	patent	attorneys.	

There	 are	 some	 technology‐industry	 combinations	 that	 do	not	 occur,	 e.g.	 audio‐visual	
technology	 and	 the	 paper	 industry,	 telecommunications	 technology	 and	 the	
pharmaceutical	 industry.	 In	 order	 to	 reduce	 the	 size	 of	 the	 sample,	 we	 drop	 all	
technology‐industry	combinations	for	which	Lybbert	and	Zolas	(2012)	find	no	patenting	
in	 their	 data	 and	 for	which	 there	was	 no	patenting	by	 any	UK	 firm	 from	 the	 relevant	
industry	 in	the	corresponding	technology	category.	This	removes	about	30	per	cent	of	
observations	 from	 the	 data.	 We	 provide	 a	 robustness	 check	 for	 this	 procedure	 in	
Appendix	B.		

[Table	1	here]	

																																																								

11	To	check	this,	we	estimated	the	model	with	and	without	weights	based	on	our	sampling	methodology	
and	find	little	difference	in	the	results.		
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3.1 Variables	

Dependent	Variable	‐	Entry	

The	 dependent	 variable	 is	 a	 dichotomous	 variable	 taking	 the	 value	 one	 if	 a	 firm	 has	
entered	 a	 technology	 area	 k	 at	 time	 t	 and	 otherwise	 the	 value	 zero.	 Entry	 into	 a	
technology	area	is	measured	by	the	first	time	a	firm	applies	for	a	patent	that	is	classified	
in	that	technology	area,	dated	by	the	priority	year	of	the	patent.	

Technological	opportunity	

Our	 first	 prediction	 from	 the	 theoretical	 model	 is	 that	 there	 will	 be	 more	 entry	 in	
technology	 areas	 with	 greater	 technological	 opportunity.	 Additional	 reasons	 that	 a	
sector	 may	 have	 more	 or	 less	 patenting	 include	 sector	 “size”	 or	 “breadth”	 and	 the	
propensity	of	firms	to	patent	in	particular	technologies	for	strategic	reasons	or	because	
of	 varying	 patent	 effectiveness	 in	 protecting	 inventions.	 To	 control	 for	 both	
technological	 opportunity	 and	 these	 other	 factors,	 we	 include	 the	 logarithm	 of	 the	
aggregate	EPO	patent	applications	in	the	technology	sector	during	the	year.	To	capture	
opportunity	more	 specifically	we	also	 include	 the	past	5‐year	growth	 rate	 in	 the	non‐
patent	(scientific	publication)	references	cited	in	patents	in	that	technology	class	at	the	
EPO.12	We	have	found	that	the	growth	rate	in	non‐patent	references	is	a	better	predictor	
of	 entry	 than	 the	 level	 of	 non‐patent	 references,	 which	 has	 been	 used	 previously.	
Presumably	 the	growth	 rate	 is	 a	better	 indicator	because	 it	 capture	new	or	expanded	
technological	opportunity.	

Technology	complexity	

The	 second	 prediction	 of	 the	 theoretical	 model	 is	 that	 technological	 complexity	
increases	 entry,	 other	 things	 equal.	Our	 interpretation	of	 complexity	 is	 that	 it	 implies	
many	interconnections	between	inventions	 in	a	particular	 field,	rather	than	a	series	of	
fairly	isolated	inventions	that	do	not	connect	to	each	other.	To	construct	such	a	measure,	
we	use	 the	concept	of	network	density	applied	 to	citations	among	all	 the	patents	 that	
have	 issued	 in	 the	particular	 technology	area	during	 the	10	years	prior	 to	 the	date	of	
potential	entry.	We	use	citations	at	the	U.S.	patent	office,	both	because	these	are	richer	
(averaging	7	or	so	cites	per	patent	during	this	period	versus	3	for	the	EPO)	and	also	to	
minimize	correlation	with	the	thickets	measure,	which	is	based	on	EPO	data.13		

The	network	density	measure	is	computed	as	follows:	in	any	year	t,	there	are	Nkt	patents	
that	have	been	applied	for	in	technology	area	k	between	1975	and	year	t.	Each	of	these	
patents	can	cite	any	of	the	patents	that	were	applied	for	earlier,	which	implies	that	the	

																																																								

12	See	Graevenitz	et	al.	(2013)	for	a	more	extensive	discussion	of	this	variable	in	the	literature.	

13	It	is	important	to	emphasize	that	although	patent	offices	cooperate	and	share	search	reports	citations	
listed	on	U.S.	patents	are	largely	proposed	by	the	applicant,	whilst	the	citations	listed	on	EPO	and	IPO	
patents	are	inserted	by	the	examiner.	This	explains	why	the	two	measures	are	not	highly	correlated.	
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maximum	number	of	 citations	within	 the	 technology	area	 is	given	by	Nkt(Nkt‐1)/2.	We	
count	the	actual	number	of	citations	made	and	normalize	them	by	this	quantity,	scaling	
the	measure	by	one	million	for	visibility,	given	its	small	size.	

Patent	Thickets	

The	third	prediction	of	our	model	is	that	greater	potential	for	hold‐up	reduces	entry.	We	
measure	the	potential	for	hold‐up	in	patent	thickets	using	the	triples	count	proposed	by	
von	Graevenitz	et	al.	 (2011).	This	 is	a	narrower	interpretation	of	this	measure	than	 in	
several	 previous	 papers,	 where	 it	 has	 been	 used	 as	 a	 proxy	 for	 complexity	 of	 a	
technology.	 In	 those	papers	complexity	and	hold‐up	potential	have	 the	same	effect.	 In	
contrast,	 our	 model	 provides	 opposite	 predictions	 for	 the	 effects	 of	 complexity	 of	 a	
technology	and	potential	for	hold‐up.	

The	triples	measure	corresponds	to	a	count	of	the	number	of	fully	connected	triads	on	
the	set	of	firms’	critical	patent	citations.	At	time	t	each	unidirectional	link	between	two	
firms	A	and	B	corresponds	to	one	or	more	critical	references	to	firm	A’s	patents	in	the	
set	of	patents	applied	for	by	firm	B	in	the	years	t,	t‐1	and	t‐2.	We	use	the	same	measure	
of	triples	as	Harhoff	et	al.	(2015),	which	contains	all	triples	in	each	technology	area.	The	
citation	data	 used	 is	 extracted	 from	PATSTAT	 (October	 2011	 edition).14	We	normalize	
the	count	of	triples	by	aggregate	patenting	in	the	same	sector,	so	that	the	triples	variable	
represents	 the	 intensity	 with	 which	 firms	 potentially	 hold	 blocking	 patents	 on	 each	
other	relative	to	aggregate	patenting	activity	in	the	technology.	

The	 triples	measure	 has	 been	 used	 in	 a	 number	 of	 papers	 since	 it	was	 suggested	 by	
Graevenitz	 et	 al.	 (2011).	 They	 show	 that	 counts	 of	 triples	 by	 technical	 area	 are	
significantly	 higher	 for	 technologies	 classified	 as	 complex	 than	 for	 areas	 classified	 as	
discrete	 by	 Cohen	 et	 al.	 (2000).	 Fischer	 and	 Henkel	 (2012)	 find	 that	 the	 measure	
predicts	patent	acquisitions	by	Non‐Practicing	Entities.	Graevenitz	et	al.	(2013)	use	the	
measure	to	study	patenting	incentives	in	patent	thickets	and	Harhoff	et	al.	(2015)	show	
that	opposition	to	patent	applications	falls	in	patent	thickets,	particularly	for	patents	of	
those	firms	that	are	caught	up	in	the	thickets.		

As	a	robustness	check,	we	have	also	explored	the	use	of	duples,	i.e.	the	count	of	mutual	
blocking	relationships,	to	measure	hold‐up	potential.	Combining	both	measures	in	one	
regression	 leads	 to	 thorny	 problems	 of	 interpretation.	 Taken	 alone	 the	measure	 has	
similar	effects	as	the	triples	measure	in	this	context.	

	[Table	2	here]	

																																																								

14	Triples	data	was	kindly	provided	by	Harhoff	et	al.	(2015).	
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Covariates	

It	is	well	known	that	firm	size	and	industry	are	important	predictors	of	whether	a	firm	
patents	 at	 all	 (Bound	 et	al.	 1984	 for	 U.S.	 data).	 Hall	 et	al.	 (2012b)	 show	 this	 for	 UK	
patenting	during	the	period	studied	here.	Therefore,	in	all	of	our	regressions	we	control	
for	firm	size,	industrial	sector,	and	year	of	observation.	We	include	the	logarithm	of	the	
firm’s	reported	assets	and	a	set	of	year	dummies	in	all	the	regressions.15	To	control	for	
industrial	sector,	we	stratify	by	industry,	which	effectively	means	that	each	industry	has	
its	own	hazard	function,	which	is	shifted	up	or	down	by	the	other	regressors.		

