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Introduction
The standard cross-sectional earnings model used by labor economists to
address wage-related issues has the form:

logw; = ¢+ f(Exzpy;d) + BS; +e;

where Exp; represent i's experience (years of work/years since entering the labor
market) and S; represents i's education (measured in years). This is known as
a "human capital earnings function" (HCEF) or "Mincer wage regression". The
derivation of this equation will be discussed in Economics 250b. An important
fact about HCEF's is that var[e;] is typically much larger for older workers i.e.,
the model is conditionally heteroskedastic. An "informal" explanation for this
is that
e; = P(Exp;) - a; + €

where a; is i's "ability", and 9 (E=zp;) is a ’loading factor’ that rises with expe-
rience, reflecting the fact that as people are in the labor market longer, their
"true ability" is revealed to the market, and they are rewarded accordingly.
This model implies that

var(e;|Exzp;] = (W(Exp;))? - var(a;] + var|e;|Ezp;)



which will be rising with experience if (.) > 0. (Another explanation for
heteroskedasticity is that vare;] rises with experience reflecting the sorting of
people to jobs with better person-specific match quality, and the assumption
that workers receive some share of match quality rents).

Tables 1a and 1b at the end of the notes are from Lemieux (2006), and
show the residual standard deviation of log wages for men and women in dif-
ferent education and experience groups. Notice that this rises a LOT with
experience, (It’s also true residual standard deviation is much higher for better
educated groups). The same pattern is true in longitudinal data, as we will see
in various papers to be discussed.

Aside - Statistical Learning Models (Bayesian updating)

In many applications a decision maker is uncertain about the true value of
some key parameter, and receives new information over time about the value
of the parameter. The natural way to model this class of problems is using
Bayesian updating with conjugate priors. The classic reference is de Groot,
1970.

Normal learning.

True state variable is 7, with -0o < n < co. Prior on 7 is N(mg,1/Hp).
The observed signal is s = n4-¢, with € ~ N(0,1/h), independent of n. It can
be shown that posterior for 7 is

N Homg + hs 1
Ho+h "Hy+h)’

With a sequence of observations s; = n+¢;, with e, ~ N(0,1/h), the posterior
after the 1st observation has mean m; and precision H; given by these formulas.
Preceding sequentially, the posterior after the t** observation, conditional on the
mean and precision after the (¢ — 1)*%, is normal with mean and precision

Hyamy—y +hse _ Homo+h S sk

He 1 +h Hy + th
H, = Hi1+h=Hy+th

my =

Note that
t
1 . .
me = 3 Z sy the mean of the signals up to period ¢
k=1

H, — th so Hi — %var[et] the variance of the mean of the signals up to ¢
i

This formula has had many applications in labor economics, e.g. models of

learning about match quality. Notice that the mean of the posterior evolves

like an AR(1) with a rising coefficient on the mean in the previous period, and

a falling coefficient on the most recent signal (which is decreasingly informative,

given the accumulation of information).



Beta-Bernoulli
Suppose y; is distributed as a Bernoulli with P(y: = 1) = p. The conjugate
prior for p is Beta(a, ). For p ~ Beta(o, ) :

var[p] s
(a+B)2(1+a+p)

The density is f(p) = rriaigyp® (1 — p)? 1. Note that Beta(1,1) = U(0,1).
The posterior for p, given a draw y; is Beta(y; + o, 1 —y1 + 3). Applying this
sequentially, the posterior after ¢ realizations with S, successes is Beta(S; +
a,t — S; + B), implying the posterior mean and variance are

St-l-Ol 1

E[P|St] 7t+a+ﬂ - ;St
_ (St a)t-S+8) 5t x (1- 35)
Wl = et PRitatsin Tt

A nice application of this class of learning models is to problems of the form
"waiting for a prize that will arrive with unknown probability p." If the model
is formulated so the agent "opts out" of the wait when p is low, then optimal
behavior is to wait until n unsuccessful draws, then opt out. In his thesis, Larry
Katz applied this idea to the behavior of workers on temporary layoff, who have
to decide whether to continue waiting for recall, or start looking for a new job.

