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Abstract 
 
In this paper we consider identification and estimation of a censored nonparametric location 
scale model.  We first show that in the case where the location function is strictly less than 
the (fixed) censoring point for all values in the support of the explanatory variables, then the 
location function  is not identified anywhere. In contrast, if the location function is greater or 
equal to the censoring point with positive probability, then the location function is identified 
on the entire support, including the region where the location function is below the censoring 
point. In the latter case we propose a simple estimation procedure based on combining 
conditional quantile estimators for three distinct quantiles. The new estimator is shown to 
converge at the optimal nonparametric rate with a limiting normal distribution. A small scale 
simulation study indicates that the proposed estimation procedure performs well in finite 
samples. We also present an empirical application on unemployment insurance duration 
using administrative level data from New Jersey.  The survival curve for benefit receipt based 
on our new estimator closely matches the Kaplan-Meier estimate in the non-censored region 
and is relatively flat past the censoring point.  We find that incorrect distributional 
assumptions can significantly bias the results for estimates past the censoring point. 
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1 Introduction

The nonparametric location-scale model is usually of the form:

yi = µ(xi) + σ(xi)εi (1.1)

where xi is an observed d−dimensional random vector and εi is an unobserved random

variable, distributed independently of xi, and assumed to be centered around zero in some

sense. The functions µ(·) and σ(·) are unknown. This location-scale model has received

a great deal of attention in the statistics and econometrics literature (see for example Fan

and Gijbels(1996), Chapter 3, and Ruppert and Wand(1994)), and existing nonparametric

methods such as kernel, local polynomial, and series estimators can be used to estimate µ(·)
from a random sample of observations of the vector (yi, x

′
i)
′.

In this paper, we consider extending the nonparametric location-scale model to accom-

modate censored data. Semiparametric (fixed) censored regression models, where µ(xi) is

known up to a finite-dimensional parameter, has been studied extensively in the econometrics

literature -see Powell(1994) for a survey. The advantage of our nonparametric approach here

is that economic theory rarely provides any guidance on functional forms in relationships

between variables.

Censoring occurs in many types of economic data, either because of non-negativity con-

straints, or top coding. To allow for censoring, we work within the latent dependent variable

framework, as is typically done for parametric and semiparametric models. We thus consider

a model of the form:

y∗i = µ(xi) + σ(xi)εi (1.2)

yi = max(y∗i , 0) (1.3)

where y∗i is a latent dependent variable, which is only observed if it exceeds the fixed censoring

point, which we assume without loss of generality is 0.

We consider identification and estimation of µ(xi) after imposing the location restriction

that the median of εi = 0. We emphasize that our results allow for identification of µ(xi)

on the entire support of xi. This is in contrast to identifying and estimating µ(xi) only in

the region where it exceeds the censoring point, which could be easily done by extending

Powell’s(1984) CLAD estimator to a nonparametric setting.
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Our work is motivated by the fact that there are often situations where the econome-

trician is interested in estimating the location function in the region where it is less than

the censoring point. One situation is when the data set is heavily censored. In this case,

µ(xi) will be less than the censoring point for a large portion of the support of xi, requiring

estimation at these points necessary to draw meaningful inference regarding its shape.

Another situation would be estimating relationships in the presence of some sort of con-

straint. Of interest, from say, a policy perspective, would be to estimate how an economic

agent would behave if the constraint were lifted. For example, a labor economist would be

interested in estimating how long the unemployed would stay on unemployment insurance if

the maximum time allowed were increased.

Our approach is based on a structural relationship between the conditional median and

upper quantiles which holds for observations where µ(xi) ≥ 0. This relationship can be used

to motivate an estimator for µ(xi) in the region where it is negative. Our results are thus

based on the condition

PX(xi : µ(xi) ≥ 0) > 0 (1.4)

where PX(·) denotes the probability measure of the random variable xi.

Variations of censored nonparametric models have been studied elsewhere in the litera-

ture. Lewbel and Linton(2002) estimate a nonparametric censored regression model with a

fixed censoring point that is based on a mean restriction on the disturbance term. As condi-

tional mean restrictions are generally not sufficient for identification in censored regression

models (see Powell(1994)), their approach either only attains identification up to an additive

term, or requires much stronger conditions on the tail behavior of the random variables εi

and xi than assumed here. Van Keilegom and Akritas(1999) estimate a nonparametric re-

gression model with random censoring under a mean restriction, and face similar difficulties

when the censoring variable is a fixed point.

