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Explorations of cumulative advantage using data on French physicists 

 

Bronwyn H. Hall and Jacques Mairesse 

I. Introduction 

The humorous quotation from David Lodge’s novel “Small World”, in the footnote below,4 

describes the phenomenon in scientific research that was termed the “Matthew Effect” by 

Merton (1968). It provides an explanation for the empirical observations by Lotka (1926) 

and later researchers that the majority of papers in a discipline are produced by a small 

minority of scientists in that discipline. But there is another possible explanation of extreme 

skewness in scientific production: it may simply reflect skewness in the intrinsic 

productivity of individual scientists, that is, skewness in “fixed effects”. For example, Huber 

(1998) found the fixed effect model to be a sufficient explanation for the distribution of 

inventor productivity in the form of patents.  

There is a long history of econometric and statistical research that attempts to distinguish 

these two interpretations of the evolution of individual outcomes over time, often assuming 

discrete data, most commonly of the binary (0-1) form. See Bates and Neyman (1951) for 

application to accident data, Heckman (1978, 1981a, 1981b) for labor force participation, 

and Halliday (2007) for health status data.  In these applications, the question is whether the 

outcomes can be explained by intrinsic individual heterogeneity or whether there is also 

state dependence in the sense that future outcomes depend on earlier outcomes in ways that 

cannot be explained solely by heterogeneity. In our application, cumulative advantage is 

equivalent to observing state dependence in the data.  

In this paper we use a new dataset on publications by physicists from Institute of Physics in 

the French CNRS (Centre National de la Recherche Scientifique) to explore the extent to 

which the phenomenon of cumulative advantage is needed to explain the evolution of 

publications, both counts and citation-weighted counts. Do outcomes during the career of 

 
4 Morris Zapp in David Lodge: Small World (Penguin Edition, page 151), contemplates his impending 

visit to the Rockefeller Foundation at the Villa Serbelloni in Bellagio: “The beauty of academic life is 
that to them that had had, more would be given…… All you needed to do to get started was to write 

one really damned good book, which admittedly wasn't easy when you were a young college teacher 

just beginning your career …… But on the strength of that one damned good book you could get a 

grant to write a second book in more favorable circumstances; with two books you got promotion, a 
lighter teaching load, and courses of your own devising; you could then use your teaching as a way of 

doing research for your next book, which you were thus able to produce all the more quickly. This 

productivity made you eligible for tenure, further promotion, more generous and prestigious 

research grants, more relief from routine teaching and administration. In theory, it was possible to 
wind up being full professor while doing nothing except to be permanently absent on some kind of 

sabbatical grant or fellowship.” 
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these physicists influence their subsequent success, or is the observed heterogeneity simply 

explainable by variations in intrinsic productivity. Intuitively, this will amount to asking 

whether publications are random across time (controlling for research age) or whether the 

order of the time series for each individual matters in predicting their outcomes.  

The stylized empirical facts about scientific productivity can be summarized as follows:   

1. The distribution of individual scientific productivity is extremely dispersed, as 

reflected by the fact that most papers, as well as the most highly cited papers, are 

published by a small share of scientists. (Lotka 1926) 

2. The resulting publication and citation hierarchy among scientists remains very stable 

during much of their lifetime (David 1994) 

3. The corresponding concentration tends to increase over time within scientific 

cohorts. (Stephan 1996) 

These stylized facts have been interpreted by Merton (among others) as indications of 

“cumulative advantage” or the “Matthew Effect” in the publication of research papers. 

Success in publishing early in one’s career, especially publishing of highly cited papers, is 

presumed to lead to greater resources and therefore greater publication and citation rates 

than other researchers as the career moves forward. A number of empirical studies have 

investigated this question in the past, mostly with much smaller datasets than ours (for 

example, Allison et al. 1982; Price 1976).  

The previous work has mostly confirmed the stylized facts above; unfortunately, 

confirmation of those facts is not really enough to confirm the presence of cumulative 

advantage, as wide variations in intrinsic productivity can also generate data that displays 

these characteristics. The problem is compounded by the fact that the leading parametric 

model used to describe the data is the negative binomial, which can be generated by either 

heterogeneity or state dependence. 

II. The Institute of Physics at CNRS  

Our sample is a large group of physicists affiliated to the Institute of Physics (INP) in France, 

one of the prominent Institutes of CNRS. INP is part of one large interdisciplinary public 

research organization under the responsibility of the French Ministry of Education and 

Research, the National Centre for Science Research (CNRS). CNRS is one of the most 

prestigious French research institutes, created by the state in the 1940s with the mission of 

‘advancing knowledge for the benefit of society,’ while ‘respecting ethical rules and showing 

commitment to professional equality.’5  

 
5 http://www.cnrs.fr/fr/le-cnrs. 
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In this section we briefly describe the features of this institute and the research careers that 

it enables. France has a reputation for producing cutting-edge research in the field. Looking 

back in history, important discoveries have been attributed to French scientists. For 

instance, the international system of measurement units of electric current, i.e. the ampere, 

was introduced by André-Marie Ampère (1775-1836) who was one of the founders of the 

science of electromagnetism. Several discoveries have been awarded the highest worldwide 

reward, the Nobel Prize. For example, in 1903 Marie Curie (1867-1934) was awarded the 

prize for her pioneering research on radioactivity; in 2012 Serge Haroche was awarded the 

prize for implementing innovative experimental methods of measuring and manipulating 

individual quantum systems; and in 2018, Gérard Albert Mourou was awarded the prize for 

his discoveries on very high-intensity laser pulses  

CNRS researchers in general and INP scientists in particular are selected through an 

extremely competitive process, one that is much more competitive than that for French 

universities, even the most selective ones. Once selected, they can generally not be fired and 

have a job for life. Researchers affiliated to INP are French civil servants and follow a well-

defined career progression with three career levels. Specifically, a researcher enters INP as 

Chargé de Recherche 1 (CR1), and later usually upgraded to Chargé de Recherche 2 (CR2); 

and, if as CR he is recognized for outstanding academic achievements, he can be promoted 

to Directeur de Recherche (DR). In fact, a large number of CNRS researchers remain at the 

(CR)s and are never promoted to (DR)s. Researchers are appointed according to their 

expertise, and, in each career level, they have different responsibilities. (CR)s are generally 

part of a lab directed by a (DR), where they work under his supervision, usually on the same 

research projects, sometimes on personal independent research project.  

INP scientists have a high academic profile and productivity. Publication data retrieved from 

the Web of Science (Clarivate Analytics) shows that during the period 2001–2016, they 

produced approximately 52,000 publications in physics.6 

III.  Data and selectivity 

The source of our data are two panel datasets supplied by the CNRS at two different points 

in time, 2005 and 2015, containing a total of 1,490 physicists. Each contained the full 

publishing career to date of the physicists present in that year, as well as their gender, birth 

year, and rank (Charge de Recherche or Directeur de Recherche, roughly corresponding to 

assistant and full professor ranks at the university). Earlier versions of these data have 

already been analyzed in other ways by Mairesse and Pezzoni (2015) and Mairesse et al. 

