
0.1 The micro "wage process"
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Introduction
As discussed in lecture 4, an important question for interpreting the reaction

of hours to wage changes is to what extent wage innovations are expected to
persist. Pistaferri assumes that innovations are "permanent": i.e., that an
appropriate model for individual wages is:

logwit = ωi + uit ,

uit = uit−1 + ζit

where the ζit’s are uncorrelated over time. This is a "pure random walk" model,
in which E[logwit+j | logwit] = logwit. A more general model is

logwit = ωi + xitβt + uit + eit (1)

uit = αuit−1 + ζit ,
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where eit and ζit are serially uncorrelated and uncorrelated with each other.
This model includes a fixed component ωi, a component attributable to ob-
servables xit, an AR(1) component uit, and a "purely transitory" component
eit. We will discuss how to estimate the parameters of this model using simple
method of moments. A standard method is to first regress logwit on xit, and
treat the residuals rit as estimates of the combined error component ωi+uit+eit
. (There is a more sophisticated approach which we may discuss briefly in class).
Then we form the covariance matrix C of the residuals and fit a model to the
vector of elements of C. Let

σ2ω = var[ωi]

σ2u0 = var[ui0],

vt = var[ζit]

Notice that:we can write

rit = ωi + αtui0 + αt−1ζi1 + ...+ αtζit−1 + ζit + eit

which implies that

var[ri1] = σ2ω + α2σ2u0 + v1 + var[ei1],

var[rit] = σ2ω + α2tσ2u0 + vt + α2vt−1 + ...+ α2(t−1)v1 + var[eit],

cov[rit, ris] = σ2ω + αs+tσ2u0 + αt−svs + αt−s+2vs−1 + ...+ αs+t−2v1, (s < t)

The term σ2u0 represents an "initial conditions" effect: it is the effect of the
dispersion in the pre-sample value of uit, which gradually fades out if α < 1.
It is a matter of algebra to show that if var[eit] is constant, and all the v′ts are
constant (i.e., vt = v), and if σ2u0 = v/(1 − α2),(its "steady state" value) then
the variances of rit are all constant. If var[eit] and all the v′ts are constant but
σ2u0 < v/(1− α2), the variances of rit rise over time.
As written, the model in equation (1) assumes that the permanent compo-

nent of wage heterogeneity (ωi) contributes a fixed amount (σ2ω) to the variance
of wages in all periods, and to the covariances at all leads/lags. If there is "skill
biased technical change", we might expect that differences in wages between
people with different levels of skill will rise over time. One way to build that
idea into (1) is to assume that there are a set of "loading factors" ψt that vary
over time, with ψ1 = 1 for some base period:

logwit = ψt(ωi + xitβt + uit + eit) (2)

= xitβ
′
t + ψt(ωi + uit + eit)

where β′t = ψtβt. Notice that I am assuming here that all 4 components are
scaled by the same loading factor in each period. In general that need not be
true. For example, if you think that eit includes both productivity components
and measurement error, then this component may not get scaled up/down over
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time the same as the pure productivity components. Equation (2) leads to
expressions for the variances and covariances of the wage residuals that are
relatively simple but incorporate an alternative source of non-stationarity. Card
and Lemieux (1994) used a model like (2) to evaluate the role of rising ’return to
skill’in leading to widening wage differences between black and white workers.
Baker and Solon (2003) use a model like (2) to look at earnings dynamics in
Canada.
Several recent studies (eg Haider and Solon, 2006; Schoenberg, 2007) have

argued that the loading factor on the "permanent" component ωi rises with
age (rather than, or in addition to, changing over time). There are several
explanations for this: one is that it takes time for the market to figure out who
is "high ability". Another is that high ability people invest more in on-the-
job training in their youth, depressing their wages relative to their long term
average. The recent paper by Nilsen et al. (2012) shows data from several
different countries suggesting that there is a lifecycle pattern in the loading
factor on the permanent component of earnings.
A third class of earnings models assumes that there are person-specific

growth rates in wages or earnings (for an early version, see Ashenfelter and
Card, 1985). For example, ignoring the x′s and the loading factors, suppose:

logwit = ωi + ρit+ uit + eit (3)

where

σ2ρ = var[ρi]

σρω = cov[ρi, ωi]

0 = cov[ρi, uit]

0 = cov[ρi, eit]

In this setup, the random trend is allowed to be correlated with the permanent
component, but not the transitory components. This implies that:

var[ri1] = σ2ω + σ2ρ + 2σρω + α2σ2u0 + v1 + var[ei1],

var[rit] = σ2ω + t2σ2ρ + 2tσρω + α2tσ2u0 + vt + α2vt−1 + ...+ α2(t−1)v1 + var[eit],

cov[rit, ris] = σ2ω + stσ2ρ + (s+ t)σρω + αs+tσ2u0 + αt−svs + αt−s+2vs−1 + ...+ αs+t−2v1, (s < t)