The paper is organized as follows. The next section explains the key identification con-

dition, and motivates a way to estimate the function µ(·) at each point in the support of

xi. Section 3 introduces the new estimation procedure and establishes the asymptotic prop-

erties of this estimator when the identification condition is satisfied. Section 4 considers

an extension of the estimation procedure to estimate the distribution of the disturbance

term. Section 5 explores the finite sample properties of the estimator through the results of

a simulation study. Section 6 presents an empirical application to unemployment insurance

2



(UI) duration, in which we estimate the survivor function in the region beyond the censor-

ing point. Section 7 concludes by summarizing results and discussing extensions for future

research. An appendix contains proofs of the theorems.

2 Identification of the Location Function

In this section we consider conditions necessary for identifying µ(·) on X , the support of xi.

Our identification results are based on the following assumptions:

I1 The disturbance term εi is distributed independently of xi, and has a density function

with respect to Lebesgue measure, that is positive and bounded on R.

I2 εi has median 0.

I3 The scale function σ(·) is continuous, strictly positive and bounded on X .

I4 The location function µ(·) is continuous on X .

Remark 2.1 The median restriction in Assumption I2 is different from the usual 0 mean

assumption imposed in the location scale model. Censoring introduces a non-linearity which

makes identification of µ(·) impossible without further assumptions on εi. Conditional mean

restrictions were imposed in Lewbel and Linton(2002) and Van Keilegom and Akritas(1999).

The latter only estimated the location function up to an additive constant, which prevents

using the estimator for prediction/forecasting. The former required strong tail behavior re-

strictions and support conditions on one of the components of xi. Such restrictions rule

out the classical tobit model with bounded regressors, as well as censored models with only

discrete covariates.

The first result is that the location function is not identified anywhere on X if µ(·) < 0

everywhere on X . Its proof is left to the appendix.

Theorem 2.1 (Necessity) Suppose Assumptions I1-I4 hold, and that maxx∈X µ(x) < 0.

Then there exists a function µ̃(·) 6= µ(·) and a random variable ε̃i, where Assumptions I1-I4

still hold with µ̃(·), ε̃i replacing µ(·), εi respectively, such that if we define:

ỹi = max(µ̃(xi) + σ(xi)ε̃i, 0)
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then

L(yi|xi) = L(ỹi|xi) ∀xi ∈ X

where L(yi|xi) denotes the conditional distribution of yi given xi.

Remark 2.2 This result is in contrast to the result in Chen and Khan(2000), who studied

a semiparametric model with µ(xi) = x′iβ0, and considered identification of the finite di-

mensional parameter β0. They show identification of β0 was possible without the conditional

median ever exceeding the censoring point. The above theorem shows their result cannot be

extended to the nonparametric setting.

Our next result establishes the sufficiency of (1.4) for identification of µ(·) on every point in

X . The proof of the theorem suggests a natural estimator of µ(·), so it is included in the

main text.

Theorem 2.2 (Sufficiency) Suppose Assumptions I1-I4 hold, and condition (1.4) holds.

Then µ(·) is identified for all x ∈ X .

Proof : We show identification sequentially. We first show identification for all points where

µ(·) is nonnegative. We then show how identification of µ in this range of the support of

xi can be used to identify µ where it is negative. To show identification in the nonnegative

region, we let x0 be any point which satisfies µ(x0) ≥ 0. Suppose first that µ(x0) = 0. We

will show that µ̃(x0) < 0 or µ̃(x0) > 0 leads to a contradiction. If µ̃(x0) = −δ < 0, let

σ̃(x0) be a positive, finite number. We note by Assumption I1 that cα, when viewed as a

function of α is continuous on [0, 1] and has bounded derivative on any compact subset of

(0, 1). Thus if we let ε̃i denote an alternative error term, by Assumption I2 it must follow

that c̃0.5 = 0, and 0 < c̃α < δ/σ̃(x0) for α ∈ (0.5, 0.5 + ε) where recall δ = −µ̃(x0) and ε is

an arbitrarly small positive constant. Noting that cα > 0 for α ∈ (0.5, 0.5 + ε), we have for

α ∈ (0.5, 0.5 + ε), qα(x0) = max(µ(x0) + cασ(x0), 0) = max(cασ(x0), 0) > 0. Alternatively

we have:

q̃α(x0) = max(µ̃(x0) + σ̃(x0)c̃α, 0) (2.1)

< max(−δ + δ, 0) = 0 (2.2)
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Thus we have found quantiles where qα(x0) 6= q̃α(x0), which shows that µ(x0) = 0 is dis-

tinguishable from negative alternatives. A similar argument can be used to show that it is

distinguishable from positive alternatives, establishing its identification. It is even simpler

to show that points x where µ(x) > 0 are identified. If µ(x0) > 0, and µ̃(x0) 6= µ(x0), then

q0.5(x0) = µ(x0) and q̃0.5(x0) = max(µ̃(x0), 0) 6= µ(x0).