(2019). We have updated them by extracting the yearly paper counts and their citations from 

 
6 Average salaries of (CR)s and (DR)s currently vary from 2,000 to 6000 euros per month. 
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Open Alex as described in the appendix. Thus the sampling frame is simply a dataset 

containing the population of CNRS physicists with their names, birth years, and genders, 

which we take to Open Alex to obtain publication data (Priem et al. 2022).  

After cleaning, the resulting panel dataset contains data on 1,439 physicists born between 

1938 and 1986, with up to 64 years of publication information for each, although the average 

number of years of data for each physicist is 38 years. A probit regression for the probability 

of being in the sample reveals that the missing 51 physicists are randomly distributed across 

birth year and gender. We also created a balanced panel that contains 888 physicists born 

between 1938 and 1968, each with 35 years of data (ages 21 to 55). Further information on 

the data is supplied in Appendix A.   

We first examine the characteristics of the physicists that exit our sample before the cutoff 

date of 2022. Note that exit is defined by the date after which the physicist no longer 

publishes. There are 494 such physicists; the remaining 945 are censored at 2022. We expect 

that those that exit earlier will have sparser publication histories than those which remain. 

To explore this question, we estimated a hazard rate model for exit has a function of the 

physicist’s birth year, their gender, and the number of papers or cites accumulated prior to 

our cutoff date to the papers published before exit. The results are shown in Table 1, for a 

simple Cox proportional hazard model, a Weibull model, and a Weibull model that allows for 

a normally distributed random effect in the hazard rate. The Weibull model shape parameter 

estimate (ln_p) clearly indicates increasing hazard over time and the estimated probability 

curve shows sharply increasing exit probabilities between ages 56 and 67.  

All the columns of the table show the same result. Exit rises with later birth years, and is 

substantially higher for female physicists. As expected, the most important predictor of exit 

is the past publication history, whether measured as publication counts or as cite-weighted 

publication counts. The odds ratios for either are well below unity and highly significant, 

indicating that exit is much less likely for those physicists that have a greater number of prior 

publications. Interestingly, the number of publications is a much stronger predictor than the 

cite-weighted number. The results support the idea that one effect of cumulative advantage 

in research is that it encourages a successful researcher to remain active.  
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Table 1 

 

IV. Do the data exhibit the expected behavior? 

To explore the extent to which these data exhibit the behavior associated with cumulative 

advantage rather than being simply a consequence of variations in individual productivity 

that does not evolve over time, we conducted an exploration in the spirit of Huber (1998), 

who found that the individual distributions of inventor patenting over time were adequately 

described by a Poisson model without overdispersion. Our exploration is in Appendix B, 

where we conclude that Poisson for each physicist’s paper production along with a gamma 

distribution for their average productivity differences is a pretty good description of our 

publication data. However, especially for those with larger numbers of papers and for 

citation-weighted paper counts, the Poisson distribution with a fixed productivity for each 

physicists is rejected in favor of the negative binomial or other model with higher variance 

than the Poisson, which means that we cannot rule out some role for cumulative advantage 

(Allison 1980). This result is confirmed by simple parametric fits to the data in Appendix C, 

which show that although the negative binomial model comes the closest, the publication 

data are more dispersed across physicists than suggested by that model.  

In what follows, we first explore the ways in which the data exhibited the behavior described 

in the three points in the introduction: dispersion across scientists, stable hierarchies, and 

increasing concentration. Then we use some “runs” tests to test for cumulative advantage.  

Method Cox Weibull Weibull RE Weibull RE Weibull RE

Birth year 1.158*** 1.146*** 1.146*** 1.168*** 1.168***

(0.012) (0.013) (0.013) (0.018) (0.018)

Gender 1.454*** 1.429*** 1.429*** 1.427*** 1.429***

(0.170) (0.163) (0.163) (0.177) (0.177)

Log (cum. cites) 0.651*** 0.647*** 0.647*** 1.022

  lagged (0.023) (0.026) (0.026) (0.080)

Log (cum. pubs) 0.441*** 0.430***

  lagged (0.050) (0.063)

ln_p (shape) 9.224*** 9.224*** 10.378*** 10.386***

(0.524) (0.524) (0.813) (0.815)

Chisquared 304.0 226.8 226.8 101.1 101.4

Degrees of freedom 3 3 3 3 4

Log likelihood -2,731.2 -175.6 -2,002.4 -1,968.5 -1,968.5

53,670 observations on 1,439 physicists. 494 fai lures and 945 censored. 

Standard errors are robust and clustered on physicists. 

Hazard ratios and their standard errors are shown.

Hazard rate estimation of exit probability
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1. Dispersion 

Proposition 1 in the introduction implies both a quantity and quality dimension to the 

dispersion of physicist publications. Loosely speaking, Lotka’s Law states that 20 per cent of 

the physicists should account for 80 per cent of the output. For quantity we use the total 

number of publications for each physicist and for quality we use the sum of the citation 

counts for these publications.  

Figure 1 displays the graphs of the shares of publications and citations ranked from high to 

low versus the share of physicists that account for them. Clearly they do not satisfy the 

informal version of Lotka’s Law: roughly 54 per cent of publications and 61 per cent of 

citations are contributed by 20 per cent of the physicists. So there is some dispersion in 

output, but not as extreme as suggested by Lotka. This is perhaps to be expected, given the 

selectivity of CNRS physicists in the first place.  

Figure 1 

 

We can also ask whether the most important papers are concentrated among a few 

physicists. To do this, we compute the number of physicists that have produced papers cited 

more than 1000 times. There are 303 such papers, or 0.11%, produced by 164 out of 1,439 

physicists (11.5%). To compare the distribution to randomly occurring highly cited papers, 

we assign each of the approximately 265,000 papers randomly to the highly cited status and 

compute the number of physicists with such papers, repeating this 100 times and averaging. 
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This allows us to compute the expected distribution of highly cited papers under the 

hypothesis of equal probability across papers. We can then perform a chi-squared test for 

the hypothesis that highly cited papers are distributed randomly across physicists.  

The results are shown in Table 2, where the second column is the observed distribution and 

the third column is the predicted number if papers are randomly highly cited. The value of 

the chi-squared test for equality of the columns is 267.4 with 6 degrees of freedom, which 

clearly rejects randomness of assignment to a physicist. If we define highly cited as more 

than 500 citations instead, there are 1,219 (0.46%) highly cited papers and the chi-squared 

is 333.5 with 15 degrees of freedom (not shown). So the hypothesis that highly cited papers 

are random across physicists is clearly rejected, implying some concentration of highly cited 

papers on a few physicists. Interestingly, the discrepancy is due to two things: more 

physicists have no highly cited papers, fewer have one highly cited paper, but at the same 

time, there are more physicists with 3 or more highly cited papers (34 instead of 8.2) than 

predicted.  