We	 also	 expect	 the	 likelihood	 that	 a	 firm	 will	 enter	 a	 particular	 technology	 area	 to	
depend	 on	 its	 prior	 patenting	 experience	 overall,	 as	well	 as	 its	 age.	 Long‐established	
firms	are	less	likely	to	be	exploring	new	technology	areas	in	which	to	compete.	Thus	we	
include	the	logarithm	of	firm	age	and	the	logarithm	of	the	stock	of	prior	patents	applied	
for	 in	any	technology	by	the	firm,	 lagged	one	year	to	avoid	any	endogeneity	concerns.	
The	variables	on	firm	size	and	patent	stock	also	allow	us	to	test	Prediction	4	about	the	
effect	of	incumbency	advantage	on	entry.		

3.2 Descriptive	Statistics	

Our	 estimation	 sample	 contains	 about	 20,000	 firms	 and	 700,000	 firm‐TF34	 sector	
combinations.	 During	 the	 2002‐2009	 period	 there	 are	 about	 10,000	 entries	 into	
patenting	 for	 the	 first	 time	 in	 a	 technology	 area	 by	 these	 firms.	 Table	 A‐2	 shows	 the	
distribution	of	the	number	of	entries	per	firm:	2,531	enter	one	class,	and	the	rest	enter	
more	than	one.	Table	A‐2	shows	the	population	of	UK	firms	obtained	from	FAME	in	our	
industries,	 together	 with	 the	 shares	 in	 each	 industry	 that	 have	 applied	 for	 a	 UK	 or	
European	 patent	 during	 the	 2001‐2009	period.	 These	 shares	 range	 from	over	 10	 per	
cent	in	Pharmaceuticals	and	R&D	Services	to	less	than	0.1	per	cent	in	Construction,	Oil	
and	Gas	Services,	Real	Estate,	Law,	and	Accounting.	

Empirical	Model	

We	use	hazard	models	to	estimate	the	probability	of	entry	into	a	technology	area.	The	
models	 express	 the	 probability	 that	 a	 firm	 enters	 into	 patenting	 in	 a	 certain	 area	
conditional	on	not	having	entered	yet	as	a	function	of	the	firm’s	characteristics	and	the	
time	 since	 the	 firm	was	 “at	 risk,”	which	 is	 the	 time	 since	 the	 founding	 of	 the	 firm.	 In	
some	cases,	our	data	do	not	go	back	as	far	as	the	founding	date	of	the	firm,	and	in	these	
cases	the	data	are	“left‐censored.”	When	we	do	not	observe	the	entry	of	the	firm	into	a	
particular	 technology	 sector	 by	 the	 last	 year	 (2009),	 the	 data	 is	 referred	 to	 as	 “right‐
censored.”	

In	Appendix	B,	we	discuss	 the	 choice	 of	 the	 survival	models	 that	we	use	 for	 analysis,	
																																																								

15	The	choice	of	assets	as	a	size	measure	reflects	the	fact	that	it	is	the	only	size	variable	available	for	the	
majority	of	the	firms	in	the	FAME	dataset.	
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how	 to	 interpret	 the	 results,	 and	 present	 some	 robustness	 checks.	 We	 estimate	 two	
classes	of	failure	or	survival	models:	1)	proportional	hazard,	where	the	hazard	of	failure	
over	 time	has	 the	 same	 shape	 for	 all	 firms,	 but	 the	 overall	 level	 is	 proportional	 to	 an	
index	 that	depends	on	 firm	characteristics;	and	2)	 accelerated	 failure	 time,	where	 the	
survival	rate	is	accelerated	or	decelerated	by	the	characteristics	of	the	firm.	In	the	body	
of	the	paper	we	present	results	using	the	well‐known	Cox	proportional	hazards	model	
stratified	by	industry.	Results	from	the	accelerated	failure	time	models	were	similar	but	
the	estimated	effects	are	somewhat	larger	(shown	in	Appendix	B).	 

As	 indicated	 earlier,	 our	 data	 for	 estimation	 are	 for	 the	 2002‐2009	 period,	 but	many	
firms	have	been	at	risk	of	patenting	for	many	years	prior	to	that.	The	oldest	firm	in	our	
dataset	was	founded	in	1856	and	the	average	founding	year	was	1992.	Because	the	EPO	
was	only	founded	in	1978,	we	chose	to	use	that	year	as	the	earliest	date	any	of	our	firms	
is	at	risk	of	entering	into	patenting.	That	is,	we	defined	the	initial	year	as	the	maximum	
of	 the	 founding	 year	 and	 1978.	 Table	 B‐2	 in	 the	 appendix	 presents	 estimates	 of	 our	
model	using	1900	instead	of	1978	as	the	earliest	at	risk	year	and	finds	little	difference	
in	 the	 estimates.16	We	 conclude	 that	 the	 precise	 assumption	 of	 the	 initial	 period	 is	
innocuous.	Our	assumption	amounts	to	assuming	that	the	shape	of	the	hazard	for	firms	
founded	between	1856	and	1978	but	otherwise	identical	is	the	same	during	the	2002‐
2009	period.		

Appendix	Table	B‐1	shows	exploratory	regressions	made	using	various	survival	models.	
None	 of	 the	 choices	made	 large	 differences	 to	 the	 coefficients	 of	 interest,	 so	 that	we	
focus	 here	 on	 the	 results	 from	 the	 Cox	 proportional	 hazards	 model,	 estimated	 with	
stratification	by	two‐digit	industry.	The	effect	of	the	stratification	is	that	we	allow	firms	
in	 each	 of	 the	 industries	 to	 have	 a	 different	 distribution	 of	 the	 time	 until	 entry	 into	
patenting	conditional	on	the	regressors.	That	is,	each	industry	has	its	own	“failure”	time	
distribution,	where	 failure	 is	defined	as	entry	 into	patenting	 in	a	 technology	area,	but	
the	 level	of	 this	distribution	 is	also	modified	by	 the	 firm’s	size,	aggregate	patenting	 in	
the	technology,	network	density,	and	the	triples	density.	

4 Results	

Our	 estimates	 of	 the	 model	 for	 entry	 into	 patenting	 are	 shown	 in	 Table	 3.	 All	
regressions	control	for	size,	age,	and	industry.	Both	size	and	age	are	strongly	positively	
associated	 with	 entry	 into	 patenting	 in	 a	 new	 technological	 area.	 Our	 indicator	 of	
technological	 opportunity	 and	 technology	 class	 size,	 the	 log	 of	 current	 patent	
																																																								

16	The	main	difference	is	in	the	firm	age	coefficient.	Because	the	models	are	nonlinear,	this	coefficient	is	
identified	even	in	the	presence	of	year	dummies	and	vintage/cohort	(which	is	implied	by	the	survival	
model	formulation).	However	it	will	be	highly	sensitive	to	the	assumptions	about	vintage	due	to	the	age‐
year‐cohort	identity.		
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applications	 in	 the	 technology	 class,	 is	 also	 positively	 associated	with	 entry	 into	 that	
class,	as	predicted	by	our	model.		

Column	3	of	Table	3	 contains	 the	basic	 result	 from	our	data	and	estimation,	which	 is	
fully	consistent	with	the	predictions	of	our	model:	greater	complexity	as	measured	by	
citation	 network	 density	 increases	 the	 probability	 of	 entry	 into	 a	 technology	 area,	 as	
does	 technological	 opportunity,	measured	both	 as	 prior	 patenting	 in	 the	 class	 and	 as	
growth	in	the	relevant	science	literature.	Controlling	for	both	technological	opportunity	
and	complexity,	 firms	are	discouraged	 from	entry	 into	areas	with	a	greater	density	of	
triple	relationships	among	existing	firms.	We	interpret	this	latter	result	as	an	indicator	
of	 the	 discouraging	 effect	 of	 holdup	 possibilities	 or	 the	 legal	 costs	 associated	 with	
negotiation	of	rights	or	defense	in	the	case	of	litigation.	