Public (symmetric) learning

Faber-Gibbons (FG) lay out the basic "public learning" model. Their no-
tation is as follows: w;; = wage of person ¢ in #** year in labor market (so t
= experience); y;: = output of person i in year ¢ (assumed to be public); n; =
ability of person ¢ (assumed to be fixed but unknown); S;, X; = schooling and
some other time invariant observed characteristics; Z; = invariant characteris-
tic that is observed in the market but not seen by econometrician). Their basic
model of output is:

Yit = Yi T €5t
where ¢;; is an i.i.d. shock. They also consider a model with a homogeneous
experience effect:
Yit = Yi + h(t) + €.

Finally, they assume
wis = Elys| S, Xy Ziy yar, Yaz, - yie—1) + h(2) .

In other words, the wage is the market’s best estimate of the time-invariant
productivity effect y; given observed stuff.



This simple setup has 3 key predictions. First, consider a regression of the
wage in period ¢t on S;, X :

wi = oy + B.S; + 7. X + e (1)

Let E*[v|u] denote the linear projection of v on u. From the assumed wage-
setting model (ignoring h) :

E*wy|Ss, Xi] = E*[ElyilSs, Xiy Zs, yi1, Ys2y o Yir—1] | Siy Xi]
= E"[E*(E[ylSi, Xi, Zi, yi1, Yiz, -Yis—1] | i, Xiy Zi, yit, Yo, -Yat—1] | Siy Xi]
= E"[E*yi|Si, Xi, Ziy vix, Yios - Yit—1] | S, Xi]
= E'[y;|S:, Xi),

where we are using the law of iterated projections (line 1 to line 2 and line 3
to line 4) and the fact that E*[E[u|v]|v] = E*[u|v]. From the last line it follows
that the projection coefficients do not depend on ¢. This means that even though
employers are gradually learning (and thus have to rely less and less on S;, X;)
the projection coeflicients from models that ONLY condition on §;, X; don’t
change. This same argument works if we include h(t).

A second prediction comes from comparing wages in consecutive periods:

wit = Ely|Si, X5, Ziy vit, Yioy - Yir—1]
wii-1 = Bl Xi, Zi,yi1, Yiz, o Yir—2].

Thus we can write:
Wit = Wig—1 + (g
where
E[C4|Si, X5, Zs, yi1, viz, - Yit—a] = 0.

The innovation in wages from ¢ — 1 to ¢ has to be independent of all information
available at ¢ — 1 so that means the wage follows a Martingale process (ie a
random walk). Notice that we would also expect var(s;;] to be declining in ¢.
Notice too that if

wit = Eys|Ss, Xi, Ziy yi1, Yiz,y - Yir—1] + ()
then
Wy = Ah(t) + wir—1 + St

so the experience-adjusted wage residual is a random walk.

A third prediction comes from considering a piece of "background informa-
tion": B; that is available to us (the outside observers) but NOT to the market.
FG suggest AFQT and the presence of a library card in the family home when
a kid was a teenager as two examples of B. Consider the residual of B from a
regression on S;, X; and the first period wage w;; :

B} = B; — E*[B;|S;, X;,wi).
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and period-specific regressions of wages on S;, X;, and B} :
Wit = o + B8 + v X + 1B + €.
Since by construction B} is orthogonal to the other regressors:

covjwst, Bf]

e var[B}]

1
= F[Bﬂcov[wil + (oo + Cig + oo+ Cpy B

t
1
= —z: . B*
'Ua/r[Bf] T=2COU[C'Lt7 1,]

Now assuming that cov[n;, B;] > 0, we would expect that the innovations would
be positively correlated with By : i.e., employers are gradually learning whatever
is in B. In this case m; is an increasing function of ¢.

In their empirical work, FG use longitudinal data from the NLSY to do 3
things. First, they show that the regression coefficient of wages on schooling
is roughly constant with age. Second, they show that if you add information
about AFQT and library cards, and allow time-varying coefficients, then the
coefficients of both variables rise with experience. Third, they fit a covariance
model to wage residuals and test a random walk model (similar to the exercise
we did in class). A feature of FG’s empirical work that other researchers have
not used is the analysis of wage levels rather than logs.

