The Surge in Patenting by U.S. Semiconductor Firms: An Empirical Analysis

Bronwyn H. Hall
Department of Economics, UC Berkeley

Rosemarie Ham Ziedonis
Wharton School, University of Pennsylvania

STEP Board IPR Conference
Washington, D.C.
February 2, 2000
Motivation

• Overall increase in US patenting since early 1980s
 • Kortum and Lerner (1998)
 – “friendly court” hypothesis
 – “regulatory capture” hypothesis
 – “fertile technology” hypothesis
 – “managerial improvements” hypothesis

• Patents still ineffectual for firms in most industries?
 • Yale Survey 1982
 • Carnegie Mellon Survey (CMS) 1994

• Why, then, do firms patent?
Why Semiconductors?

• Among the industries *least* reliant on patents to appropriate returns to R&D (Yale, CMS)
 • Pivotal role of lead time, secrecy and complementary manufacturing capabilities

• Yet witness a dramatic surge in patenting by semiconductor firms during past decade.
Patent Propensity:
US Semiconductor Firms (SIC 3674), 1979-94
Patent Propensity:
Semiconductors vs. All US Manufacturing, 1979-94

Successful Pat. Apps/R&D $92m

Year

All Manufacturing (SIC 2000-3999)
Semiconductors (SIC 3674)
Computing and Electronics (SIC 357x, 3861)
Pharmaceutical (SIC 283x)
Objectives

I. Examine actual changes in firm-level patenting behavior within one broad technological area over time.
 – sample of firms in US semiconductor industry (sic3674)
 • Pro: able to identify R&D expenditures primarily directed toward semiconductor-related technologies
 • excludes “systems” firms and non-US firms (AT&T or IBM; Hitachi)

II. Investigate differences among types of firms
 – manufacturers with large patent portfolios before US patent rights were strengthened, or “pre-CAFC” (TI)
 – manufacturers that exhibit a dramatic rise in patent propensity post-CAFC (LSI Logic, National Semiconductor)
 – firms entering the industry during the “pro-patent” era
 • specialized design firms (Xilinx, S3)

III. Gain insights from interviews
Empirical Analysis

• Is the surge in patenting driven by:
 – TI alone? (regulatory capture)
 – capital-intensive manufacturers? (strategic response)
 • Increased cost and risks associated with infringement
 – Increased demands for royalties
 – Uncertainty regarding owners of technological inputs
 – Escalating costs, rapid depreciation of fabs
 • Costs of halting production
 • Time and costs associated with “designing around”
 • Increased value of patents as “legal bargaining assets”
 – Or…a simple change in the mix of firms over time?
 • Emergence of design firms
Empirical Analysis: Data

- 110 US semiconductor firms (SIC 3674)
- Compiled entity-level patent portfolios
- Matched with Compustat data
- Produced sample of 97 firms in unbalanced panel, 1980-94.
Basic Specification

\[Y = \text{number of successful patent applications by firm } i \text{ in year } t \]

Regressors:
- Firm Size (log of employment)
- R&D Intensity (log; deflated)
- Capital Intensity (log; deflated)
- \(D=1 \) if firm entered after 1982
- \(D=1 \) if firm is manufacturer (v. specialized design firm)
- \(D=1 \) if firm is Texas Instruments
- Time dummies, 1980-1994
Estimating the patent production function

\[E[p_{it}|X_{it}] = \lambda_{it} = \exp(X_{it}\beta + \gamma_t) \]

MLE using “robust” standard errors

• Interpretation:
 • Coefficients measure elasticity of patenting w.r.t. X
 \[(1/\lambda_{it}) (d\lambda_{it}/dX_{it}\beta) = \beta\]
 • Year-to-year change in \(\gamma = \) approximate growth rate in patenting propensity controlling for X:
 \[\gamma_t - \gamma_{t-1} = \Delta \log \lambda_{it} - \Delta X_{it}\beta\]
 \[= \text{growth in expected patents less growth predicted by } \Delta X\]
Summary of Econometric Results

• Clear surge in patenting by US semiconductor firms since the early-to-mid 1980s.
Residual Growth in Patenting:
US Semiconductor Firms (Relative to 1980)
Summary of Econometric Results
(continued)

• Strong, positive “TI effect” (regulatory capture?)

• Surprisingly strong, positive role of capital investments on patenting decision (strategic response)
 – Patenting by manufacturers is 2-3x as responsive to changes in capital investments than to changes in R&D

• Design firms are roughly 37% more likely to patent, controlling for firm characteristics
 – Patenting decision depends heavily on size and R&D intensity (not capital investments)
Interviews

• Persons directly involved in patent strategy
 • TI
 • 3 capital-intensive manufacturers
 • 3 specialized design firms (2=post-1982 entrants)

• Main questions
 • Overview of IP and licensing practices
 • Evolution of patent strategy, 1975-98
 • Internal management changes (in R&D or patenting)
 • General views of US patent system
Summary of Interview Results

- **Capital-intensive manufacturers**
 - Strong demonstration effect of TI and Kodak-Polaroid cases
 - “Ramping up”; “harvesting latent inventions”
 - “If in doubt, patent”
 - Need to safeguard assets; avoid halt in production
 - “Exclude before you’re excluded”
 - Need to improve bargaining position with other patent owners
 - Control outflow of royalty payments
 - Secure royalty income
 - Gain access to external technology on more favorable terms
 - Changes (except TI) in management of patent process
 - “Patent advocacy committees”; increased bonuses; goals

- **Design firms**
 - Secure rights in niche product markets
 - Critical role of patents in attracting venture capital
 - One firm “opts out”
Conclusions

• Quantitative and qualitative evidence that “pro-patent” shift altered semiconductor firms’ incentives to obtain US patents

 – Not driven by direct “regulatory capture” effect alone
 – Witness “patent portfolio races” among large, capital-intensive firms.
 – Upsurge may reflect managerial change
 • Primarily in the management of the patenting and licensing process
Policy Implications

• Role of the patent system
 – Induce R&D investment
 • In semiconductors, alternative mechanisms more effective?
 – Provide socially beneficial disclosure of information
 • In semiconductors, product life cycles may outpace the issuance of related patents.
 • Consistent concerns that US patent standards are too low

• Stronger patent rights represent an implicit tax on innovation?

• Do stronger patent rights enable, or deter, entry?
 – Current evidence is mixed.