We	were	concerned	that	our	network	density	(complexity)	and	triples	density	(hold‐up	
potential)	measures	might	be	too	closely	related	to	convey	separate	information,	but	we	
found	that	the	raw	correlation	between	these	two	variables	was	‐0.001.	To	check	for	the	
impact	of	potential	correlation	conditional	on	year,	industry,	and	the	other	variables,	in	
columns	 1	 and	 2	 of	 Table	 3	 we	 included	 these	 two	measures	 of	 complexity/thickets	
separately	and	found	that	although	the	coefficients	were	very	slightly	lower	in	absolute	
value,	the	results	still	hold,	although	it	is	clear	that	the	aggregate	class	size	is	correlated	
negatively	 with	 the	 triples	 density	 via	 the	 denominator	 of	 the	 density	 (compare	 the	
change	in	the	log	(patents	in	class)	coefficient	between	columns	1	and	2).	

As	we	show	in	Appendix	B,	the	estimated	coefficients	in	the	table	are	estimates	of	the	
elasticity	of	the	yearly	hazard	rate	with	respect	to	the	variable,	and	do	not	depend	on	
the	industry	specific	proportional	hazard.	A	one	standard	deviation	increase	in	the	log	
of	 network	 density	 is	 associated	 with	 a	 32	 percent	 increase	 in	 the	 hazard	 of	 entry	
(0.13*2.78),	while	 a	 one	 standard	 deviation	 in	 the	 log	 of	 triples	 density	 is	 associated	
with	 a	 20	 percent	 decrease	 in	 the	 hazard	 of	 entry	 (0.14*1.44).	 Thus	 the	 differences	
across	 these	 technology	areas	 in	 the	willingness	of	 firms	 to	enter	 them	 is	 substantial,	
bearing	in	mind	that	the	average	probability	of	entry	is	only	about	1.5	per	cent	in	this	
sample.		

[Table	3	here]	

There	are	fixed	costs	to	patenting,	and	a	firm	may	be	more	likely	to	enter	into	patenting	
in	a	new	area	if	it	already	patents	in	another	area.	To	test	this	idea,	in	the	fourth	column	
of	 Table	 3,	we	 add	 the	 logarithm	 of	 past	 patenting	 by	 the	 firm.	 Firms	with	 a	 greater	
prior	 patenting	 history	 are	 indeed	 more	 likely	 to	 enter	 a	 new	 technology	 area	 –	
doubling	a	firm’s	past	patents	leads	to	an	almost	100%	higher	hazard	of	entry.		

In	 the	 last	 column	 we	 interact	 the	 log	 of	 assets	 with	 the	 log	 of	 patents,	 the	 log	 of	
network	density,	 the	growth	of	non‐patent	 literature,	and	 the	 log	of	 triples	density	 to	
see	whether	these	effects	vary	by	firm	size.	The	results	show	that	the	network	density	
and	technological	opportunity	effects	decline	slightly	with	firm	size.	The	triples	density	
effect	does	not	show	any	size	relationship,	suggesting	that	hold‐up	concerns	affect	firms	
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of	 all	 sizes	 proportionately.	We	 show	 this	 graphically	 in	 Figure	 1,	which	 overlays	 the	
coefficients	as	a	function	of	firm	size	on	the	actual	size	distribution	of	our	firms.	From	
the	graph	one	can	see	that	 the	 impact	of	aggregate	patenting	in	a	sector	 is	higher	and	
more	variable	than	the	impact	of	the	network	density,	and	that	both	fall	to	zero	for	the	
largest	 firms.	Growth	 in	non‐patent	 literature	 is	positively	associated	with	 technology	
entry	 for	small	 firms,	but	negatively	 for	 large	 firms,	 suggesting	 the	role	played	by	 the	
smaller	 firms	 in	 newer	 technologies	 based	 on	 science.	 Large	 firms	 seem	not	 to	 be	 as	
active	 in	 these	 areas.	 Controlling	 for	 all	 these	 features	 of	 a	 technology,	 the	 impact	 of	
triples	density	 is	uniformly	negative	across	 firm	size,	which	 contradicts	 the	view	 that	
the	potential	for	hold‐up	discourages	entry	by	smaller	firms	more	than	by	larger	firms.		

4.1 Robustness	

Table	B‐2	in	the	appendix	explores	some	variations	of	the	sample	used	for	estimation	in	
Table	3.	Column	1	of	Table	B‐2	is	the	same	as	column	4	of	Table	3	for	comparison.	The	
first	 change	 (column	 2)	 was	 to	 add	 back	 all	 the	 technology‐industry	 combinations	
where	Lybbert	and	Zolas	(2012)	find	no	patenting	in	their	data	and	where	there	was	no	
entry	by	any	UK	 firm	 from	the	 relevant	 industry	 into	 that	 technology	category.	These	
observations	 are	 about	 20	 per	 cent	 of	 the	 sample.	 The	 impact	 of	 network	 density	 on	
entry	 is	 weaker,	 but	 the	 impact	 of	 triples	 density	 and	 the	 technological	 opportunity	
variables	is	considerably	stronger.	That	is,	technology	area‐industry	combinations	with	
no	 patenting	 are	 also	 those	 where	 the	 technology	 area	 displays	 low	 technological	
opportunity.		

Next	we	removed	all	 the	 firms	with	assets	greater	 than	12.5	million	pounds,	 to	 check	
whether	large	firms	were	responsible	for	our	findings.17	This	removed	about	2	per	cent	
of	the	20,000	firms.	Column	3	of	Table	B‐2	shows	that	the	results	do	not	change	a	great	
deal,	 although	 they	 are	 somewhat	 stronger.	 In	 column	 4,	 we	 removed	 the	
telecommunications	 technology	 sector	 from	 the	 estimation,	 because	 it	 is	 such	 a	 large	
triples	outlier.	Once	again,	there	was	little	change	to	the	estimates.	The	last	column	of	
Table	 B‐2	 shows	 the	 results	 of	 defining	 the	 minimum	 entry	 year	 as	 1900.	 With	 the	
exception	of	 firm	age,	 the	coefficients	are	nearly	 identical	 to	 those	 in	column	1	of	 the	
table.		

																																																								

17	12.5	million	pounds	is	a	cutoff	based	on	the	definition	of	Small	and	Medium‐sized	Enterprises	(SMEs)	
as	firms	with	fewer	than	250	employees.	We	do	not	have	employment	for	all	our	firms,	so	we	assume	that	
assets	are	approximately	50	thousand	pounds	per	employee	in	order	to	compute	this	measure.	For	small	
firms	only,	this	yields	an	assets	cutoff	of	2.5	million	pounds.		
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5 Conclusion	

Patent	thickets	arise	for	a	multitude	of	reasons;	they	are	mainly	driven	by	an	increase	in	
the	number	of	patent	filings	and	concomitant	reductions	 in	patent	quality	(that	 is,	 the	
extent	 to	 which	 the	 patent	 satisfies	 the	 requirements	 of	 patentability)	 as	 well	 as	
increased	technological	complexity	and	interdependence	of	technological	components.	
The	theoretical	analysis	of	patent	thickets	(Shapiro,	2001)	and	the	qualitative	evidence	
provided	 by	 the	 FTC	 in	 a	 number	 of	 reports	 (FTC,	 2003;	 2011)	 suggest	 that	 thickets	
impose	 significant	 costs	on	 some	 firms.	The	 subsequent	 literature	has	 focused	on	 the	
measurement	 of	 thickets	 (e.g.	 Graevenitz	 et	 al.	 2011;	 Ziedonis,	 2004)	 and	 has	 linked	
thickets	to	changes	in	firms’	IP	strategies	in	a	number	of	dimensions.	There	is	still	a	lack	
of	evidence	on	the	effect	of	patent	thickets	as	well	as	their	welfare	 implications	at	 the	
aggregate	level.	

The	 empirical	 analysis	 of	 the	 effects	 of	 patent	 thickets	 must	 contend	 with	 two	
challenges:	 first,	patent	 thickets	have	 to	be	measured	and	secondly,	effects	of	 thickets	
must	be	separated	from	effects	of	other	factors	that	are	correlated	with	the	growth	of	
thickets,	in	particular	technological	complexity.		