Altongi-Pierret (AP)

AP build on FG - particularly on FG’s third implication - but focus what
happens to the regression coefficients at different levels of experience from a
regression of wages on schooling and B; (rather than B}). This turns out to
have some interesting implications. They also build up a "log wage" model,
which is arguably more useful for empirical work than a wage levels model. The
starting model for log productivity of person 4 in period ¢ is:

Yit =18 + 02 +n; + h(t;) (2)

where S; is schooling, #; is a set of "background factors" (like AFQT) that
are not known to employers but are observed by econometricians, n; is ability,
and h(t;) is a homogeneous experience effect (as in FG). (Note that apart from
the experience part, log productivity is a constant). Employers have a set
of variables ¢; which they observe and we don’t, that they use to set wages.
Assume their conditional expectations are linear in (Siyaqi) :

z = BElz|Si,q] +vi=v1¢+725 + v 3)
i = En|S, ¢+ e =01q 4+ 028+ (4)
In each period employers observe y;; + €;;, which is equivalent to observing
dit = Yt — Byl Si, qi]
= Ov;+e ey



So if there was no €;; they could observe §v; +e; and form a "perfect" prediction
for y;. In period t it is assumed that employers set the wage for individual ¢
equal to the expected level of productivity, given the information set

Dy = {¢s, Si,di1, dio, ...dse }

(This timing convention is a little unusual — its as if wages are set at the end of
the period). Define

by = 6v;+e; — E[ov; + e;| Dy
Yit — Eyt| Di)

Using (2) and (3a, 3b), actual log productivity is:
Yar = (1 + 075 + a2)8; + (61 + o) s + E[0v; + e3| Dig] -+ g + h(ts),
so the level of productivity is:

Yii = exp(yi)
= exp((r 4 dvy + @2)8; + (07, + o1)g)
-exp(B[0v; + €;| Diz]) - exp(h(t;)) - exp(gu;e)

Taking expectations conditional on D;; (and noting that only the last term is
random, given Dy;) :

ElYy|Dy] = exp((r+dyp+ a2)Si + (0, + a1)a)
- exp(E[0v; + €| Dit]) - exp(h(t;)) - Elexp(usy)| Dit]

Assuming that the wage is set equal to expected productivity, and taking logs,
we get:

log(wage) = log E[Yi| D)
= (r+06vy +02)S; + (071 + a1)gi + E[6v; + €;|Dig) + h(t;) + log Elexp(;;)| D]

Wit

The last term is similar to the error component that arises in taking first dif-
ferences from a log-linearized intertemporal labor supply function, and would
disappear if we could interchange log and E operators. Notice that building
up from a log productivity model we get a log wage model with a "learning"
component E[dv; + €;|Dy].

Now consider what happens if we regress wy on (S, 2;) (after partially out
any experience effect):

Wip = bst8; + buezi + Py

The formulas for the coefficients can be written as:

byt = (T + 572 + a2) + (671 + C‘51)1—‘q,s|z + Pt = byo + Py
bZt = (6’71 + al)l—‘q,z|s + @, = sz + q>zt



where I'g ;| is the regression coefficient from a regression of ¢ on s, partialling
out the effect of 2, and 'y .|, is the parallel regression coefficient from a regres-
sion of ¢ on z, partialling out the effect of s, and the ® terms are coefficients
from the auxillary regression:

E6v; + €| Dyg) = @y - 8y + Pt + 25 + Kig

A first observation is that &,y = ®,5 = 0 because the information set at time
0, Dy, only has (s;,¢;), and v; and e; are orthogonal to (s;,¢;) (see equations
3a, 3b). The terms bso and b, reflect the projection of what employers see at
the beginning of a career on what we (as econometricians) see. A second set
of results — the main results derived by AP — are that ®,; and ®,; have a very
special structure:

(Dst = etq)s
(I)zt = 6t(I)za

where
covlB[dv; + & D], vi]

0, =

K cov[6v; + e;, 4]

and ®, and @, are the coefficients from an auxilliary regression:
6vi+e; =858+, 2+

with
®, = _erz,s

Notice that with learning over time, 8; is rising toward 1. As this happens,
the coefficient on schooling is declining while the coefficient on z; (i.e., AFQT)
is rising. Morever, there is a strong testable implication that the change in
one of these coefficients is related to the change in the other by the observable
factor T'; s - which is just the coeficient from a univariate regression of z on
s. Intuitively, at the start of the career, the observed wage appears to be "too
strongly" correlated with the observable factor s and "too weakly" correlated
with the unobserved factor z. As employers learn they "unload" some of the
explanatory power from s to z.
This special structure all arises because

cov[s;, E[dv; + €;|Dy]] = 0

and
covlz;, E[0v; 4 €;| Dyt]] = covlvi, E[6v; + e;| D]