We next show how to identify µ(x) when µ(x) < 0 given that we have identified µ(x0) for

µ(x0) ≥ 0. We first note that since µ(x) and σ(x) are finite by Assumptions I4 and I3

respectively, there exists quantiles α1 < α2 < 1 such that:

qα1(x) = µ(x) + cα1σ(x) > 0 (2.3)

qα2(x) = µ(x) + cα2σ(x) > 0 (2.4)

Thus we have the relationships:

∆q(x) = ∆cσ(x) (2.5)

q̄(x) = µ(x) + c̄σ(x) (2.6)

where ∆q(x) = qα2(x)− qα1(x), q̄(x) = (qα2(x)+ qα1(x))/2, ∆c = cα2− cα1 , c̄ = (cα2 + cα1)/2.

Combining the two previous relationships, if we could identify the fraction c̄
∆c

, then we could

identify µ(x) as:

µ(x) = q̄(x)− c̄

∆c
∆q(x) (2.7)

We use identification of µ(x0) ≥ 0 to identify c̄
∆c

in the following manner. We combine the

following values of the conditional quantile function evaluated at the three distinct quantiles

0.5, α1, α2.

q0.5(x0) = µ(x0) (2.8)

qα1(x0) = µ(x0) + cα1σ(x0) (2.9)

qα2(x0) = µ(x0) + cα2σ(x0) (2.10)

This enables us to identify c̄
∆c

as

c̄

∆c
=

q̄(x0)− q0.5(x0)

∆q(x0)
(2.11)
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which immediately translates into identification of µ(x) from the relationship:

µ(x) = q̄(x)− q̄(x0)− q0.5(x0)

∆q(x0)
∆q(x) (2.12)

This completes the proof of the theorem. �

Remark 2.3 Identification on all points first involves identification of a point where µ(x) ≥
0. As is apparent from the proof, identification is much simpler for points where µ(x) > 0,

and we note that the argument for identification of a point where µ(x) = 0 would be difficult

to translate into an estimator. In the next section, where we propose an estimator for µ(·)
based on our identification results, we therefore assume PX(xi : µ(xi) > 0) > 0.

Remark 2.4 Identification of µ(·) where it is negative involves identification of the quantiles

of the homoskedastic component of the disturbance term. Thus an additional consequence

of condition (1.4) being satisfied is that the quantiles of εi are identified for all α ≥ α0 ≡
inf{α : supx∈X qα(x) > 0}. This result can be used to estimate and construct hypothesis

tests regarding the distribution of εi, as is considered in Section 5. We also note that if the

econometrician were to impose a distributional form on εi, the (known) values of cα1 , cα2 could

be used in (2.7) to identify and estimate the location function, without requiring condition

(1.4).

3 Estimation Procedure and Asymptotic Properties

3.1 Estimation Procedure

In this section we consider estimation of the function µ(·). Our procedure will be based on our

identification results in the previous section, and involves nonparametric quantile regression

at different quantiles and different points in the support of the regressors. Our asymptotic

arguments are based on the local polynomial estimator for conditional quantile functions in-

troduced in Chaudhuri(1991a,b). For expositional ease, we only describe this nonparametric

estimator for a polynomial of degree 0, and refer readers to Chaudhuri(1991a,b), Chaud-

huri et al.(1997), Chen and Khan(2000,2001), and Khan(2001) for the additional notation

involved for polynomials of arbitrary degree.
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First, we assume the regressor vector xi can be partitioned as (x
(ds)
i , x

(c)
i ), where the

dds−dimensional vector x
(ds)
i is discretely distributed, and the dc-dimensional vector x

(c)
i is

continuously distributed.

We let Cn(xi) denote the cell of observation xi and let hn denote the sequence of band-

widths which govern the size of the cell. For some observation xj, j 6= i, we let xj ∈ Cn(xi)

denote that x
(ds)
j = x

(ds)
i and x

(c)
j lies in the dc-dimensional cube centered at x

(c)
i with side

length 2hn.

Let I[·] be an indicator function, taking the value 1 if its argument is true, and 0 otherwise.