This	 paper	 confronts	 both	 challenges.	 We	 show	 that	 our	 empirical	 measure	 for	 the	
density	of	thickets	captures	effects	of	patent	thickets	predicted	by	theory.	This	supports	
results	by	von	Graevenitz	et	al.	(2011,	2013)	and	Harhoff	et	al.	(2015)	showing	that	the	
coefficients	 on	 the	 triples	 measure	 capture	 predicted	 effects	 of	 patent	 thickets	 on	
patenting	 and	 opposition.	 The	 paper	 also	 separates	 the	 impact	 of	 patent	 thickets	 on	
entry	from	effects	of	technological	opportunity	and	complexity	and	shows	that	the	hold‐
up	 potential	 created	 by	 thickets	 reduces	 entry	 into	 patenting.	 Controlling	 for	
technological	opportunity	and	complexity	is	important	because	both	are	correlated	with	
entry	into	patenting	and	the	presence	of	thickets.	It	is	also	worth	emphasizing	that	our	
measure	of	thickets	is	purged	of	effects	that	are	driven	by	patenting	trends	in	particular	
technologies.	That	is,	our	results	are	not	due	to	the	level	of	invention	and	technological	
progress	within	a	technology	field.		

Our	 results	 demonstrate	 that	 patent	 thickets	 significantly	 reduce	 entry	 into	 those	
technology	 areas	 in	which	 growing	 complexity	 and	 growing	 opportunity	 increase	 the	
underlying	 demand	 for	 patent	 protection.	 These	 are	 the	 technology	 areas,	 which	 are	
associated	 most	 with	 productivity	 growth	 in	 the	 knowledge	 economy.	 However,	 the	
welfare	 consequences	 of	 our	 finding	 are	 unclear.	 Reduced	 entry	 into	 new	 technology	
areas	 could	 be	welfare‐enhancing:	 As	 is	well	 known	 from	 the	 industrial	 organization	
literature,	entry	 into	a	market	may	be	excessive	 if	entry	creates	negative	externalities	
for	 active	 firms,	 for	 instance	 due	 to	 business	 stealing.	 This	 is	 likely	 to	 be	 true	 of	
patenting	too.	Furthermore,	Arora	et	al.	(2008)	show	that	the	patent	premium	does	not	
cover	the	costs	of	patenting	for	the	average	patent	(except	for	pharmaceuticals).	These	
and	related	facts	might	lead	one	to	conclude	that	lower	entry	into	patenting	is	likely	to	
increase	welfare	and	that	thickets	raise	welfare	by	reducing	entry.		
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In	contrast,	reduced	entry	into	patenting	in	new	technology	areas	may	also	be	welfare‐
reducing,	for	at	least	two	reasons.	First,	there	is	the	obvious	argument	that	the	benefits	
from	 more	 innovation	 may	 exceed	 any	 business	 stealing	 costs	 (as	 has	 been	 shown	
empirically	 in	 the	 past	 by	 others,	 e.g.,	 Bloom	 et	 al.	 2013),	 so	 that	 some	 desirable	
innovation	may	be	deterred	by	high	entry	costs.	Even	if	this	were	not	true,	there	is	no	
reason	to	believe	that	firms	that	do	not	enter	into	patenting	due	to	thickets	are	those	we	
wish	to	deter.	Given	the	incumbency	advantage,	it	is	likely	that	the	failure	to	enter	into	
patenting	 in	 these	areas	 reflects	 less	 innovation	by	 those	who	bring	 the	most	original	
ideas,	that	is,	by	those	who	are	inventing	“outside	the	box.”	
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Appendix A: Data 

Our	analysis	relies	on	an	updated	version	of	the	Oxford‐Firm‐Level‐Database,	which	
combines	information	on	patents	(UK	and	EPO)	with	firm‐level	information	obtained	
from	Bureau	van	Dijk’s	Financial	Analysis	Made	Easy	(FAME)	database	(for	more	details	
see	Helmers	et	al.	(2011)	from	which	the	data	description	in	this	section	draws).	

The	integrated	database	consists	of	two	components:	a	firm‐level	data	set	and	IP	data.	
The	firm‐level	data	is	the	FAME	database	that	covers	the	entire	population	of	registered	
UK	firms.18	The	original	version	of	the	database,	which	formed	the	basis	for	the	update	
carried	out	by	the	UKIPO,	relied	on	two	versions	of	the	FAME	database:	FAME	October	
2005	and	March	2009.	The	main	motivation	for	using	two	different	versions	of	FAME	is	
that	FAME	keeps	details	of	“inactive”	firms	(see	below)	for	a	period	of	four	years.	If	only	
the	2009	version	of	FAME	were	used,	intellectual	property	could	not	be	allocated	to	any	
firm	that	has	exited	the	market	before	2005,	which	would	bias	the	matching	results.	
FAME	is	available	since	2000,	which	defines	the	earliest	year	for	which	the	integrated	
data	set	can	be	constructed	consistently.	The	update	undertaken	by	the	UKIPO	used	the	
April	2011	version	of	FAME.	However,	since	there	are	significant	reporting	delays	by	
companies,	even	using	the	FAME	2011	version	means	that	the	latest	year	for	which	
firm‐level	data	can	be	used	reliably	is	2009.	

FAME	contains	basic	information	on	all	firms,	such	as	name,	registered	address,	firm	
type,	industry	code,	as	well	as	entry	and	exit	dates.	Availability	of	financial	information	
varies	substantially	across	firms.	In	the	UK,	the	smallest	firms	are	legally	required	to	
report	only	very	basic	balance	sheet	information	(shareholders'	funds	and	total	assets).	
The	largest	firms	provide	a	much	broader	range	of	profit	and	loss	information,	as	well	
as	detailed	balance	sheet	data	including	overseas	turnover.	Lack	of	these	kinds	of	data	
for	small	and	medium‐sized	firms	means	that	our	study	focuses	on	total	assets	as	a	
measure	of	firm	size	and	growth.		

The	patent	data	come	from	the	EPO	Worldwide	Patent	Statistical	Database	(PATSTAT).	
Data	on	UK	and	EPO	patent	publications	by	British	entities	were	downloaded	from	
PATSTAT	version	April	2011.	Due	to	the	average	18	months	delay	between	the	filing	
and	publication	date	of	a	patent,	using	the	April	2011	version	means	that	the	patent	
data	are	presumably	only	complete	up	to	the	third	quarter	in	2009.	This	effectively	
means	that	we	can	use	the	patent	data	only	up	to	2009	under	the	caveat	that	it	might	be	
somewhat	incomplete	for	2009.	Patent	data	are	allocated	to	firms	by	the	year	in	which	a	
firm	applied	for	the	patent.	

																																																								

18	FAME	downloads	data	from	Companies	House	records	where	all	limited	companies	in	the	UK	are	
registered.	
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Since	patent	records	do	not	include	any	kind	of	registered	number	of	a	company,	it	is	
not	possible	to	merge	data	sets	using	a	unique	firm	identifier;	instead,	applicant	names	
in	the	IP	documents	and	firm	names	in	FAME	have	to	be	matched.	Both	a	firm's	current	
and	previous	name(s)	were	used	for	matching	in	order	to	account	for	changes	in	firm	
names.	Matching	on	the	basis	of	company	names	requires	names	in	both	data	sets	to	be	
`standardized'	prior	to	the	matching	process	in	order	to	ensure	that	small	(but	often	
systematic)	differences	in	the	way	names	are	recorded	in	the	two	data	sets	do	not	
impede	the	correct	matching.	For	more	details	on	the	matching	see	Helmers	et	al.	
(2011).	

[Tables	A‐1,	A‐2,	and	A‐3	here]	
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Appendix B: Estimating survival models 

This	appendix	gives	some	further	information	about	the	various	survival	models	we	
estimated	and	the	robustness	checks	that	were	performed.	We	estimated	two	general	
classes	of	failure	or	survival	models:	1)	proportional	hazard,	where	the	hazard	of	failure	
over	time	has	the	same	shape	for	all	firms,	but	the	overall	level	is	proportional	to	an	
index	that	depends	on	firm	characteristics;	and	2)	accelerated	failure	time,	where	the	
survival	rate	is	accelerated	or	decelerated	by	the	characteristics	of	the	firm.	We	
transform	(2)	to	a	hazard	rate	model	for	comparison	with	(1),	using	the	usual	identity	
between	the	probability	of	survival	to	time	t	and	the	probability	of	failure	at	t	given	
survival	to	t‐1.		