Table 2 

 

In Appendix C, we explore the functional form of the publication and citation distributions, 

using the Pareto and log normal distributions that are commonly used to model skew 

distributions in the innovation literature (e.g., Scherer, 1998) as well as the Poisson and 

negative binomial models commonly used for discrete data (Hausman et al, 1984).  For both 

publications and citation-weighted publications, the estimated Pareto parameter is 

substantially less than one, which suggests that neither distribution has a mean or a variance. 

Number of 

highly cited 

papers

Number of 

physicists

Number of 

physicists if 

assigned 

randomly

0 1275 1188.5

1 91 208.7

2 39 33.6

3 19 6.6

4 9 1.1

5 2 0.4

6+ 4 0.1

Total 1439 1439.0

Concentration of highly cited papers

Highly cited papers are those with more than 1000 

citations

The last column is based on 100 independent random 

assignments of papers to the highly cited category.
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However, the Pareto shape was a poor fit to the data, because it predicts far more 

concentration than actually exists in the data.  

By comparing the cumulative distribution predicted by these models to the actual, we found 

that the negative binomial model clearly provided the best fit for these data, somewhat 

better for the publication counts than for the citation weighted publication counts.  In 

Appendix B we provide results for estimation of the separate ingredients of the panel 

negative binomial: Poisson for the individual physicist and gamma for the average 

productivities across physicists. We found that although the Poisson was clearly rejected for 

most of the individual physicists in favor of a negative binomial, the negative binomial 

provided a reasonably good fit to their average productivity distribution, albeit one that had 

a lower variance than the data.  

Our conclusion is that there is support for dispersion in publication across these physicists, 

but that it is not as extreme as implied by Lotka’s Law, and that the negative binomial is a 

pretty good description of the publication data, but not when the publications are cite-

weighted.  

2. Stability 

To check whether the publication hierarchy among physicists remains stable during their 

career, we compare the correlations of their rank among physicists with the same research 

age over time. The result is shown in Figure 2 for the balanced panel of 896 physicists. This 

figure shows that year-to-year, the hierarchy of physicists is relatively stable, and that 

stability flattens out but persists about 20 years into their careers.   



Hall-Mairesse CNRS physicists 27 March 2024 

10 

 

Figure 2 

  

However, when we look at the full correlogram for the ranks, we find in Figure 3 that the 

hierarchy is not stable over the entire career.  The correlation of ranks falls as the lag 

between the observations increases.  By lag 11, the correlation across years of the ranks of 

both publications and citation-weighted publications has fallen below 0.4. So we cannot 

really say that the hierarchy of physicists as measured by publications is stable throughout 

their career, although it is moderately persistent from year to year. In addition, the citation-

weighted publications are somewhat less stable than the publication counts.  
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Figure 3 

  

 

3. Increasing concentration 

Stylized fact 3 in the introduction predicts that the concentration of output for a given group 

of scientists tends to increase over time. We explore whether this holds in our data using a 

conventional measure of inequality, the Gini coefficient and Lorenz plots. We show the 

evolution over time of the Gini coefficients for publications and impact factor-weighted 

publications in Figure 4. Research age is defined as the time since the physicist published 

their first paper.7 For publications, concentration measured by the Gini is slightly noisy in 

the first couple of years and is then flat. The Gini for cite-weighted publications declines until 

about research age 18 and then is mostly flat throughout the research career. Both show a 

very slight increasing tendency after research age 20. 

 
7 The initial research age varies from age 21 to age 45, which means that the Gini in the later years is based on 

fewer observations than that for research ages of 20 or less. However, using the more limited balanced panel 

and setting the starting age to 21 for all physicists produces roughly the same conclusion, a flat Gini for 

publications and cite-weighted publications.  
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Figure 4 

 

Figure 5 shows Lorenz curves for the balanced sample at different ages for citation-weighted 

publications (unweighted publications look much the same). As the research age increases, 

the Lorenz curve moves closer to equality and looks like it is converging, with ages 24, 30,  

and age 35 almost coinciding. So the distribution of physicist productivity is unequal but 

does not become greater over time, contradicting stylized fact 3 (increasing concentration).  
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Figure 5 

 

V. Regression estimates 

To look more closely for evidence of cumulative advantage in future productivity in the 

presence of heterogeneity, we estimated a series of simple panel regression models for 

publications and cite-weighted publications that included both fixed effects and lagged 

cumulative productivity. The models were estimated using the entire sample of physicists 

and years, for ages 21 to the last age of publication for each physicist. 

There is a life cycle effect in the publication series for most researchers, where publication 

rates increase at an increasingly slower rate with age, eventually peaking sometime during 

the 40s or 50s  (e.g., Hall et al. 2007). In Figure 6 we show the geometric means of the two 

publication counts across all physicists in the sample as a function of their age. Both show 

this pattern with publication counts apparently peaking in the early 50s, while cite-weighted 

counts peak earlier, due to the truncation of cites for later papers. Note that the numbers are 

based on fewer physicists at the later ages, both due to truncation and because they age out. 

At age 84, there is only one (highly productive) physicist remaining in the sample, hence the 

spike at that age.  
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Figure 6 

 

It is well-known that linear models including dummy variable models that control for age, 

cohort, and time period are not identified because in most settings, age is a simple linear 

function of cohort and the current period. Hall et al. (2007) investigated the interpretation 

of regressions based on scientist publication data that attempt to include full sets of dummies 

for age, cohort, and year. Note that when fixed individual effects are included in a regression, 

they will subsume the cohort effects, so full age and year effects will not be identified. Our 

approach to identification here is twofold: first, we use a quadratic in age with and without 

a full set of year dummies. Second, we estimate while including either random age and age 

squared coefficients across researchers  or a cohort specific quadratic in age.  

The models we consider are the following:8 

1. Panel random effects with the log of the counts as the dependent variable. 

2. Panel fixed effects with the log of the counts as the dependent variable. 

3. A random coefficient version of OLS where each physicist has his or her own set of 

coefficients, and they are assumed to be drawn from a distribution with mean and 

variance. (Swamy 1970) 

4. Poisson fixed effect model for the counts. 

5. Negative binomial fixed effect model for the counts. 

 
8 Note that an investigation of the functional form of the relationship between current publications and past 

cumulative publications revealed that the relationship was approximately linear in the log, as specified here. 
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The results are shown in Table 3. Note that the coefficient of gender is not identified when 

we use fixed effects, except in the negative binomial case. For publications, gender is rather 

insignificant, whereas females have lightly higher cite-weighted publications, unless year is 

controlled for. This is presumably because the number of women in the sample increases 

over time and those who entered early are selected to be more productive. The Hausman 

test for models 1 and 2, clearly rejects the random effects model in favor of one with fixed 

effects. With the exception of the random coefficient model, all the models deliver the same 

qualitative and quantitative result: lagged cumulative productivity is strongly positively 

related to current productivity, above and beyond any average fixed difference across the 

physicists. A doubling of lagged cumulative publications leads to fifty per cent more 

publications in the current year, while a doubling of lagged cite-weighted publications leads 

to one-third more cite-weighted publications. 