Notice that a random trend generates a very specific form of non-stationarity,
with quadratic growth rates in the variances and covariances. An interesting
feature of a random trend model is that it implies a positive correlation between
growth rates of wages for the same individual in different periods. Taking first
differences of equation (3):

∆ logwit = ρi + ∆uit + ∆eit

Notice that if eit is an i.i.d. process, then ∆eit is an MA(1) with 1st order
autocorrelation of −1/2. If uit is a random walk, then ∆uit is serially uncorre-
lated. If uit is an AR(1) then ∆uit and ∆uis are correlated, but for t and s
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"far apart", cov(∆uit, ∆uis)→ 0. Thus, one way to look for the presence of a
random trend is to see whether wage changes for the same individual at "long"
lags are correlated. Does someone who had faster wage growth from age 25 to
30 have faster wage growth between 40 and 45?

0.2 Estimation Method

In general, for any specific model of the wage generating process, we can write

vecltr[C] = m = f(θ)

where θ represents the parameters in the wage process. The method of moments
idea is to find a value for θ that gives the "best fit" to the empirical estimates
of m. Call m̂ the estimate of m. In general an element of m̂ is some term in
the empirical covariance matrix Ĉ, say

m̂k = cov[rit, ris] =
1

N

∑
i

ritris =
1

N

∑
i

mki

(since the residuals have zero mean by construction we don’t have to deviate
from means). We can construct the sampling variance of the element m̂k by

1

N

∑
i

(mki − m̂k)2

which is just the variance of the second moment in the sample, divided by N ,
and the sampling covariance between estimates of any two elements m̂k and m̂h

by
1

N

∑
i

(mki − m̂k)(mhi − m̂h).

Under regularity conditions (basically, iid sampling and finite fourth moments),
the vector of estimates of the second moments will have a standard normal
distribution with √

N(m̂−m)→ N(0, V )

Moreover, the matrix

V̂ =
1

N

∑
i

(mi − m̂)(mi − m̂)′

is a consistent estimate of V.

For estimation, one simple choice is "least squares"

min
θ

[m̂− f(θ)]′[m̂− f(θ)]

Various GLS variants are also possible. Consider a positive definite matrix A
(of the right dimension): then we can use the objective:
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min
θ

[m̂− f(θ)]′A[m̂− f(θ)]. (4)

Chamberlain (1982) presented the following theorem. Assume:
1. m̂→ f(θ0) almost surely
2. f is continuous in θ in some neighborhood Θ that contains θ0

3. f(θ) = f(θ0) for θ in Θ⇒ θ = θ0 (i.e, we have identification)
4. A→ Ψ a positive definite matrix

Then the gls estimator θ̂ based on equation (1) converges almost surely to
θ0.
If in addition:
5.
√
N(m̂− f(θ0))→ N(0, V )

6. f is 2x continuously differentiable for θ in some neighborhood of θ0, and

F = F (θ0) ≡ ∂f(θ0)

∂θ

has full rank, then √
N(θ̂ − θ0)→ N(0,∆)

where
∆ = (F ′ΨF )−1F ′ΨVΨF (F ′ΨF )−1.

It can also be shown that the "optimal" choice for A is one such that A→ V −1,
in which case ∆ = (F ′V −1F )−1. Notice that the "least squares" choice A = I
leads to the var-cov:

∆ols = (F ′F )−1F ′V F (F ′F )−1

which looks just like the variance matrix you get in a regression model with
non-spherical errors when you use OLS. In applications we need to estimate F
and V : we will use F̂ = F (θ̂) and some estimate of V̂ .

A nice feature of the "optimal" weight matrix is that under the null, the
minimand

N [m̂− f(θ)]′V −1[m̂− f(θ)]

has an asymptotic χ2 distribution, with degrees of freedom equal to the differ-
ence between the number of moments and the number of elements of θ. This
provides a general specification test of the validity of the model m = f(θ). For
other weighting matrices there is a similar overall goodness of fit statistic:

N [m̂− f(θ)]′R−[m̂− f(θ)]

where R− is a generalized inverse of the matrix R = (I−F (F ′AF )−1F ′A)V (I−
F (F ′AF )−1F ′A). (This matrix has rank at most equal to the difference between
the number of moments and the number of columns of F , which is the number
of elements in θ).
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As a practical matter the "optimal" choice for the weighting matrix can lead
to substantial problems in small samples. This was not well understood at the
time of Abowd-Card, but was pointed out in the paper by Altonji and Segel.
It is generally agreed that when the moments of interest are all (roughly) scaled
the same (as is true when we consider covariances of log wage residuals) the
least squares objective is sensible.
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