The	first	model	has	the	following	form:	

  first patents in  at  has no patents in  ,  | iPr i j t i j s t X  	

 ( ),  ( , ) i ih X t h t exp X  	

where	i	denotes	a	firm,	j	denotes	a	technology	sector,	and	t	denotes	the	time	since	entry	
into	the	sample.	h(t)	is	the	baseline	hazard,	which	is	either	a	non‐parametric	or	a	
parametric	function	of	time	since	entry	into	the	sample.	The	impact	of	any	characteristic	
x	on	the	hazard	can	be	computed	as	follows:	

       
 

, , 1
  ,   or  

,
i i

i
i i i

h X t h X t
h t exp X

x x X t
  

 
 

 
	

Thus	if	x	is	measured	in	logs,	β	measures	the	elasticity	of	the	hazard	rate	with	respect	to	
x.	Note	that	this	quantity	does	not	depend	on	the	baseline	hazard	h(t),	but	is	the	same	
for	any	t.	We	use	two	choices	for	h(t):	the	semi‐parametric	Cox	estimate	and	the	Weibull	
distribution	ptp‐1.	By	allowing	the	Cox	h(t)	or	p	to	vary	freely	across	the	industrial	
sectors,	we	can	allow	the	shape	of	the	hazard	function	to	be	different	for	different	
industries	while	retaining	the	proportionality	assumption.		

In	order	to	allow	even	more	flexibility	across	the	different	industrial	sectors,	we	also	
use	two	accelerated	failure	time	models,	the	log‐normal	model	and	the	log‐logistic	
model.	These	have	the	following	basic	form:		

log( )
log-normal:  ( ) 1 i

j

t
S t




 
   

  
	

11/log-logistic:  ( ) 1 ( ) j

iS t t 


    	

where	S(t)	is	the	survival	function	and	λi	=	exp(Xiβ).	We	allow	the	parameters	σ	(log‐
normal)	or	γ	(log‐logistic)	to	vary	freely	across	industries	(j).	That	is,	for	these	models,	
both	the	mean	and	the	variance	of	the	survival	distribution	are	specific	to	the	2‐digit	
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industry.	In	the	case	of	these	two	models,	the	elasticity	of	the	hazard	with	respect	to	a	
characteristic	x	depends	on	time	and	on	the	industry‐specific	parameter	(σ	or	γ),	
yielding	a	more	flexible	model.	For	example,	the	hazard	rate	for	the	log‐logistic	model	is	
given	by	the	following	expression:	

 
1/ 1 1/

1/

log ( )
( )

1 ( )

j j

j

i

j i

td S t
h t

dt t

 




 

 
 


	

From	this	we	can	derive	the	elasticity	of	the	hazard	rate	with	respect	to	a	regressor	x:19	

1/

log ( )

(1 ) j

ij

i i

h t

x t 




 


 
	

One	implication	of	this	model	is	therefore	that	both	the	hazard	and	the	elasticity	of	the	
hazard	with	respect	to	the	regressors	depend	on	t,	the	time	since	the	firm	was	at	risk	of	
patenting.	We	sample	the	firms	during	a	single	decade,	the	2000s,	but	some	of	the	firms	
have	been	in	existence	since	the	19th	century.	This	fact	creates	a	bit	of	a	problem	for	
estimation,	because	there	is	no	reason	to	think	that	the	patenting	environment	has	
remained	stable	during	that	period.	We	explored	variations	in	the	assumed	first	date	at	
risk	in	Table	B‐2,	finding	that	the	choice	made	little	difference.	Accordingly,	we	have	
used	a	minimum	at	risk	year	of	1978	for	estimation	in	the	main	table	in	the	text.		

[Tables	B‐1	and	B‐2	here]	

	

	

 

																																																								

19	We	assume	that	x	is	in	logarithms,	as	is	true	for	our	key	variables,	so	this	can	be	interepreted	as	an	
elasticity.	



C Previous Results

To help the reader this appendix summarizes a number of results derived by Graevenitz et al. (2013) as
well as some additional results that are useful.

C.1 The Expected Number of Rival Investors

The expected number of rival firms NO that undertake R&D on the same technology opportunity as firm i

can be expressed as a sum of products:

NO =
N∑
j=0

j

(
N

j

)N−j∏
l=0

(1− ωl)
N∏

m=N−i

ωm. (C.1)

Graevenitz et al. (2013) show that NO is increasing in ωn, where n ∈ {l,m}.
In the second stage equilibrium NO can be rewritten as:

NO =
N∑
j=0

j

(
N

j

)
(1− ω̂k)(N−j)ω̂jk. (C.2)

Incumbency Advantage

In the case in which there are incumbents and entrants the expected number of rival firms NO has to
rewritten slightly. To do this define:

ωIn ≡ oIi
/
O ωEn ≡ oEi

/
O (C.3)

We assume that in a previous period Np firms entered and of these a fraction λ are still active. Then
the expected number of rival firms ÑO that undertake R&D on the same technology opportunity as firm i

is:

ÑO =
λNP∑
j=0

j

(
λNP

j

)
(1− ω̂Jk )(N−j)(ω̂Jk )j +

N∑
j=0

j

(
N

j

)
(1− ω̂Ek )(N−j)(ω̂Ek )j. (C.4)

C.2 The Expected Number of Facets Covered

In the second stage equilibrium the expected number of facets covered through the joint efforts of all firms
investing in a technological opportunity is:

F̃k = F
[
1− (1− φ̂k)(NO+1)

]
(C.5)

The derivative of this expression with respect to F is positive:

∂F̃k
∂Fk

= 1−
(

1− φ̂k
)NO

(
1 + φ̂kNO

)
≥ 0 . (C.6)
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The elasticities of F̃k with respect to fk and F are:

η̂k =
φ̂k(1− φ̂k)NO

1− (1− φ̂k)(NO+1)
(C.7)

ε̂F̃k,Fk
=

1− (1− φ̂k)(NO)(1 + φ̂jNO)

1− (1− φ̂k)(NO+1)
. (C.8)

which shows that 1 ≥ εF̃kFk
≥ 0 as the denominator in the fraction is always greater than the numerator. It

is useful to observe that the upper bound of the elasticity η̂k is decreasing in NO. To see this note that the
elasticity can be expressed as:

η̂k =
(1− φ̂k)NO

(No + 1)
(

1− φ̂k No

2!
+ φ̂2

k
No(NO−1)

3!
...
) . (C.9)

This shows that the upper bound of the elasticity decreases in NO: limφ̂k→0 ηk = 1
/

(NO + 1) ≤ 1. Here
we use the binomial expansion of (1− φ̂k)No+1. The expression also shows that the lower bound of ηk |φ̂k=1

is zero.

C.3 The Probability of Patenting a Facet

Now turn to the probability of obtaining a patent on a facet given NO. In the equilibrium of the second
stage game we can dispense with the firm specific subscript and denote this as:

pk =(1− φ̂k)NO +
NO

2
· φ̂k(1− φ̂k)NO−1 +

(NO)(NO − 1)

6
(1− φ̂k)NO−2φ̂2

k... ,

=

NO∑
i=0

1

i+ 1

(
NO

i

)
(1− φ̂k)NO−iφ̂ik (C.10)

For the comparative statics of the entry stage it is useful to know that the elasticity of pk w.r.t. F is
negative if φ̂k < 1

2
:

∂pk
∂Fk

=

NO∑
i=0

1

i+ 1

(
NO

i

)
(1− φ̂k)NO−iφ̂ik(−1)

(
NO

Fk
− NO − i

F − f̂

)
(C.11)

Then the elasticity εpk,Fk
is:

εpk,Fk
=N2

O

(
φ̂k − 1

2
(1 + 1

NO
)
)

1− φ̂k
(C.12)
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D Results

This appendix contains derivations for the propositions set out in Section 2 of the paper.