It is not hard to see that if you have a set of regression models like:

y(k) =a+bix1 + boxg +e



and cov[y(k),z1] = 0, then

covly(k), zo]
var|ze|z]
covly(k),za] _ covly(0),zo]
cov[y(0), z2) var([zs| 1]
cov[y(k) @]

COU[’y(O), 1122]

bo(k) =

X bz(O)

This is the source of the ”6;” structure for ®,;. As an exercise, show that in
the case where cov[y(k),z1] = 0, there is a simple relation between by(k) and
b1 (k).

( AP use this setup to address the question of whether employers "statistically
discriminate" against young black workers by using race as an ”s” variable that
is negatively correlated with AFQT (an obvious z variable). If they do so, then
we would expect the coefficient on race to fall (in magnitude), and the coefficient
on AFQT to rise in magnitude as employers learn about the proportion of true
abiltity that is contained in AFQT. They also try a related analysis in which
a sibling’s wage (or father’s education) are treated as 2" variables. Overall
they find that the effect of black race increases (in magnitude) with experience,
while the effect of the "hidden" variables also tend to rise. (See Tables 1 and
2 from their paper at the end of the notes).

Lange (2006) uses the set up of AP plus the "normal learning model" at the
start of the notes to parameterize the rate at which the coefficients on ”s” and
"%" change with experience. (see his equations 20-21). The implied rate of
learnlng is pretty fast — most of the evolution of the coefficients is completed
within 5-7 years of labor market entry,

Asymmetric learning

A question that has long interested labor economists is whether information
about employee ability is only directly observable by the firm (or firms) who
employ the worker. Such a possibility sets up a potential "winner’s curse", in
which outside firms can only bid away workers who are worth less than they
have been offered. One solution is to assume (as in Gibbons and Katz) that
some workers leave for exogenous reasons. Another possibility — assumed in Li
(2011) - is that uninformed outsiders bid using randomized strategies. Some
of the setup in Li’s paper is very close to models of affiliated value auctions
in which there is a better informed bidder, as in Hendricks and Porter (AER,
1988).

Gibbons-Katz (GK)

GK have a 2-period model. A worker has productivity  ~ F, with N <
n < ng. Prior to period 1, everyone is uninformed and workers are randomly
assigned to firms. In period 1 a worker has output 1 - so the incumbent employer



is perfectly informed. In period 2, the workers output will be:

n+s if she stays with incumbent

7 if she moves to a new firm

where g > 0 reflects some kind of firm-specific gain. It is assumed that E[n] >
Ny, + s (for reasons described below). The timing between period 1 and 2 is as
follows:

- the incumbent decides to lay off workers with n < ng

- the non-laid off receive offers from outside bidders. The bid is wy,,
which will be a function of 7y

- the incumbent matches the offer for any worker with n 4+ s > wy,,
declines to match for the others

- a fraction p of the non-laid-off leave regardless of their wage offer

- the remaining fraction 1 — p of the non-laid-off leave iff their offer is
not matched.

GK first solve for the optimal offer of outsiders. Assuming competition, this

has to satisfy:

0 = w(Bnn>ng)—wn)+
(L=pwPrln+s < wmln2ng]- (Eling <1 < wm — 8] — wp)

The first term is the profit to be made on exogenous leavers. These are positively
selected (1 > ng). The second term is the profit (or loss, actually) to be made
on the workers who are left unmatched. This equation — GK’s equation (1) -
has a solution for relevant values of ng. Notice next that given wy,, there will
in fact be a range of s who are not laid off, but who are "unmatched", iff

wman+3

Finally, define n* by:
n* + 8= Enln > n"]

If F' is log concave, then #E[nm > n*] < 1, and since the lhs of this equation
is less than the rhs for n* = n,, and is above the rhs when 1* = ny there is a
solution. GK show that if np < 1* then the solution for w,, will satisfy the
condition that w, > ny +s. In fact there is range of equilibria with different
values for 775 in the interval n; < np <n* that will all work.