Our estimator of the conditional αth quantile function at a point xi for any α ∈ (0, 1)

involves α-quantile regression(see Koenker and Bassett (1978)) on observations which lie in

the defined cells of xi. Specifically, let θ̂ minimize:

n∑
j=1

I[xj ∈ Cn(xi)]ρα (yj − θ) (3.1)

where ρα(·) ≡ α| · |+ (2α− 1)(·)I[· < 0].

Our estimation procedure will be based on a random sample of n observations of the vec-

tor (yi, x
′
i)
′ and involves applying the local polynomial estimator at three stages. Throughout

our description, ·̂ will denote estimated values.

1. Local Constant Estimation of the Conditional Median Function. In the first stage,

we estimate the conditional median at each point in the sample, using a polynomial of

degree 0. We will let h1n denote the bandwidth sequence used in this stage. Following

the terminology of Fan(1992), we refer to this as a local constant estimator, and de-

note the estimated values by q̂0.5(xi). Recalling that our identification result is based

on observations for which the median function is positive, we assigns weights to these

estimated values using a weighting function, denoted by w(·). Essentially, w(·) assigns

0 weight to observations in the sample for which the estimated value of the median

function is 0, and assigns positive weight for estimated values which are positive.

2. Weighted Average Estimation of the Disturbance Quantiles In the second stage,

the unknown quantiles cα1 , cα2 are estimated (up to the scalar constant ∆c) by a

weighted average of local polynomial estimators of the quantile functions for the higher

quantiles α1, α2. The estimator of these constants is based on (2.11). In this stage, we

use a polynomial of degree k, and denote the second stage bandwidth sequence by h2n.
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We let ĉ1, ĉ2 denote the estimators of the unknown constants
cα1

∆c
,

cα2

∆c
, and define them

as:

ĉ1 =

1
n

∑n
i=1 τ(xi)w(q̂0.5(xi)) ·

(q̂α1 (xi)−q̂
(p)
0.5(xi))

(q̂α2 (xi)−q̂α1 (xi))

1
n

∑n
i=1 τ(xi)w(q̂0.5(xi))

(3.2)

ĉ2 =

1
n

∑n
i=1 τ(xi)w(q̂0.5(xi)) ·

(q̂α2 (xi)−q̂
(p)
0.5(xi))

(q̂α2 (xi)−q̂α1 (xi))

1
n

∑n
i=1 τ(xi)w(q̂0.5(xi))

(3.3)

where τ(xi) is a trimming function, whose support, denoted by Xτ , is a compact set

which lies strictly in the interior of X . The trimming function serves to eliminate

“boundary effects” that arise in nonparametric estimation. We use the superscript (p)

to distinguish the estimator of the median function in this stage from that in the first

stage.

3. Local Polynomial Estimation at the Point of Interest The third stage is based on

(2.12). Letting x denote the point at which the function µ(·) is to be estimated at,

we combine the local polynomial estimator, with polynomial order k and bandwidth

sequence h3n, of the conditional quantile function at x using quantiles α1, α2, with the

estimator of the unknown disturbance quantiles, to yield the estimator of µ(x):

µ̂(x) = ĉ2q̂α1(x)− ĉ1q̂α2(x) (3.4)

Remark 3.1 We note here that a different order polynomial is used in first stage than in

the other two stages. The reason for this is that even though the functions µ(·), σ(·) are

assumed to be k−times differentiable, the quantile functions will not in general be smooth

at the censoring point. Thus a local polynomial estimator may not be consistent when the

quantile function is in a neighborhood of the censoring point. However, once points in the

sample which are greater than the censoring point are “selected” in the first stage, the quantile

function at these points are sufficiently smooth for the local polynomial estimators to be used

in the second and third stages.

Remark 3.2 The three stage estimation procedure described is based on the identification

results in the previous section. It is not efficient as it is only based on the information in the

two quantiles α1, α2. However, efficiency can be gained by combining various quantiles in a

GMM framework, as was done in the linear quantile regression model in Buchinsky(1995).

Also, implementation requires a rule for selecting the quantile pair. We discuss this matter

in the simulation study later in the paper.
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3.2 Asymptotic Properties

In this section we establish the asymptotic properties of our estimation procedure. Our

results are based on the following assumptions:

Assumption ID (Identification) The weighting function is positive with positive probabil-

ity:

PX (τ(xi)w(q0.5(xi)) > 0) > 0

and the α1 quantile at the point of interest is positive:

qα1(x) > 0

Assumption RS (Random sampling) The sequence of d+1 dimensional vectors (yi, xi) are

independent and identically distributed.