D.1 Supermodularity of the Second Stage Game

This section sets out the main results needed to show that the second stage of game G∗ is supermodular.
Consider the first order conditions that determine the equilibrium number of facets (f̂ ) and technolog-

ical opportunities (ô):

∂πik
∂oi

= V∆(sik)− L(γik, sik)− Co(ΣNo
j=1oj)− γikCa −

∂Cc
∂oi

= 0 , (D.13)

∂πik
∂fi

=
oipk

F̃k

([
V µkηik

∆(sik)

sik
− F̃k

(
∂L

∂γik
+ Ca

)]
+
[
V
d∆

dsik
− ∂L

∂sik

]
(1− ηik)

)
= 0 . (D.14)

Now, consider the cross-partial derivatives which must be positive, if the second stage game is supermod-
ular. First, we derive the cross partial derivative with respect to firms’ own actions:

∂2πik
∂oi∂fi

=
pk

F̃k

([
V µkηik

∆(sik)

sik
− F̃k

(
∂L

∂γik
+ Ca

)]
+
[
V
d∆

dsik
− ∂L

∂sik

]
(1− ηik)

)
= 0 . (D.15)

This expression corresponds to the first order condition (D.14) for the optimal number of facets.
Now consider effects of rivals’ actions on firms’ own actions:

∂2πk
∂oi∂om

=
∂F̃k
∂om

sik

F̃k

[
V

∆

sik
(µk − ξik) +

∂L

∂sik

]
+
∂pk
∂om

fi

F̃k

[(
V
d∆

dsik
− ∂L

∂sik

)
− F̃k

(
∂L

∂γik
+ Ca

)]
(D.16)

− ∂Co

∂ΣNo
j=1oj

,

∂2πk
∂oi∂fm

=
∂F̃k
∂fm

sik

F̃k

[
V

∆

sik
(µk − ξik) +

∂L

∂sik

]
+
∂pk
∂fm

fi

F̃k

[(
V
d∆

dsik
− ∂L

∂sik

)
− F̃k

(
∂L

∂γik
+ Ca

)]
,

(D.17)

∂2πk
∂fi∂om

=
∂F̃k
∂om

[
∂V

∂F̃k
+
∂2V

∂F̃k
2 F̃kηik −

∂L

∂γik
− Ca +

∂2L

∂sik2

sik

F̃k
(1− ηik)

]

+
∂ηik
∂om

(
V

∆

sik
(µk − ξik) +

∂L

∂sik

)
− ∂pk
∂om

[
∂2L

∂γik2
fi +

∂2L

∂sik2

fi

F̃k
(1− ηik)

]
, (D.18)

∂2πk
∂fi∂fm

=
∂F̃k
∂fm

[
∂V

∂F̃k

∆

sik

(
ξik(1− εF̃k,f

) + εF̃k,f

)
+
∂2V

∂F̃k
2 F̃kηik

∆

sik
− ∂L

∂γik
− Ca +

∂2L

∂sik2

sik

F̃k
(1− ηik)

]

+
∂ηik
∂fm

(
V

∆

sik
(µk − ξik) +

∂L

∂sik

)
− ∂pk
∂fm

[
∂2L

∂γik2
fi +

∂2L

∂sik2

fi

F̃k
(1− ηik)

]
. (D.19)

The second stage game is supermodular, if the equations (D.16)-(D.19) are non-negative. The fol-
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lowing results show that the conditions noted in Section 2 above must hold simultaneously if the game is
supermodular.

Using the first order condition (D.14), which will hold for any interior equilibrium, it can be shown
that: [(

V
d∆

dsik
− ∂L

∂sik

)
− F̃k

(
∂L

∂γik
+ Ca

)]
= −ηik

(
V

∆

sik
(µk − ξik) +

∂L

∂sik

)
. (D.20)

If
(
V ∆
sik

(µk−ξik)+ ∂L
∂sik

)
> 0, then the second term in the cross-partial derivatives (D.16) and (D.17) is the

product of two negative expressions, and then equation (D.17) is positive. Equation (D.16) is also positive
in a free entry equilibrium: the negative term at the end is less than the negative term in the derivative of
profits w.r.t. Nk in Section 2, which is otherwise the same as equation (D.16): ∂Co

∂Noô
ô > ∂Co

∂Noô
.

Turning to equations (D.18) and (D.19) we can show that:

∂ηik
∂om

=
∂2F̃k
∂fi∂om

fi

F̃k
− ∂F̃k
∂fi

∂F̃k
∂om

fi

F̃k
2 = −F̃k

−1 ∂F̃k
∂om

(
φk

1− φk
+ ηik

)
(D.21)

∂ηik
∂fm

=
∂2F̃k
∂fi∂fm

fi

F̃k
− ∂F̃k
∂fi

∂F̃k
∂fm

fi

F̃k
2 = −F̃k

−1 ∂F̃k
∂fm

(
φk

1− φk
+ ηik

)
(D.22)

This result allows us to rewrite equations (D.18) and (D.19) as follows:

∂2πk
∂fi∂om

=
1

F̃k

∂F̃k
∂om

[(
V

∆

sik
(µk − ξik) +

∂L

∂sik

)(
1− 2ηik −

φ

1− φ

)
+
∂2V

∂F̃k
2 F̃kηik +

∂2L

∂sik2

sik

F̃k
(1− ηik)

]

− ∂pk
∂om

[
∂2L

∂γik2
fi +

∂2L

∂sik2

fi

F̃k
(1− ηik)

]
, (D.23)

∂2πk
∂fi∂fm

=
1

F̃k

∂F̃k
∂fm

[(
V

∆

sik
(µk − ξik) +

∂L

∂sik

)(
1− 2ηik −

φ

1− φ

)
+
∂2V

∂F̃k
2 F̃kηik +

∂2L

∂sik2

sik

F̃k
(1− ηik)

]

− ∂pk
∂fm

[
∂2L

∂γik2
fi +

∂2L

∂sik2

fi

F̃k
(1− ηik)

]
. (D.24)

Given assumptions (VF) and (LC) these two equations will be positive if
(
V ∆
sik

(µk − ξik) + ∂L
∂sik

)
> 0 and(

1− 2ηik − φ
1−φ

)
> 0.

D.2 Uniqueness of the second stage equilibrium

We show that stage 2 of game G∗ is supermodular. This implies that there exists at least one equilibrium of
the stage game. An alternative way of deriving existence of the second stage equilibrium for game G∗ is to
analyze the conditions under which the Hessian of second derivatives of the profit function (Hπ) is negative
semidefinite. This matrix consists of four derivatives of which only one leads to additional restrictions on
the model.

It is easy to see that ∂2π
∂oi2

< 0 due to the coordination costs Cc(oi) and the restrictions we impose with
assumption (FVC). The two cross-partial derivatives are both zero in equilibrium - refer to equation D.15.
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Therefore, the only expression that remains to analyze is ∂2π
∂fi

2 .

∂2π

∂fi
2 =

oipk

F̃k

[
∂2V

∂F̃k
2

(
∂F̃k
∂fi

)2
∆F̃k
pk

+ 2
∂V

∂F̃k

∂F̃k
∂fi

d∆

dsik
(1− ηik) + V

d2∆

s2
ik

pk

F̃k
(1− ηik)2

− ∂2L

∂γik2
p2
k −

∂2L

∂sik2

(
∂sik
∂fi

)2

− 2

(
V
d∆

dsik
− ∂L

∂sik

)
(1− ηik) ηik

fi

]
.

This can be further simplified:

∂2π

∂fi
2 =

oipk

F̃k

[
∂2V

∂F̃k
2

(
∂F̃k
∂fi

)2
∆F̃k
pk

+ V
d2∆

s2
ik

pk

F̃k
(1− ηik)2 − ∂2L

∂γik2
p2
k

− ∂2L

∂sik2

pk

F̃k
(1− ηik)2 − 2

(
V

∆

sik
ξik(1− µk)−

∂L

∂sik

)
(1− ηik) ηik

fi

]
. (D.25)

If we impose the restriction that the second derivative of the value function is negative and that the
elasticity of the value function, µk < 1, then the first and the last terms in the above expression are
negative. The sign of the second term in the expression depends on sign{ ∂2∆

∂sik2}, which we will assume is
negative. The third and fourth terms in the above expression are negative given the conditions imposed on
the legal cost function above.
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Technology categories GB pats EP pats Total GB pats EP pats