The fixed effect models in columns 2, 4, 5, and 6 have a low peak productivity age of about 

20-25, and a substantial role for lagged productivity. Clearly lagged productivity can account 

for a great deal of the age-publication profile, leading to somewhat nonsensical peak age 

effects. Model 6 shows that adding year effects makes little difference to the estimates once 

we control for lagged productivity and fixed individual effects.  

The exception to these estimates is the random coefficient model. For this model, each 

physicist is allowed to have his own age-publication profile, but the estimates are averaged 

in such a way that those with high variance have lower weight. So the model is somewhat 

more flexible at the physicist level. These estimates have peak productivity ages that are 

closer to those in Figure 6, and a somewhat weaker cumulative advantage effect, 

presumably because average productivity for each individual is imperfectly controlled for.  

The final column shows the results for our balanced panel of 886 physicists and the negative 

binomial fixed effects sample. Although the estimates for this sample differ slightly 

quantitatively, they are qualitatively similar to those for the whole sample and confirm a 

substantial dependence of current productivity on past productivity in the presence of fixed 

productivity effects.  
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Table 3 

 

The random coefficient results in Table 3 both suggest that the age-productivity relationship 

is different for different physicists. In particular, we know that the citation counts will be 

lower for physicists with more recent birth dates, and that they will peak sooner, due to the 

truncation at 2023. This prediction was confirmed by plotting the age-productivity 

distribution by birth year (not shown). To accommodate this variation, we allowed the age 

(1) (2) (3) (4) (5) (6) (7)

Method RE FE Random coeff. Poisson FE Neg. Bin. FE Neg. Bin. FE Neg. Bin. FE

Dep. Var. Log count Log count Log count Count Count Count Count (bal.)

Age -0.0095** 0.0133*** 0.2147*** 0.0019 0.0276*** 0.0142*** 0.1115***

(0.0039) (0.0043) (0.0105) (0.0095) (0.0032) (0.0033) (0.0074)

Age squared -0.0002*** -0.0004*** -0.0025*** -0.0004*** -0.0006*** -0.0006*** -0.0015***

0.0000 0.0000 (0.0001) (0.0001) 0.0000 0.0000 (0.0001)

Peak age (derived) -23.6 17.8 42.3 2.6 22.6 12.7 36.9

(14.1) (3.8) (0.7) (12.5) (1.6) (2.3) (0.7)

Log (cum. pubs) lagged 0.4850*** 0.4230*** 0.1158*** 0.6153*** 0.5586*** 0.5136*** 0.5129***

(0.0067) (0.0080) (0.0141) (0.0194) (0.0075) (0.0076) (0.0112)

Gender -0.0585*** 0.0295 -0.0246 0.0610

(0.0174) (0.0309) (0.0318) (0.0448)

Year dummies no no no no no yes no

Log likelihood -49,225.9 -130,605.1 -110,728.6 -109,856.0 -57,143.2

Chi-squared 13,614.4 2,572.5 4,844.1 20,984.8 . 13,146.4

Degrees of freedom 4 2 3 3 4 32 4

Age 0.0428*** 0.0798*** 0.6980*** 0.0156 0.0357*** 0.0290*** 0.1231***

(0.0085) (0.0093) (0.0313) (0.0173) (0.0034) (0.0034) (0.0085)

Age squared -0.0010*** -0.0013*** -0.0091*** -0.0006*** -0.0007*** -0.0006*** -0.0017***

(0.0001) (0.0001) (0.0005) (0.0002) 0.0000 0.0000 (0.0001)

Peak age (derived) 20.6 29.6 38.2 12.5 24.9 22.7 35.7

(2.4) (1.5) (0.6) (10.4) (1.2) (1.5) (0.5)

Log (cum. cites) lagged 0.5333*** 0.4806*** 0.1681*** 0.3599*** 0.3536*** 0.3344*** 0.3438***

(0.0074) (0.0089) (0.0174) (0.0205) (0.0037) (0.0039) (0.0052)

Gender -0.1542*** 0.0424** 0.0186 0.0952***

(0.0442) (0.0177) (0.0179) (0.0247)

Year dummies no no no no no yes no

Log likelihood -102,289.2 -4,774,667.9 -233,153.5 -232,204.2 -124,106.2

Chi-squared 13,149.0 2,054.1 757.2 17,159.7 . 10,169.0

Degrees of freedom 4 2 3 3 4 15 4

Number of observations 53,555 53,555 53,555 53,555 53,555 53,555 30,158

Number of physicists 1,435 1,435 1,435 1,435 1,435 1,435 887

Standard errors are robust and clustered on physicists. 

The last column is for balanced data ages 21-55 only. 

Regression Estimates

Publications

Cite-weighted publications
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and age squared coefficients to vary by birth year (cohort) in the balanced sample 

regressions  shown in Table 4.9  

Table 4 

 

Table 4 shows linear regression, Poisson, and negative binomial estimates for the model 

with lagged cumulative counts of publications or citations, gender when identified, and birth 

year-specific age and age squared, both with random physicist effects and fixed effects. We 

conducted Hausman tests for random versus fixed effects, although not all of them produced 

valid estimates in our sample. The main conclusion from these tests was that random effects 

were valid for publication counts, but rejected soundly for cite-weighted publications.  

Allowing for birth-year specific age profiles makes little difference to the estimates of  

cumulative advantage. The fixed effects negative binomial estimates for publications show 

an elasticity of 0.51 with respect to lagged publications, while the fixed effects negative 

 
9 We combined birth years 1938-1940 because they were sparse. Therefore there were 29 birth years (1940-

1968) with 2 coefficients each, for an additional 58 coefficients.  

(1) (2) (3) (4) (5) (6) (7)

Method RE FE Poisson RE Poisson FE Neg. Bin. RE Neg. Bin. FE Neg. Bin. FE

Dep. Var. Log count Log count Count Count Count Count Count

Log (cum. pubs) lagged 0.4733*** 0.4133*** 0.6082*** 0.5435*** 0.6425*** 0.5059*** 0.4835***

(0.0085) (0.0099) (0.1106) (0.0232) (0.0110) (0.0117) (0.0118)

Gender -0.0487** -0.0874* -0.0141 0.0524 0.0241

(0.0246) (0.0501) (0.0301) (0.0464) (0.0466)

Year dummies no no no no no no yes

Hausman test FE vs RE (d.f.)