Assumption WF (Weighting function properties) The weighting function, w(·) : R → R+

has the following properties:

WF.1 w(·) ∈ [0, 1] and is continuously differentiable with bounded derivative.

WF.2 w ≡ 0 if its argument is less than η, an arbitrarily small positive constant.

Assumption RD (Regressor Distribution) We let fX(c)|X(ds)(·|x(ds)) denote the conditional

density function of x
(c)
i given x

(ds)
i = x(ds), and assume it is bounded away from 0 and

infinity on Xτ .

We let fX(ds)(·) denote the mass function of x
(ds)
i , and assume a finite number of mass

points on Xτ .

Also, we let fX(·) denote fX(c)|X(ds)(·|·)fX(ds)(·).

Assumption ED (Disturbance Density) The disturbance terms εi is assumed to have a

continuous distribution with density function that is bounded, positive, and continuous

on R.

Assumption OS (Orders of Smoothness). For some % ∈ (0, 1], and any real valued function

F of xi, we adopt the notation F ∈ C%(Xτ ) to mean there exists a positive constant

K < ∞ such that:

|F(x1)−F(x2)| ≤ K‖x1 − x2‖%

for all x1, x2 ∈ Xτ . With this notation, we assume the following smoothness conditions

9



OS.1 fX(·), τ(·) ∈ C%(Xτ )

OS.2 µ(·) and σ(·) are differentiable in x
(c)
i of order k, with kth order derivatives

∈ C%(Xτ ). We let p = k + % denote the order of smoothness of this function.

Assumption BC (Bandwidth Conditions) The bandwidths used in each of the three stages

are assumed to satisfy the following conditions:

BC.1 h1n satisfies log n

nhdc
1n

→ 0, n
p

2p+dc h2
1n → 0.

BC.2 h2n satisfies log n

nhdc
2n

→ 0, n
p

2p+dc hp
2n → 0.

BC.3 h3n is of the form h3n = κ0n
−1

2p+dc where κ0 is a positive constant.

Remark 3.3 The weighting function w(·) In Assumption WF serves as a smooth approxi-

mation to an indicator function, selecting those observations for which the estimated value

of the conditional median function is positive. For technical reasons, we require that the

weighting function only assign positive weight to estimated conditional median values which

are bounded away from 0.

Remark 3.4 The bandwidth sequences h1n,h2n, h3n in Assumption BC are required to sat-

isfy different conditions. The conditions on h1n and h2n in Assumptions BC.1, BC.2, reflect

“undersmoothing”, implying that the bias of the nonparametric estimators used in the first

two stages converges to 0 at a faster rate than the standard deviation. In contrast, Assump-

tion BC.3 imposes the optimal rate for h3n, so that the estimator of µ(·) will converge at the

optimal nonparametric rate.

We now characterize the limiting distribution for the proposed estimator of µ(x), where x

is assumed to lie in the interior of the support of xi. The following theorem establishes

that the proposed estimator converges at the optimal nonparametric rate, and has a limiting

non-centered normal distribution. The proof is left to the appendix.

Theorem 3.1 If Assumptions ID,RS,WF,RD,ED,OS,BC hold, then

n
p

2p+dc (µ̂(x)− µ(x)) ⇒ N(B, V ) (3.5)
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where

V =
c2
α2

(∆c)2fY |X(qα1(x)|x)2
α1(1− α1) (3.6)

+
c2
α1

(∆c)2fY |X(qα2(x)|x)2
α2(1− α2)

− 2cα2cα1

(∆c)2fY |X(qα1(x)|x)fY |X(qα2(x)|x)
α1(1− α2)

with fY |X(·) denoting the conditional density function of yi. The form of the limiting bias

requires introducing new notation. For any quantile α, we let

q∗αn

(
x(c) + th3n, x

(c), x(ds)
)

denote the kth order Taylor polynomial approximation of

qα

(
x(c) + th3n, x

(ds)
)

where here t is a dc-dimensional vector of constants, and h3n is as defined in Assumption

BC.3. We define

Bα = lim
n→∞

√
nhdc

3n ·
∫
[ 1
2
, 1
2 ]

dc

(
qα

(
x(c) + th3n, x

(ds)
)
− q∗αn

(
x(c) + th3n, x

(c), x(ds)
))

dt

The limting bias of the proposed estimator is of the form

B =
cα2

∆c
Bα1 −

cα1

∆c
Bα2 (3.7)

4 Estimating the Distribution of εi

As mentioned in Section 2, the distribution of the random variable εi is identified for all

quantiles exceeding α0 ≡ inf{α : supx∈X qα(x) > 0}. In this section we consider estimation of

these quantiles, and the asymptotic properties of the estimator. Estimating the distribution

of εi is of interest for two reasons. First, the econometrician may be interested in estimating

the entire model, which would require estimators of σ(xi) and the distribution of εi as well
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as of µ(xi). Second, the estimator can be used to construct tests of various parametric forms

of the distribution of εi, and the results of these tests could then be used to adopt a (local)

likelihood approach to estimating the function µ(xi).