Elec machinery, energy 1,321 1,101 2,422 6.1% 4.4%

Audio‐visual tech 633 549 1,182 2.9% 2.2%

Telecommunications 1,181 1,206 2,386 5.5% 4.8%

Digital communication 590 732 1,323 2.7% 2.9%

Basic comm processes 302 146 447 1.4% 0.6%

Computer technology 1,481 1,302 2,783 6.8% 5.2%

IT methods for mgt 256 224 480 1.2% 0.9%

Semiconductors 269 248 518 1.2% 1.0%

Optics 392 481 873 1.8% 1.9%

Measurement 1,216 1,458 2,674 5.6% 5.8%

Analysis bio materials 132 426 557 0.6% 1.7%

Control 592 542 1,134 2.7% 2.2%

Medical technology 996 1,561 2,558 4.6% 6.3%

Organic fine chemistry 182 1,538 1,720 0.8% 6.2%

Biotechnology 193 950 1,143 0.9% 3.8%

Pharmaceuticals 277 1,876 2,153 1.3% 7.5%

Polymers 114 280 394 0.5% 1.1%

Food chemistry 88 458 547 0.4% 1.8%

Basic materials chemistry 314 1,050 1,363 1.5% 4.2%

Materials metallurgy 161 318 479 0.7% 1.3%

Surface tech coating 287 284 571 1.3% 1.1%

Chemical engineering 507 724 1,231 2.3% 2.9%

Environmental tech 296 344 640 1.4% 1.4%

Handling 996 813 1,809 4.6% 3.3%

Machine tools 428 356 784 2.0% 1.4%

Engines,pumps,turbine 887 942 1,829 4.1% 3.8%

Textile and paper mach 235 304 539 1.1% 1.2%

Other spec machines 742 623 1,365 3.4% 2.5%

Thermal process and app 410 261 671 1.9% 1.0%

Mechanical elements 1,149 854 2,002 5.3% 3.4%

Transport 1,063 930 1,993 4.9% 3.7%

Furniture, games 1,064 612 1,675 4.9% 2.5%

Other consumer goods 630 507 1,137 2.9% 2.0%

Civil engineering 2,237 960 3,196 10.3% 3.8%

Total 21,619 24,959 46,578

Electrical engineering 6,032 5,508 11,540 27.9% 22.1%

Instruments 3,328 4,468 7,796 15.4% 17.9%

Chemistry 2,418 7,822 10,240 11.2% 31.3%

Mechanical engineering 5,910 5,083 10,993 27.3% 20.4%

Other Fields 3,930 2,079 6,009 18.2% 8.3%

* Weighting by owners does not affect the numbers, since they all get added back into the same cell.

Weighting by classes means that a patent in multiple TF34 sectors is downweighted in each of the sectors.

Weighted by #owners & #classes* Sector shares

Table 1

Patenting by Fame firms on Patstat (priority years 2002‐2009)



Technology categories

Aggregate 

EPO patents

Number of 

EPO triples@

Triples per 

1000 patents

US Citation 

network 

density#

Average non‐

patent 

references

Elec machinery, energy 56,714 7751 136.7 39.4 0.420

Audio‐visual tech 34,131 13268 388.7 63.5 0.449

Telecommunications 62,288 27049 434.3 79.1 1.235

Digital communication 36,975 16529 447.0 178.5 1.397

Basic comm processes 10,035 2289 228.1 110.8 1.162

Computer technology 60,577 21956 362.4 54.3 1.529

IT methods for mgt 9,312 34 3.7 144.2 0.920

Semiconductors 24,544 9974 406.4 94.0 1.070

Optics 28,458 7767 272.9 58.0 0.806

Measurement 44,320 2503 56.5 45.6 1.000

Analysis bio materials 11,787 26 2.2 319.4 7.040

Control 17,612 308 17.5 112.1 0.445

Medical technology 66,062 4411 66.8 206.2 0.614

Organic fine chemistry 41,137 3993 97.1 32.9 5.253

Biotechnology 33,192 365 11.0 89.6 17.332

Pharmaceuticals 52,671 11222 213.1 76.6 6.391

Macromolecular chemistry 21,307 3722 174.7 92.7 1.236

Food chemistry 9,955 140 14.1 326.3 2.701

Basic materials chemistry 27,679 1929 69.7 84.8 1.498

Materials metallurgy 16,935 405 23.9 91.7 1.130

Surface tech coating 17,429 363 20.8 59.4 0.803

Chemical engineering 24,494 443 18.1 66.2 0.797

Environmental tech 12,708 858 67.5 206.9 0.487

Handling 30,343 252 8.3 66.9 0.137

Machine tools 24,040 508 21.1 64.0 0.191

Engines,pumps,turbine 32,602 6678 204.8 85.4 0.210

Textile and paper mach 23,145 2640 114.1 84.9 0.312

Other spec machines 29,826 319 10.7 65.7 0.422

Thermal process and app 15,290 335 21.9 146.3 0.189

Mechanical elements 32,716 1301 39.8 57.8 0.168

Transport 48,875 10929 223.6 68.3 0.203

Furniture, games 19,847 206 10.4 107.6 0.166

Other consumer goods 19,734 301 15.3 105.6 0.194

Civil engineering 28,817 171 5.9 117.1 0.150

Total 1,025,555 160,945 156.9 100.3 0.800

Electrical engineering 294,575 98,850 335.6 60.4 1.042

Instruments 168,239 15,015 89.2 96.3 1.181

Chemistry 257,507 23,440 91.0 71.1 4.977

Mechanical engineering 236,836 22,962 97.0 70.1 0.227

Other Fields 68,398 678 9.9 110.8 0.167

@ Triples based on all EPO patenting, priority years 2002‐2009 (see text for definition and further explanation).

# Network density is 1,000,000 times the number of within technology citations between 1976 and the 

current year divided by the potential number of such citations.

UKIPO and EPO patents: numbers, triples and network density 2002‐2009

Table 2



Variable

Log (network density) 0.115*** 0.127*** 0.107*** 0.184***

(0.024) (0.023) (0.021) (0.052)

Log (triples density ‐0.138*** ‐0.139*** ‐0.101*** ‐0.100***

         in class) (0.011) (0.011) (0.010) (0.023)

Log (patents in class) 0.317*** 0.506*** 0.545*** 0.514*** 0.822***

(0.025) (0.031) (0.030) (0.027) (0.071)

5‐year growth of non‐ 0.060*** 0.084*** 0.072*** ‐0.009 0.103*

     patent refs in class) (0.022) (0.022) (0.022) (0.021) (0.056)

Log assets 0.270*** 0.270*** 0.270*** 0.142*** 0.513***

(0.011) (0.011) (0.011) (0.013) (0.083)

Log firm age in years 1.135*** 1.135*** 1.136*** 0.773*** 0.767***

(0.104) (0.104) (0.104) (0.130) (0.131)

Log (pats applied for 0.836*** 0.836***

  by firm previously) (0.021) (0.021)

Log (network density) ‐0.010*

      * Log assets (0.006)

Log (triples density) ‐0.001

      * Log assets (0.003)

Log (patents in class) ‐0.040***

      * Log assets (0.008)

Log (average NPL refs) ‐0.015**

      * Log assets (0.006)

Industry dummies stratified# stratified# stratified# stratified# stratified#

Year dummies yes yes yes yes yes

Log likelihood ‐65.96 ‐65.86 ‐65.84 ‐58.69 ‐58.67

Degrees of freedom 12 12 13 14 18

Chi‐squared 1270.6 1429.1 1517.2 3465.1 3458.6

The sample is matched on size class, sector, and age class. Estimates are weighted by sampling probability.

Coefficients for the hazard of entry into a patenting class are shown.

Standard errors are clustered on firm. *** (**) denote significance at the 1% (5%) level.

# Estimates are stratified by industry ‐ each industry has its own baseline hazard.

Table 3

Hazard of entry into patenting in a TF34 Class
538,452 firm‐TF34 observations with 10,665 entries (20,384 firms)

Cox Proportional Hazard Model

Time period is 2002‐2009 and minimum entry year is 1978. Sample is UK firms with nonmissing assets, all patenting firms 