The last question is: what is the wage for laid off workers? In the equilibrium
this will be
w' Il = Elnln < ng]

So to summarize: the lowest-productivity workers are laid off / fired. The next
group (in the range from 7 to wy, —s) are all "allowed to leave" by not having
their offers matched. These workers, plus a fraction u of everyone above the
cutoff who quit for exogenous reasons, all leave voluntarily and earn w,,. The
"stayers" also all earn wyy,.

In their empirical work, GK compare wage changes from the old job to the
new job for 2 kinds of movers: people displaced by plant closings, and people
who were laid off for other reasons (the "lemons" of their title). They find that
the displaced workers do better than the other types of laid off workers.
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Table la: Within-group variance of wages by experience-
education cell for men, 1973-75 and 2000-02

Within-group variance Workforce share

1973-75 2000-02 Change 1973-75 2000-02 Change

(1) (2) (3) (4) (5) (6)

A. By education and experience
Dropout:

1-10 0.118 0.083 -0.035+* 0.065 0.035 -0.030
11-20 0.169 0.130 -0.038* 0.052 0.026 -0.026
21-30 0.170 0.154 -0.017+ 0.055 0.025 -0.029
31+ 0.180 0.162 -0.019% 0.123 0.028 -0.095
High school graduates:
1-10 0.130 0.130 0.000 0.137 0.082 -0.055
11-20 0.145 0.181 0.035* 0.094 0.085 -0.009
21-30 0.1le62 0.196 0.034+ 0.069 0.086 0.017
31+ 0.188 0.217 0.029+ 0.074 0.058 =-0.016
Some college:
1-10 0.143 0.152 0.008 0.076 0.077 0.001
11-20 0.173 0.204 0.031* 0.036 0.075 0.039
21-30 0.216 0.227 0.012 0.025 0.072 0.048
31+ 0.245 0.256 0.011 0.020 0.046 0.026
College graduates:
1-10 0.161 0.224 0.064~* 0.048 0.061 0.014
11-20 0.204 0.276 0.072* 0.022 0.063 0.041
21-30 0.220 0.310 0.091* 0.017 0.051 0.034
31+ 0.299 0.332 0.033 0.009 0.024 0.015
Post-graduates:
1-10 0.217 0.316 0.099%* 0.034 0.023 -0.010
11-20 0.324 0.324 0.000 0.023 0.033 0.009
21-30 0.327 0.302 -0.025 0.015 0.033 0.018
31+ 0.420 0.369 -0.051 0.006 0.016 0.010

B. Weighted Average (using alternative shares)

Actual 0.173 0.214 0.041

shares
1973-75 0.173 0.185 0.012
shares
2000-02 0.191 0.214 0.023
shares
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Table lb: Within-group variance of wages by experience-
education cell for women, 1973-75 and 2000-02

Within-group variance Workforce share

1973-75 2000-02 Change 1973-75 2000-02 Change

(1) (2) (3) (4) (5) (6)

A. By education and experience
Dropout:

1-10 0.099 0.056 -0.043* 0.057 0.026 -0.031
11-20 0.130 0.090 =-0.040%* 0.039 0.015 -0.024
21-30 0.125 0.106 -0.019% 0.050 0.018 -0.032
31+ 0.139 0.123 -0.017~* 0.103 0.023 =-0.080
High school graduates:
1-10 0.106 0.108 0.002 0.179 0.070 -0.109
11-20 0.145 0.157 0.011~+ 0.095 0.072 -0.023
21-30 0.144 0.172 0.028* 0.092 0.086 -0.006
31+ 0.162 0.178 0.01le* 0.097 0.074 -0.023
Some college:
1-10 0.118 0.137 0.019% 0.077 0.091 0.014
11-20 0.134 0.198 0.065%* 0.025 0.081 0.057
21-30 0.152 0.209 0.057* 0.020 0.084 0.064
31+ 0.160 0.220 0.060%* 0.020 0.054 0.034
College graduates:
1-10 0.134 0.179 0.045* 0.055 0.076 0.020
11-20 0.170 0.260 0.090* 0.015 0.058 0.043
21-30 0.173 0.262 0.088~* 0.014 0.052 0.038
31+ 0.195 0.254 0.059* 0.010 0.021 0.010
Cellege post-graduates
1-10 0.154 0.239 0.085* 0.022 0.026 0.004
11-20 0.238 0.259 0.021 0.012 0.027 0.015
21-30 0.204 0.217 0.013 0.011 0.034 0.023
31+ 0.280 0.234 -0.046 0.006 0.013 0.007