Log likelihood -26,772.7 -70,260.5 -65,396.2 -61,736.8 -56,971.3 -56,716.9

Chi-squared 10,010.2 14,080.2 5,831.7 14,531.6 13,431.5 .

Degrees of freedom 60 58 60 59 60 60 79

Log (cum. cites) lagged 0.4740*** 0.3908*** 0.2595*** 0.2594*** 0.3703*** 0.3312*** 0.3188***

(0.0106) (0.0129) (0.0334) (0.0334) (0.0054) (0.0055) (0.0056)

Gender -0.2026*** -0.0688 0.0314 0.0661*** 0.0555**

(0.0683) (0.5711) (0.0234) (0.0254) (0.0254)

Year dummies no no no no no no yes

Hausman test FE vs RE (d.f.)

Log likelihood -57,099.0 -2,621,178.9 -2,612,211.2 -131,798.3 -123,828.6 -123,690.8

Chi-squared 8,606.7 4,037.9 1,666.9 11,507.0 10,622.0 .

Degrees of freedom 60 58 60 59 60 60 112

Standard errors are robust and clustered on physicists. 

30,124 observations on 886 CNRS physicists aged 21-55.

193.6 (57)*** 2007.3 (60)***

Each set of estimates includes age and age-squared interacted with a complete set of dummies for the birth year of the physicist. 

Publications

Cite-weighted publications

0.6 (33)

NA 38.2 (30) NA

Regression Estimates with separate age coefficients by birth year
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binomial estimates for cite-weighted publications have an elasticity of 0.33 with respect to 

lagged citations. Thus we can conclude from these basic regressions that there is evidence 

that past publication success contributes to future success, controlling for overall 

differences in researcher productivity and birth-year specific age-productivity profiles.  

VI. Conclusions 

In this paper we investigated several of the predictions of cumulative advantage in scientific 

research productivity using a larger set of data than most prior investigations in this area. 

We first looked at the evidence for three stylized characterizations of scientist productivity: 

Lotka’s Law, the stability of ranks over time, and the increased concentration of output over 

the careers of researchers. We found only limited support for these predictions among our 

CNRS physicists. Typically only 50-60 per cent of output was contributed by 20 per cent of 

physicists rather than the 80 per cent predicted by Lotka’s Law.  

Although the correlation of physicist rankings from year to year was fairly high, reaching 0.6-

0.7 at the end of their careers, it was by no means constant over the whole career, yielding 

mixed results for stability of the rankings. Finally, the concentration of output across 

physicists did not increase as predicted, but was roughly constant, with a Gini of 0.5 for 

publications and 0.68 for cite-weighted publications.  

Although the evidence for cumulative advantage was fairly weak when we looked at the 

stylized facts often predicted, regressions that included lagged productivity (publications or 

cite-weighted publications) produced strong evidence that cumulative advantage was 

present even when we included fixed effects that allowed for each physicist to have his or 

her own average productivity. In fact, when we allowed a separate age quadratic for each 

birth year cohort, a Hausman test accepted random effects in average productivity, which 

implies that average productivity differences are random and unrelated to past productivity. 

In other words, cumulative advantage is more important in generating the observed 

differences in publication productivity over the career.  

However, we caution that CNRS physicists are a selected group, with continuous research 

support that does not depend on the repeated acquisition of grant funds over the career. 

Therefore our findings may not generalize to other settings, such as university researchers 

in the United States. In future work, we hope to compare our sample here with physicists in 

Germany and the US, in an effort to learn something about the productivity of different 

systems of supporting basic research and science.  
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A. Constructing the sample 

The source of our sample was two panel datasets supplied by the CNRS at two different 

points in time, 2005 and 2015. Each contained the full publishing career to date of the 

physicists present in that year, as well as their gender, birth year, and rank (Charge de 

Recherche or Directeur de Recherche, roughly corresponding to assistant and full professor 

ranks at the university). These data have already been analyzed in other ways by Mairesse 

and Pezzoni (2015) and Mairesse et al. (2019).  

Although we started with these physicists as our sample, the actual data on number of papers 

published each year and number of citations was newly obtained from OpenAlex (December 

2022, February 2023, and February 2024 editions, Priem et al. 2022). This means that the 

time series for each physicist is no longer censored by failure to appear in one of the panels.   

The complete population of CNRS physicists numbered 1,490. We lost a few physicists either 

because name disambiguation was impossible (for example, Yuan Lu and Christopher Smith) 

or because we found no data on Open Alex.10 Our population was therefore 1,479 physicists, 

approximately 17 per cent of whom are female. To construct our sample, we required that 

their first publication be age 45 or earlier and that they have at least one cite to their 

publications over the whole period.11 This reduced our estimation sample to 1,439 

physicists, or 95 per cent of the population. A probit for the probability of being in the sample 

as a function of birth year and gender revealed that there was no selectivity with respect to 

those characteristics (which are the only ones we have for physicists that were not found on 

Open Alex).  

We use two versions of the sample data: an unbalanced version that includes as many 

observations as possible for each physicist (up to 64 years) and a balanced version that is 

truncated at 35 years of data (age 21 to 55) for each physicist. We show some simple 

statistics for these two samples below. The top panel includes all years for each physicist, 

while the bottom panel truncates each one at age 55. The truncated sample has slightly lower 

publications per year and slightly higher cite-weighted publications per year, whereas the 

total number of citations and publications is lower for both, because they are measured at 

age 55 rather than at the end of the career. 

 
10 We spent a considerable amount of time searching on the internet for those we could not find on Open Alex, 
checking for name variants, use of married names, and so forth. This procedure allowed us to retrieve the 

majority of those not found on a first pass.  

11 It is likely that the majority of those with a first publication after age 45 are missing some of their data, as 

they frequently had names that were more difficult to disambiguate via web searches.  
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Table A1 

 

The reason the balanced panel is so much smaller than the unbalanced panel is that many 

physicists are too young for us to observed their full productivity until age 55. Note that the 

birth year for the unbalanced panel ranges from 1938 to 1986, whereas for the balanced 

panel it stops at 1968 (=2023-55). Correspondingly, the balanced panel has slightly fewer 

females due to the earlier cohort age and the fact that there is increasing participation by 

women over time. 

Figures A1-A4 show the characteristics of the sample and the balanced sample. Figure A1 

shows that the physicists in the sample were born between 1938 and 1986, which means 

that the youngest in our sample are aged 36 at the end. As discussed above, those in the 

balanced sample were born n 1968 or earlier. Figure A2 shows that the age of first 

publication is generally in the mid to late twenties, although there are a few between 30 and 

40.  