and a matched sample of non‐patenting firms



Number of 

sectors

Number of 

firms

Number of 

entries

1 2,531 2,531

2 1,347 2,694

3 647 1,941

4 271 1,084

5 155 775

6 71 426

7 45 315

8 29 232

9 20 180

10 14 140

11 4 44

12 2 24

13 3 39

14 0 0

15 or more 13 240

Total 5,152 10,665

Table A1

Number of TF34 sectors entered

 between 2002 and 2009



Industry

Number of 

firms

Number of 

patenters 

2001‐2009

Share 

patenting 

2001‐2009

Number of 

patents 

2001‐2009

1 Basic metals 2,836 52 1.83% 231

2 Chemicals 3,834 246 6.42% 126

3 Electrical machinery 2,948 281 9.53% 727

4 Electronics & instruments 9,298 561 6.03% 444

5 Fabricated metals 24,681 606 2.46% 70

6 Food, beverage, & tobacco 8331 102 1.22% 29

7 Machinery 9,365 608 6.49% 313

8 Mining, oil&gas 83,491 15 0.02% 96

9 Motor vehicles 2,337 117 5.01% 22

10 Other manufacturing 94,952 1362 1.43% 150

11 Pharmaceuticals 1,008 105 10.42% 551

12 Rubber & plastics 6,094 398 6.53% 590

13 Construction 295596 372 0.13% 59

14 Other transport 3,292 89 2.70% 6274

15 Repairs & retail trade 128,266 251 0.20% 2324

16 Telecommunications 14,348 133 0.93% 2096

17 Transportation 60,837 75 0.12% 621

18 Utilities 12,880 75 0.58% 428

19 Wholesale trade 138,398 728 0.53% 3608

20 Business services 689,942 1639 0.24% 6757

21 Computer services 177,319 716 0.40% 1132

22 Financial services 183,042 219 0.12% 4930

23 Medicalservices 38,424 103 0.27% 1419

24 Personal services 94,791 196 0.21% 1194

25 R&D services 7,915 713 9.01% 168

26 inactive 37,525 271 0.72% 5673

Total 2,131,750 10,033 0.47% 40,032

Table A‐2

Sample population of UK firms, by industry



Technology

Total 

patenting in 

sector by GB 

firms

First time 

patenter

Patented 

previously 

in another 

tech Total entry

First time 

patenter

Patented 

previously 

in another 

tech

Elec machinery, energy 1763.7 214 250 26.3% 12.1% 14.2%

Audio‐visual tech 788.3 148 192 43.1% 18.8% 24.4%

Telecommunications 1874.4 146 179 17.3% 7.8% 9.5%

Digital communication 1054.0 92 141 22.1% 8.7% 13.4%

Basic comm processes 256.5 21 93 44.4% 8.2% 36.3%

Computer technology 2167.2 291 251 25.0% 13.4% 11.6%

IT methods for mgt 283.2 117 157 96.7% 41.3% 55.4%

Semiconductors 347.2 38 118 44.9% 10.9% 34.0%

Optics 584.7 55 130 31.6% 9.4% 22.2%

Measurement 1765.3 226 269 28.0% 12.8% 15.2%

Analysis bio materials 339.0 39 111 44.3% 11.5% 32.7%

Control 712.1 165 241 57.0% 23.2% 33.8%

Medical technology 1668.4 184 209 23.6% 11.0% 12.5%

Organic fine chemistry 1569.4 36 83 7.6% 2.3% 5.3%

Biotechnology 701.6 41 99 20.0% 5.8% 14.1%

Pharmaceuticals 1700.7 54 80 7.9% 3.2% 4.7%

Polymers 224.4 27 112 61.9% 12.0% 49.9%

Food chemistry 492.7 36 87 25.0% 7.3% 17.7%

Basic materials chemistry 1020.2 85 144 22.4% 8.3% 14.1%

Materials metallurgy 360.8 54 109 45.2% 15.0% 30.2%

Surface tech coating 400.7 77 195 67.9% 19.2% 48.7%

Chemical engineering 842.7 142 213 42.1% 16.9% 25.3%

Environmental tech 446.6 106 166 60.9% 23.7% 37.2%

Handling 1326.3 274 290 42.5% 20.7% 21.9%

Machine tools 577.8 106 180 49.5% 18.3% 31.2%

Engines,pumps,turbine 1443.4 82 160 16.8% 5.7% 11.1%

Textile and paper mach 442.0 77 137 48.4% 17.4% 31.0%

Other spec machines 847.4 180 234 48.9% 21.2% 27.6%

Thermal process and app 455.7 105 159 57.9% 23.0% 34.9%

Mechanical elements 1445.9 223 317 37.3% 15.4% 21.9%

Transport 1288.2 213 236 34.9% 16.5% 18.3%

Furniture, games 1239.2 288 223 41.2% 23.2% 18.0%

Other consumer goods 788.1 194 246 55.8% 24.6% 31.2%

Civil engineering 2045.8 463 255 35.1% 22.6% 12.5%

Total 33263.6 4599 6066 32.1% 13.8% 18.2%

Electrical engineering 8534.5 1067 1381 28.7% 12.5% 16.2%

Instruments 5069.5 669 960 32.1% 13.2% 18.9%

Chemistry 7760.0 658 1288 25.1% 8.5% 16.6%

Mechanical engineering 7826.7 1260 1713 38.0% 16.1% 21.9%

Other Fields 4073.0 945 724 41.0% 23.2% 17.8%

Table A3

Entry into techology area 2002‐2009

Numbers Shares



Variable Cox PH Weibull Log logistic Log normal

Log (network density) 0.108*** 0.111*** 0.308*** 0.247***

(0.021) (0.021) (0.096) (0.040)

Log (triples density ‐0.100*** ‐0.098*** ‐0.511*** ‐0.258***

         in class) (0.010) (0.010) (0.071) (0.024)

Log (patents in class) 0.513*** 0.513*** 2.177*** 1.095***

(0.027) (0.027) (0.304) (0.089)

5‐year growth of non‐ (0.013) ‐0.001 ‐0.077 ‐0.039

     patent refs in class) (0.022) (0.021) (0.084) (0.038)

Log assets 0.149*** 0.130*** 0.529*** 0.198***

(0.013) (0.013) (0.082) (0.024)

Log (pats applied for 0.848*** 0.860*** 5.685*** 3.973***

  by firm previously) (0.021) (0.019) (0.917) (0.368)

Industry dummies stratified# stratified# stratified# stratified#

Year dummies yes yes yes yes

Log likelihood ‐58.8 ‐96,051.0 ‐114,127.0 ‐111,662.1

Degrees of freedom 13 38 38 38

Chi‐squared 3183.2 4560.1 168.4 300.1

*** (**) denote significance at the 1% (5%) level.

Time period is 2002‐2009 and minimum entry year is 1978. Sample is all UK firms with nonmissing assets.

AFT ‐ Accelerated Failure Time models

# Estimates are stratified by industry ‐ each industry has its own baseline hazard.

All estimates are weighted estimates, weighted by sampling probability. For the Cox and Weibull models, coefficients 

shown are elasticities of the hazard w.r.t. the variable. For the log‐logistic, ‐beta is shown.

538,452 firm‐TF34 observations with 10,665 entries (20,384 firms)

Proportional hazard AFT

Table B‐1

Hazard of entry into patenting in a TF34 Class ‐ Comparing models



Variable (1) (2) (3) (4) (5)

Log (network density) 0.107*** ‐0.008 0.114*** 0.107*** 0.108***

(0.021) (0.019) (0.024) (0.021) (0.021)

Log (triples density ‐0.101*** ‐0.183*** ‐0.114*** ‐0.103*** ‐0.103***

         in class) (0.010) (0.008) (0.011) (0.009) (0.009)

Log (patents in class) 0.514*** 0.623*** 0.605*** 0.520*** 0.518***

(0.027) (0.024) (0.031) (0.027) (0.027)

5‐year growth of non‐ ‐0.009 ‐0.196*** ‐0.002 ‐0.012 ‐0.012

     patent refs in class) (0.021) (0.020) (0.025) (0.021) (0.021)

Log assets 0.142*** 0.138*** 0.186*** 0.139*** 0.146***

(0.013) (0.013) (0.018) (0.013) (0.013)

Log firm age in years 0.773*** 0.588*** 0.739*** 0.778*** 0.021

(0.130) (0.145) (0.155) (0.131) (0.246)

Log (lagged firm‐level 0.836*** 0.947*** 0.954*** 0.840*** 0.878***

  patent stock) (0.021) (0.019) (0.033) (0.021) (0.021)

Year dummies yes yes yes yes yes

Observations 538,452 692,038 452,313 523,547 538,452

Firms 20,384 20,384 17,993 20,384 20,384

Entries 10,665 10,665 8,149 10,340 10,665

Entry rate 1.98% 1.54% 1.96% 1.97% 1.98%

Log likelihood ‐58.69 ‐54.60 ‐40.59 ‐56.94 ‐53.81

Degrees of freedom 14 14 14 14 14

Chi‐squared 3465.1 5065.8 1688.8 3459.1 3137.4

*** (**) denote significance at the 1% (5%) level.

Weibull model stratified by industry. 

(1) Estimates from Table 3, for comparison. 

(3) SMEs: firms with assets>12.5 million GBP removed. 

(4) The Telecom tech sector is removed. 

(5) The minimum founding year is 1900 instead of 1978.

(2) Observations for tech sectors of firms whose industry has no such patenting (Lybbert‐Kolas) 

and where there is no entry by any UK firm in that industry are included.

All estimates are weighted estimates, weighted by sampling probability. Coefficients shown are negative of the 

estimates (larger coefficient increases entry probability).

Time period is 2002‐2009 and minimum entry year is 1978. Sample is UK firms with nonmissing assets, all 

patenting firms and a matched sample of non‐patenting firms

Hazard of entry into patenting in a TF34 Class ‐ Robustness

Table B‐2


	Previous Results
	The Expected Number of Rival Investors 
	Incumbency Advantage

	The Expected Number of Facets Covered 
	The Probability of Patenting a Facet

	Results
	Supermodularity of the Second Stage Game
	Uniqueness of the second stage equilibrium