B. Weighted Average (using alternative shares)

Actual 0.136 0.183 0.047

shares
1973-75 0.136 0.148 0.012
shares
2000-02 0.149 0.183 0.034
shares

Notes: “*” indicates that the change in the variance is
significantly different from zero at the 95 percent
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TABLE 1
THE EFFECTS OF STANDARDIZED AFQT AND SCHOOLING ON WAGES
Dependent Variable: Log Wage; OLS estimates (standard errors).

Panel 1—Experience measure: potential experience

Model: o)) (2) 3) (4)
(a) Education 0.0586 0.0829 0.0638 0.0785
(0.0118) (0.0150) (0.0120) (0.0153)
{(b) Black —0.1565 —0.1553 0.0001 -0.0565
(0.0256) (0.0256) (0.0621) (0.0723)
(c) Standardized AFQT 0.0834 —0.0060 0.0831 0.0221
(0.0144) (0.0360) (0.0144) (0.0421)
(d) Education —0.0032 —0.0234 —0.0068 -0.0193
experience/10 (0.0094) (0.0123) (0.0095) (0.0127)
(e) Standardized AFQT = 0.0752 0.0515
experience/10 (0.0286) (0.0343)
(f) Black * experience/10 —0.1315 —0.0834
(0.0482) (0.0581)
R? 0.2861 0.2870 0.2870 0.2873
Panel 2—Experience measure: actual experience instrumented
by potential experience
Model: 1) (2) (3) 4)
(a) Education 0.0836 0.1218 0.0969 0.1170
(0.0208) (0.0243) (0.0206) (0.0248)
(b) Black -0.1310 —-0.1306 0.0972 0.0178
(0.0261) (0.0260) (0.0851) (0.1029)
(c) Standardized AFQT 0.0925 —-0.0361 0.0881 0.0062
(0.0143) (0.0482) (0.0143) (0.0572)
(d) Education = —0.0539 —0.0952 -0.0665 —0.0889
experience/10 (0.0235) (0.0276) (0.0234) (0.0283)
(e) Standardized AFQT = 0.1407 0.0913
experience/10 (0.0514) (0.0627)
(f) Black * experience/10 —0.2670 —-0.1739
(0.0968) (0.1184)
R2 0.3056 0.3063 0.3061 0.3064

Experience is modeled with a cubic polynomial. All equations control for year effects, education inter-
acted with a cubic time trend, Black interacted with a cubic time trend, AFQT interacted with a cubic time
trend, two-digit occupation at first job, and urban residence. For these time trends, the base year is 1992, For
the model in Panel 1 column (1) the coefficient on AFQT and Black are .0312 and —.1006, respectively, when
evaluated for 1983. In Panel 2 the instrumental variables are the corresponding terms involving potential
experience and the other variables in the model. Standard errors are White/Huber standard errors computed
accounting for the fact that there are multiple observations for each worker. The sample size is 21,058

observations from 2976 individuals.



TABLE 1I |

Tug EFFECTS OF FATHER'S EEDUCATION, SIBLING WAGES, AND SCHOOLING ON WAGES |

Dependent Variable: Log Wage; Experience Measure: Potential Experience. ‘
OLS estimates (standard errors)