Variable Obs Mean St. dev. Median IQ range Min Max

Publications per year 55,109 4.8 7.5 3 6 0 329

Cite-weighted pubs per year 55,109 128.4 356.3 26 120 0 20,143

Total publications 1,439 184.2 196.2 130 146 2 2,233

Total cite-weighted pubs 1,439 4,916.1 6,445.5 2,750 4,172 1 59,117

Gender (M=0, F=1) 1,439 0.171 0.377 0 0 0 1

Year of birth 1,439 1,962.8 12.5 1964 20 1938 1986

Publications per year 31,080 4.3 7.0 2 6 0 109

Cite-weighted pubs per year 31,080 131.3 371.8 21 116 0 11,554

Total publications to age 55 888 150.3 155.4 110 132 1 1,569

Total cite-weighted pubs to 55 888 4,594.8 6,038.2 2,574 4,370 6 58,778

Gender (M=0, F=1) 888 0.162 0.369 0 0 0 1

Year of birth 888 1,954.8 8.4 1956 15 1938 1968

Simple statistics for physicist sample

Unbalanced

Balanced
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Figure A1 

 

Figure A2 
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Figure A3 shows that the vast majority of physicists in our sample published their latest 

paper between 2020 and 2022, although a very few stopped publishing before that. Finally, 

Figure A4 shows that the latest age at which they publish is more than 40 for the sample, 

with a significant drop off around age 68 probably due to retirement. Truncation accounts 

for the large number whose last publication is before then; for the balanced sample the 

physicists whose last publication is before age 55 have been deleted.  

Figure A3 
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Figure A4 

 

 

B. Results from estimation on individual physicists’ data  

Huber (1998) argues that individual inventor output (patents) is fit well by Poisson and does 

not exhibit overdispersion, but that the individual means differ which produces 

overdispersion in the aggregate. That is, the data is well-described by initial productivity 

differences, and observed patents that are determined by a simple Poisson with varying 

mean productivity. However, his data may have low power at the individual level. We have 

a much larger and longer sample, so we repeat this analysis here to see if his conclusions still 

hold.  

We estimated a negative binomial model on each physicist to see what the distribution of 

overdispersion was, and whether the Poisson could be accepted at an individual level. 

Because the typical publication pattern for a physicist is hump-shaped, we included a 

quadratic in research age in the negative binomial regression and then tested for 

overdispersion. We also estimated a gamma model for the individual means, which would 

be appropriate if the distribution for the panel was negative binomial.12 Table B-1 presents 

 
12 The negative binomial distribution can be generated by compounding individual Poissons with means λi, 

i=1,…,N with a gamma distribution on the λs. 

0

10

20

30

40

50

60

21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84

Age at last publication

Sample Balanced sample



Hall-Mairesse CNRS physicists 27 March 2024 

27 

 

some results for three different sets of estimates: the unbalanced and balanced samples with 

controls for age and age-squared, and the balanced sample without those controls. 

Table B-1 

 

The top panel of Table B-1 shows results for the number of publications and the bottom panel 

for cite-weighted publications. Column (1) contains results for the unbalanced panel, column 

(2) for the balanced panel with age and age-squared included and column (3) for the 

balanced panel without controls for age. The first row in each panel shows the share of 

physicists whose data failed the t-test that the data were Poisson, while the second row 

shows the share that fails a chi-squared (likelihood ratio) test of the negative binomial versus 

the Poisson.13 The bottom two rows in each panel pertain to a binned chi-squared test that 

the distribution of average productivity across physicists conforms to a gamma distribution. 

We also display the results from column (1) graphically below, in Figures B-1 and B-2.  

 
13 In both cases, the critical value used was 5 per cent, so under the null with independent processes for each 

physicist, we would expect a value here of about 5 per cent.  

(1) (2) (3)

Observations (physicists) 55,109 (1,439) 29,890 (854) 29,890 (854)

Share failed t-test for Poisson 52.8% 50.2% 19.7%

Share failed chi-squared for 

Poisson
50.9% 49.4% 88.8%

Chi-squared for neg. binomial on 

physicist productivity (df=50)
84.9

p-value for neg. binomial on 

physicist productivity
0.001

Share failed t-test for Poisson 66.4% 72.0% 97.8%

Share failed chi-squared for 

Poisson
99.9% 100.0% 100.0%

Chi-squared for neg. binomial on 

physicist productivity (df=50)
130.1

p-value for neg. binomial on 

physicist productivity
0.000

Publications

Comparison of individual models

Cite-weighted publications

(2) Balanced sanple of 35 years each; Poisson regressions include age and age squared. 

(3) Balanced sanple of 35 years each; Poisson regressions include only a constant.

(1) Unbalanced sample for 9-64 years each; Poisson regressions include age and age 

squared.

59.5

0.168

78.5

0.006
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Figure B-1 

 

Figure B-2 
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The form of the log gamma distribution used to estimate the curve is the following: 

log ( ; , ) ( 1) log log log ( )f x x xα β α β α β α= − − + − Γ  

The estimated parameters of the gamma distribution for publications are α = 1.63 and β = 

2.91 with a mean of 4.74 and variance of 18.55. For cite-weighted publications, the 

parameters were α = 1.03 and β = 123.9 with a mean of 127.1 and variance of 15,887. 

Our conclusion is that a simple Poisson model does not fit the individual paper count time 

series, unweighted or weighted by citation counts. Nevertheless, the distribution of average 

paper counts (both weighted and unweighted) is fairly close to a gamma distribution, 

especially during the first 30 years of the career (the balanced sample), although gamma is 

marginally rejected. The implication is that a more complex process than Poisson is driving 

both the paper and citation count distribution, leaving room for cumulative advantage.  
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C. Modeling the data parametrically 

This appendix describes an exploration of the distribution function for the publication and 

impact factor data. We examined four simple functions: 1) Poisson; 2) Negative binomial; 3) 

Log normal; and 4) Pareto.  The first and last are one parameter functions and the second 

and third are two parameters. The densities for these four models are the following: 
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The parameter k for the Pareto is simply the minimum of the distribution, and cannot be 

estimated using conventional maximum likelihood methods (the likelihood is monotonic in 

k, so the maximum is at the lower bound). The minimum value of x in the data is zero, so in 

the estimation, we set k to 0.01.14 

We estimated each of these models on our two datasets: annual publications and citation- 

weighted publications for each physicist. Heteroskedastic standard error estimates were 

clustered by physicist. To compare the models, we computed the means and variances based 

on the parameter estimates and the results are shown in Table C1. Three things to note about 

the results: 1) the estimated Pareto coefficient in all cases was significantly less than one, 

implying no mean or variance, so we do not show those results. 2) the implied means and 

variances for the level data were very large in the case of the log normal model, so we show 

the mean and variance for the log data in that case. 3) These simple models can always match 

the mean of the data exactly; the only deviations from the data are the variances which 

clearly show overdispersion relative to the simple Poisson or even the negative binomial.  