Before proceeding, we note that the distribution of εi is only identified up to scale, and

we impose the scale normalization that c0.75 − c0.25 ≡ 1. We also assume without loss of

generality that α0 ≤ 0.25. To estimate cα for any α ≥ α0, we let α− = min(α, 0.5) and define

our estimator as

ĉα =
1
n

∑n
i=1 τ(xi)w(q̂α−(xi)) · (q̂α(xi)− q̂

(p)
0.5(xi))

1
n

∑n
i=1 τ(xi)w(q̂α−(xi)) · (q̂0.75(xi)− q̂0.25(xi))

(4.1)

The proposed estimator, which involves averaging nonparametric estimators, will converge

at the parametric (
√

n) rate and have a limiting normal distribution, as can be rigorously

shown using similar arguments found in Chen and Khan(1999b).

5 Monte Carlo Results

In this section the finite sample properties of the proposed estimator are explored by way of

a small scale simulation study. We simulated from designs of the form:

yi = max(µ(xi) + σ(xi)εi, 0)

where xi was a random variable distributed uniformly between -1 and 1, εi was distributed

standard normal, and the scale function σ(xi) was set to e0.15xi . We considered four different

functional forms for µ(xi) in our study:

1. µ(x) = x

2. µ(x) = x2 − C1

3. µ(x) = 0.5 · x3

4. µ(x) = ex − C2

where the constants C1, C2 were chosen so that the censoring level was 50%, as it was for the

other two designs.

We adopted the following data-driven method to select the quantile pair. For a given

point x, we note that the estimator requires that qα1(x), qα2(x) both be strictly positive for
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identification, requiring that the quantiles be sufficiently close to 1. On the other hand,

efficiency concerns would suggest that the quantiles not be at the extreme, as the quantile

regression estimator becomes imprecise. We thus let the probability of being censored, or

the “propensity score” (see Rosenbaum and Rudin(1983)) govern the choice of quantiles for

estimating the function µ(·) at the point x. Letting di denote an indicator function which

takes the value 1 if an observation is uncensored, we note that

1− E[di|xi = x] = Fε

(
−µ(x)

σ(x)

)

where Fε(·) denotes the c.d.f. of εi. Letting α∗ = Fε

(
−µ(x)
σ(x)

)
, we note that

qα∗(x) = max(µ(x) + cα∗σ(x), 0)

= max(µ(x) +
−µ(x)

σ(x)
σ(x), 0)

= 0

Thus if one knew the propensity score value, identification would require that α∗ be a lower

bound for the choice of quantile pair. The propensity score can be easily estimated using

kernel methods, suggesting an estimator of α∗:

α̂∗ = 1−
1
n

∑n
i=1 diK~(x

(c)
i − x(c))I[x

(d)
i = x(d)]

1
n

∑n
i=1 K~(x

(c)
i − x(c))I[x

(d)
i = x(d)]

where K~(·) = ~−dcK( ·~) where ~ is a bandwidth sequence, and K(·) is a kernel function.

Our proposed choice of quantile pair takes into account this lower bound as well as the

efficiency loss of estimating quantiles at the extreme. We set:

α1 =
2α̂∗ + 1

3
α2 =

2 + α̂∗

3

which divides the interval [α̂∗, 1] into three equal spaces. In implementing this procedure in

the Monte Carlo study, the propensity scores were estimated using a normal kernel function

and a bandwidth of n−1/5.

For the quantile estimators, a local constant was fit in the first stage, using a bandwidth of

n−1/5, and a local linear estimator was used in the second and third stages, using a bandwidth
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of the form κn−1/5. The constant κ was selected using the “rule of thumb” approach detailed

on page 202 in Fan and Gijbels(1996).

The results in Figure 1 are based on sample sizes of n = 100 and n = 400, with 401 repli-

cations. The function µ(·) was estimated at 100 equispaced points, and the figures plot the

average value of the estimated function, denoted by m(x), alongside the true function. Also

reported (in parentheses) are the average mean squared errors (AMSE) for the estimator.