T
Model: @ (2) 3 4 (6) (6) 40 P8
(a) Education 0.0511 0.0630 0.0568 0.0659 0.0666 0.0730 0.0704 0.0734
(0.0160) (0.0166) (0.0163) (0.0167) (0.0129) (0.0140) (0.0130) (0.0140)
(b) Black —0.2074 —-0.2076 ~0.0509 —0.0878 -0.2212 —0.2209 —0.0705 -0.0793
(0.0276) (0.0276) (0.0846) (0.0871) (0.0250) (0.0250) (0.0668) (0.0692)
(c) Log of sibling’s wage 0.1802 —0.0260 0.1817 0.0010
(0.0328) (0.0913) (0.0329) (0.0940)
(d) Father’s education/10 0.0826 —0.0187 0.0829 0.0314
(0.0366) (0.1000) (0.0364) (0,1030)
(e) Education * 0.0107 0.0012 0.0066 —0.0008 0.0023 —(.0029 —0,0002 —-0.0027
experience/10 . (0.0131) (0.0136) (0.0133) (0.0136) (0.0104) (0.0113) (0.0105) (0.0113)
(f) Log of sibling’s wage * 0.1796 0.1571
experience/10 (0.0749) (0.0770)
(g) Father’s education * 0.0867 0.0441
experience/100 (0.0813) (0.0841)
(h) Black * experience/10 -0.1311 -0.1004 -0.1270 -0,1194
(0.0686) (0.0704) (0.0641) (0.0563)
R? 0.3183 0.3196 0.3191 0.3200 0.2748 0.2760 0.2765 0.2756
Observations 10746 10746 10746 10746 18523 18623 18523 18523
Individuals 1441 1441 1441 1441 2594 2594 2594 2694

7 T
Bxperiencs is modeled with & cubic polynomial, All equations control for year effects, education interacted with a cubic time trend, Black interacted with 2 cubic time trend,
two-digit occupation at first job, and urban residence. Columns (1)-(4) control for sibling’s gender and the log of sibling’s wage interacted with a cubic time trend, Columns (5)-(8)
control for father’s education interacted with a cubic time trend, For these time trends, the base year is 1992. For the models in columns (1) and (5), the coefficients on log of sibling
wage and father’s education are .1680 and .0357, respectively, when evaluated for 1983. Standard errors are White/Huber standard errors computed accounting for the fact that thers
are multiple observations for each worker.
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Table 1
The Effects of AFQT and Schooling in a Linear Specification

0(5/

(1) 2) (3} ) (5} 6) @ [
Model: I
Education 05B6"* .0829%# 0678"* 0824+ 0887+ 1024 0731 0846* |
(0118) (0150) (:0059) (:0061) (0034) (:0041) (:0038) (:0039) |
Black —.1565%" —.1553* =.0434M* —.0427"%
(0256) (0256) (0152) (0152) 1
Female —.2346%r 23427 |
(0092) (0092) |
Sundardized AFQT 0834%* —.0060 1010+ 0490 1303+ 0686** 1124 0618"% |
(.0144) (.0360) (.0102) (.0121) (.0043) (.0092) (,0068) (.0081) i
Education x experience/10  —.0032 —.0234* -.0030 —.0219'"+ —.0147'* —.0311" —.0027 ~.0165%* |
(.0094) (.0123) (.0051) (.0059) (.0035) (.0044) (.0034) (.0037)
AFQT x experience/10 0752 07401+ 0729 06104 |
(:0286) (0119) (.0099) (0077) |
R? .2861 2870 .2557 2588 1528 1538 2988 3004 |
Sample Male, nonhispanic, year<  Male, white, year < 2000, Male, white, year < 2000, Both genders, year <2000,
1993, main and supple- main NLSY sample main NLSY sample, me- main NLSY ‘sample )
mentary NLSY sample dian regression including |
FeTos
No. of individuals 2,978 2,277 2,290 5,336
No. of observations 21,058 24,410 25,778 55,181

Mori—The coelficients of regrossions of log wages on sehooling ard Armed Forees Gualificntion Test (AFQT) seores,
as well as demographic controls, are shown. Colunms | and 2 report the results reported h{
and Pierret (2001) includes a cubie in enperience. All specifications examined n this article allow for a full et of wxperience dummn

are found for the sample of white males from the muin (nationall

resulta are robust 1o reinserting the xeros into the s:uné:i

obained on the full sample for the time period 1979-78, For o deser

Huber standard eeron :\tcmlnl'm§
i !

" Statistical significance at the

** Statistical significance at the 9% level

representative) sample of the MLSY for the period 1979-98,
e and performing a median regression. In cols, 5 and 6, | repont pseudo-R"s, Colunns 7 and 4

Altonji and Pierrer (2001) that motiva

lingarly inseructed with the experience coefficlont

s wtory. The specification in Altonji
, Columing 3 and 4 show that the results
olumig & and & investigate whether e

refor o the vesults

on of the data, see the appendix. In cols. 14, 7, and 8, the standard eevers {in parentheses) ave Whitd/
for potential correlation ar the individual level,
5% level,