 

 
14 Clearly the likelihood is degenerate for k=0, so we use a small number for k. The estimates are not very 

sensitive to the choice of k, as long as it is small (less than one).  



Hall-Mairesse CNRS physicists 27 March 2024 

31 

 

Table C1 

 

We illustrate the implied fit of the data using CDFs for the two estimated distributions 

together with the empirical CDF in Figures C1 and C2. They are similar and show a clear 

preference for the negative binomial model on all four figures. The negative binomial model 

fits the data on publications almost exactly, whereas for the citations it overpredicts at lower 

levels and has lower dispersion than in the empirical data. Our conclusion is that the negative 

binomial model is a clear starting point for modeling these data, but that as in Appendix B, 

citation-weighted publications are more dispersed than would be implied by that model.  

Mean Variance Mean Variance

Data in logs -0.7 13.91 0.69 27.43

Log normal -0.70 13.91 0.69 27.43

(0.05) (0.13) (0.06) (0.20)

Data in levels 4.95 65.88 123.8 119,514.3

Poisson 4.95 4.95 123.8 123.8

(0.14) (0.14) (4.3) (4.3)

Negative binomial 4.95 44.32 123.8 75,675.1

(0.16) (3.21) (4.3) (5,361.6)

Physicist careers range from 9 to 64 years.

Estimated means and variances from some 

parametric models

Estimated mean and variance from the maximum likel ihood estimates using 

various distributions.

Standard errors are robust to heteroskedasticity and within-physicist 

correlation over time.

Panel of 1,398 physicists, 53,119 obs

Publications Citation-weighted
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Figure C1 

 

Figure C2 
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D. Fitting the permanent income model to the journals data 

In this appendix we look at these data using the lens of panel time series analysis, using a 

panel time series model familiar from economics, the permanent-transitory income model.  

This model is based on a component that evolves as a random walk (the permanent part), 

which is suitable for capturing the persistence in citations. To this is added a transitory 

“measurement” error. The model is the following: 

 
, 1

               1,..., ; 1,...,p

it it it

p p

it i t it

y y u i N t T

y y ν−

= + = =

= +
 

where v is a permanent shock orthogonal to u, and the variance of u and v for fixed t are 

assumed common among all physicists, but differ across t. The physicist is denoted by i and 

the year by t, with the number of physicists N large and the number of years T relatively 

short. We will therefore try to allow for time-varying variances although it turns out that not 

all of them are identified in this simple model.  

We assume that u and ν are serially uncorrelated. That is, 
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Differencing, we obtain the following model: 

 
, 1it it i t it

y u u ν−∆ = − +  

With variance covariance matrix for the journal vector Δy: 
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0
( )

0
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σ σ σ ϕ σ

σ

 + + −
 

− + + − ∆ =
 − + + −
 

−  

 

We estimate this model by generalized least squares using the second moments as the data 

observations, and the fourth moments as the weighting matrix. We ignore all the 
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covariances beyond the first one, as they are predicted to be zero and will not contribute to 

the estimation. In practice, they are zero to three decimal points in the data.  

In what follows, we also generalize the model slightly to allow for a coefficient on the 

“permanent income” (in this case, the permanent paper productivity): 

 
, 1 , 1

          1,..., ; 1,...,

( )

p

it it it

p

it i t i t it it

y y u i N t T

y y u

β

β ν ν− −

= + = =

= − + +
 

 We show in Appendix E that this model is equivalent to an ARMA(1,1) model for y. The 

generalization comes at a cost, because the model must now be estimated in levels, with a 

far more complex covariance matrix structure, one which is nonzero in all its elements. 

1. Identification 

Assume that we have T periods of data on y, and therefore T-1 periods on Δy. This implies T-

1 equations for the variance and T-2 for the first covariance. There are potentially T 

parameters σ2 and T-1 parameters φ2 to be estimated, which is two too many, regardless of 

the length of the series. One solution is to impose constancy on the “measurement error” 

variance, as we do here. But it would also be possible to model the trend in these parameters 

in order to impose constraints.  

2. Results 

The variables analyzed are the logarithms of the publications and cite-weighted publications 

for each physicists and year. We use the unbalanced panel of 1439 observations. First we 

computed the correlogram for the level and growth of the publications and cite-weighted 

publications, removing overall year means before doing so: 
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Figure D-1 

 

Figure D-2 
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These correlograms clearly show the structure one would expect given the permanent 

income model sketched above. We can estimate the ratio of φ2 to σ2 for both publications 

and cite-weighted publications using the following equations and assuming constant 

variances:   

 

2 2

2

1

( ) 2 0.470,   3.88

( , ) 0.212,   1.82

Var y

Cov y y

σ ϕ

σ−

∆ = + ≈

∆ ∆ = − ≈ − −
 

Thus φ2 is approximately 0.046 for publications and 0.24 for cite-weighted publications 

and the ratios of the “true” variance to the measurement error variance are approximately 

0.22 and 0.13 respectively.  

Using the log of cite-weighted papers, the MA(1) model estimates with small standard 

errors. The main result is that the variance of the permanent component of publications 

and cite-weighted publications declines slightly over time after the initial increase, which 

contradicts the idea of increasing dispersion in performance. Here is a graph of the results: 

Figure D-3 

 

3. Time series models for panel data 

The permanent-transitory model above is a special case of an ARMA(p,q) model with p=1 

and q=1 (Hall 1987; Ejrnaes and Browning, 2014). Appendix E derives the relationship 
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between the transitory-permanent and ARMA (1,1) model in more detail and we use the 

ARMA form here in order to rely on known estimation results for that model. Although 

there are a number of references from the 1980s describing how to estimate panel ARMA 

models, the key reference for implementation is Macurdy (1982). The basic idea is to form 

a covariance matrix of the relevant variable(s), including all covariances for a given 

individual (firm or journal). One then expresses the elements of the covariance matrix as 

functions of the ARMA parameters and the variance of the disturbance. Estimation is 

performed by GLS on the covariance matrix with the fourth moments of the matrix as 

weights.  

Due to the N-asymptotics, one can allow variances and other parameters to vary over time. 

However, because there are N separate time series, it is also necessary to assume a 

distribution of initial conditions, as otherwise they create an incidental parameters 

problem. Macurdy shows that if one assumes p (the order of the AR) initial conditions 

distributed with mean zero and variance rk, k=1,…,p, it is possible to estimate a consistent 

version of the model. The idea is not that new, but it is useful to have the result in this 

context. In our case, this means there is a single (p=1) free variance for the initial condition.  