As indicated by the figures, the results are pretty much as expected. For n = 100,

estimator performs very well at points where µ(x) ≥ 0, and is further away from the truth

the further µ(x), in its negative range, is from 0. The estimator performs much better for

n = 400, where it is close to true function value on its entire support. For both sample sizes,

the estimator performs better in terms of AMSE for µ(x) = x2−C1 and µ(x) = ex−C2. This

is because the location function is negative with smaller probability than for the other two

designs. While our results are very encouraging in general, we would expect a worse finite

sample performance when more regressors are present, as the rate of convergence would be

slower.

6 Application to Unemployment Insurance

As discussed in the introduction, the estimation approach developed in this paper applies

to a variety of economic problems with censoring. Since the conditional distribution of the

latent dependent variable can be estimated using our approach, it is particularly well-suited

for estimating failure time models.

One survival function of particular interest to economists is the duration of unemployment

insurance (UI) spells. In the United States, many claimants exhaust their UI benefits,

resulting in a significant fraction of censored observations. We apply the estimator developed

in this paper to a large dataset of individual-level administrative records for New Jersey’s

UI program in the late 1990s. The maximum number of weeks an individual can collect UI

benefits varies from state to state and is based on an individual’s work history, but the limit

is typically 26 weeks. For the New Jersey data analyzed in this paper, 43 percent of claimants

exhaust their benefits at 26 weeks. One important question is how long these censored claims

would remain active if UI benefits were made available for a longer time period. The answer

would be particularly useful in evaluating the costs and benefits of extending the maximum

duration of UI benefits.
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6.1 Modeling Unemployment Insurance Receipt

Previous research on the determinants of UI spell length has focused on the effect of benefit

levels (Anderson and Meyer(1997), Ham and Rea(1987), Hunt(1995), McCall(1995), and

Meyer(1992)) and the maximum allowed benefit duration (Card and Levine(2000), Katz

and Meyer(1990), Meyer(1990), Moffit and Nicholson(1982), Moffit(1985), Woodbury and

Murray(1997)). This literature generally concludes that both higher benefit levels and higher

maximum durations significantly increase the length of an individual’s spell of unemployment

insurance receipt. The empirical findings mainly rely on variation in benefit amounts and

maximum benefit lengths over time, across states, or between individuals for identification.

While such studies have helped researchers partly understand the determinants of UI

spell length, one drawback is the endogeneity of the identifying variation. (Two exceptions

are Card and Levine (2000) and Meyer (1992) which use quasi-experimental policy changes.)

Time variation is not likely to be exogeneous since benefits are usually extended when la-

bor market conditions are poor (See Blaustein, et al(1993) and Blank and Card (1991)).

Individual states also sometimes extend the maximum duration of benefits in response to

a slack labor market. These changes are endogeneous since they occur precisely when spell

lengths and benefit exhaustions would otherwise be predicted to increase. Some individuals

are eligible for reduced benefits or less than 26 weeks due to a limited work history. These

claimants may respond very differently to legislated changes in the UI system compared to

those eligible for the full 26 weeks.

Prior research has concentrated more heavily on the responses of individuals with non-

censored spells. Any predictions about spell durations past the censoring point are made

using parametric assumptions about the distribution of failure times or assumptions about

the functional form for how covariates affect failure times past the censoring point. In

contrast, our approach allows estimation of the survival function beyond the censoring point

with a minimum of parametric and structural assumptions.

We model log-failure time (i.e., when an individual stops collecting UI) in the framework

described in Section 1. The model of interest is

log t∗i = µ(xi) + σ(xi)εi (6.1)

ti = min(t∗i , 26). (6.2)

The variable ti is the observed number of weeks a claimant collects unemployment insurance
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benefits, the exogenous vector xi contains claimant characteristics, and εi is a homoskedastic

and median zero error term. The censoring point is fixed at 26 weeks; the latent number of

weeks a claimant would like to collect benefits, t∗i , is observed only when a claimant collects

benefits for less than this censoring point.

Our approach can estimate the location function µ(xi) as well as the conditional dis-

tribution of failure times beyond the censoring point. We caution the estimators do not

necessarily predict what will happen if maximum durations increase, since both censored

and non-censored individuals may exhibit a behavioral response to a longer time limit. A

conservative interpretation of our results, and the one favored in this paper, is that our

estimates represent lower bounds on the effect of increasing the UI time limit. This inter-

pretation is valid as long as time limit increases do not shorten individual spell lengths.