This model was implemented in TSP (Hall and Cummins 2017) using the SUR command, 

with the results shown in Table D-1 below. 
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Table D-1 

 

Coeff. S.E. Coeff. S.E. Coeff. S.E.

alpha 1.000 1.000 0.995 0.003

mu 0.580 0.017 0.816 0.006 0.798 0.014

Variance of 

initial 

condition

3.910 0.320 3.716 0.346

SIG1 0.500 0.024 0.551 0.042 0.549 0.043

SIG2 0.237 0.018 0.590 0.033 0.592 0.033

SIG3 0.356 0.009 0.639 0.031 0.644 0.031

SIG4 0.005 1.157 1.037 0.032 1.044 0.032

SIG5 0.225 0.028 1.348 0.028 1.354 0.028

SIG6 -0.293 0.024 1.685 0.028 1.689 0.029

SIG7 0.495 0.016 1.784 0.030 1.787 0.030

SIG8 0.438 0.019 1.782 0.031 1.785 0.031

SIG9 0.689 0.014 1.830 0.031 1.831 0.031

SIG10 0.487 0.018 1.830 0.032 1.830 0.032

SIG11 -0.248 0.034 1.823 0.032 1.821 0.032

SIG12 0.283 0.033 1.822 0.032 1.818 0.033

SIG13 0.305 0.030 1.722 0.031 1.721 0.031

SIG14 0.291 0.030 1.721 0.030 1.716 0.030

SIG15 0.391 0.022 1.671 0.033 1.667 0.033

SIG16 0.550 0.015 1.682 0.031 1.679 0.031

SIG17 0.072 0.108 1.668 0.033 1.667 0.033

SIG18 0.401 0.022 1.665 0.031 1.665 0.032

SIG19 0.143 0.057 1.558 0.033 1.556 0.033

SIG20 0.672 0.013 1.536 0.033 1.537 0.033

SIG21 0.299 0.026 1.547 0.034 1.547 0.034

SIG22 0.403 0.022 1.560 0.032 1.562 0.032

SIG23 0.318 0.019 1.453 0.033 1.456 0.033

SIG24 0.318 0.019 1.504 0.030 1.496 0.030

ratio* 0.233 0.019 0.040 0.003 0.047 0.006

Chisq (df)

p-value

* ratio of signal to total variance (derived).

Sample is 1287 observations on 24 years

Method of estimation is GLS on second moments.

Panel time series estimates for citation-weighted publications

276.0 (83)

MA(1) on differences

0.000

11001.5 (21)

0.0000.000

ARMA(1,1)MA(1) on levels

278.0 (84)

NA



Hall-Mairesse CNRS physicists 27 March 2024 

39 

 

The estimated permanent and transitory variances from the ARMA(1,1) model are shown 

in Figure D-4 below.  

Figure D-4 

 

The conclusion is that the model generates rapidly increasing variance across the 

physicists in the first seven years, followed by a very slow almost stable variance in the 

shocks afterwards. 

E. Time series models for panel data 

In this appendix, we show that the permanent-transitory income model is observationally 

equivalent to an ARMA(1,1) model. The details of the Macurdy (1982) method of 

estimating this type of model using panel data are then presented.  

Suppressing the physicist (i) subscript for the moment, the permanent-transitory (P-T) 

income model has the following general form:  
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ν

β β

= + =

= − + ≡
 

where v is a permanent shock orthogonal to u and yp is unobservable permanent income. 

Eliminating yp, this model can be rewritten as follows : 
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 ( ) ( 1) ( ) ( 1) ( )y t y t t t u tβ ν βν− − = − − +   

The ARMA(1,1) model has this slightly different form: 

 ( ) ( 1) ( ) ( 1)y t y t t tα ε µε− − = − −   

If u, ν, and ε are normal, these two processes are equivalent. Even if the distributions are 

non-normal, the first two moments coincide, as both the left-hand and right-hand sides of 

the two above equations are equivalent. It is possible to show this rigorously using the full 

covariance matrix for y and to derive the identities that relate the unknown parameters in 

the two processes:  

 

2 2

2 2 2 2 2

2 2 2

( / )

(1 ) (1 )

(1 ) (1 )( / )

u

ν ε

ε ν

ε

β α

σ µ α σ

σ µ σ α σ

µ α µ α σ

=

=

= + − +

 = + − + 

  

For variances to be positive, these equations impose a condition on the parameters of the 

ARMA(1,1) process: the sign of μ and α must be the same (the second equation). 

Macurdy (1982) shows how to estimate this model using panel data with large N (the 

number of units in the panel) and finite T (the number of time periods). To implement his 

method for our data, I use equations (12) and (13) from his paper with νit = yit-y.t (year 

means already removed from the dependent variable y), p = q = 1, T=24, and a simple 

change of notation from a to α and m to μ.15 Without loss of generality, I also normalize μ0 

at unity so there is only a single moving average parameter μ=μ1. Equation (12) becomes 

the following, where I have suppressed the stacked notation over time: 

 ( ) ( 1) ( ) ( 1)       1,...,     1,...,i i i it t t t t T i Nν αν ε µε= − + − − = =   

In equation (13), Macurdy shows via repeated substitution for lagged ν that this model is 

equivalent to the following: 

 
15 Note that I have reversed the signs of mu and alpha from his presentation, in order to conform to conventional 

ARMA(1,1) notation.  



Hall-Mairesse CNRS physicists 27 March 2024 

41 

 

 

1

0

0

1

1

( ) ( ) (0)
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i j j t i
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j j

t B t j B r

B
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Because the order of the autoregressive process is one, there is one initial condition for this 

model, ri(0). Given a panel of observations and the assumption of a random initial 

condition, the model has unknown parameters α, μ, the variance of the initial condition 2

0σ  , 

and the variances of ε, 2

t
σ  , t=1,…,T. By constraining α to be unity, one can also use the same 

model to estimate the random walk MA(1) model on level data. This is subtly different from 

estimating the MA(1) model on differenced data, because the latter does not allow 

estimation of the variance of the initial condition. 

The proposed estimation method is quasi-maximum likelihood, which is a version of 

method of moments. In the case where the variances of the random draw ε are allowed to 

vary over time, we form each element of the covariance matrix for each year t separately. 

For our ARMA(1,1) model, the equation above yields the following sequence for ν: 
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The covariance matrix elements are therefore the following: 
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And so forth up to the Tth set of observations. We compute the mean of each of these 

moments in the data, and then match them to the theory using the fourth moments of the 

data as a weighting matrix. There are T+3 unknown parameters and T*(T-1)/2  moments, 

so the model is over-identified if T>4.16  

 

 

 

 

 

 
16 In practice, when T is fairly large, the number of moments can be quite large (equal to 276 in our case), and 

those at long lags do not add a lot of information, so it is possible to estimate using only a subset of moments, 

as we did here. We chose to use the first 110 moments, up to the covariances at the fourth lag.  