Conceptually, the effect of extending the maximum duration can be separated into the sum

of claimants (potentially censored) desired number of weeks under the current time limit

plus any behavioral shift associated with the incentive effects of a longer program. The

lower bound estimates obtained from our approach should be closer to the overall effects for

short extensions, since the behavioral shift should be relatively small for marginal changes.

A common approach to estimating failure time models is the accelerated failure time

(AFT) model. Our approach embeds a semiparametric AFT model. Although convenient,

there is little theoretical justification for an AFT model based on a particular distribution

and faulty distributional assumptions can significantly bias the results. For example, Mof-

fitt(1985) reports that estimates of UI spell length for Tobit-type models are very sensitive

to the assumed distribution. Any inconsistencies generated from incorrectly specifying the

distribution are likely to be further compounded when predicting survival times beyond the

censoring point.

Researchers have relaxed distributional assumptions using a variety of semiparamet-

ric approaches for censored duration models (see for example Cox(1972), Powell(1984),

Horowitz(1996)). While useful, these semiparametric approaches cannot identify the shape

of the survival function beyond the point of censoring without further assumptions. The

method proposed in this paper does not specify the distribution of the homoskedastic com-

ponent of the error term or the form of the location function, but still permits estimation of

the conditional distribution of failure times beyond the censoring point.
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6.2 Data

We estimate our model using individual-level administrative records from New Jersey’s UI

system. Our dataset is drawn from the 322,907 individuals who received their first payment

between June 1, 1996 and October 25, 1997. Of these claimants, 63 percent were eligible

for the legislated maximum of 26 weeks of UI benefits. We restrict our sample to claimants

between the ages of 18 and 65, with complete demographic information, with no more than

one week of partial UI benefits, and who were eligible for 26 weeks of UI. These restrictions

result in a useable dataset containing 192,162 observations (see Card and Levine (2000) for

further details of this administrative-level dataset).

New Jersey’s UI system is administered at the state level, with benefits being financed by

a tax on both workers and firms. These taxes are subject to maximum and minimum rates,

and are partially experienced rated. Individuals can collect unemployment benefits if they

have a sufficiently long work history and they continue to actively seek work. Benefits are

paid weekly and are based on an individual’s previous earnings with a maximum benefit of

$362 in 1996. During the period of our data, New Jersey experienced a strong labor market;

for the individuals in our dataset, the median unemployment rate measured at the county

level was 5.5 percent. During the period of our data, the maximum duration of UI benefits

remained constant at 26 weeks. Of those individuals eligible for 26 weeks in our dataset, 43

percent exhausted their benefits.

A variety of characteristics influence the length of time an individual remains on unem-

ployment insurance. In our analysis, we include demographic information, characteristics

of a claimant’s previous job, and a measure of local labor market conditions. The curse

of dimensionality quickly makes local polynomial estimators computationally difficult with

more than one or two continuous variables in the model. To make estimation feasible, we

discretize the most important continuous covariates so the data can be grouped into a set of

mutually exclusive and exhaustive cells. Many important characteristics such as race, gen-

der, and union status are already discrete. Other characteristics, such as years of schooling,

previous weekly earnings, age, or tenure, can be broken up into a few defining categories.

Nonparametric quantile regression applied to this type of cell-grouped data is simple and

computationally fast. With such cell-grouped data, our estimator requires only easily com-

puted estimates of the median and other quantiles at the cell level combined with simple

algebra.

Estimation proceeds as follows. First, median log failure times are calculated for each
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cell. In the second stage, estimates of the unknown constants
cα1

∆c
and

cα2

∆c
are calculated. This

requires first estimating the α1 and α2 cell quantiles (two quantiles lower than the median).

For each cell where the median is below the censoring point, the expressions q̂α1 − q̂0.5 and

q̂α2 − q̂0.5 are divided by q̂α2 − q̂α1 . The sums of these cell calculations, using only cells where

the median is below the censoring point, yield the estimates ĉ1 and ĉ2. The third stage

estimates the median separately for each cell by taking a simple algebraic combination of

the estimated constants ĉ1 and ĉ2 (common to all cells) and the estimated quantiles q̂α1 and

q̂α2 (specific to each cell), as described in equation (3.4).

Once medians have been estimated for all cells, other quantiles can be estimated for each

cell as well since the conditional distribution of εi can be identified up to scale. The αj

quantile of a cell is estimated as q̂αj
= ĉj(q̂α2 − q̂α1)+ µ̂ where the estimator ĉj is the average

of the expression (q̂αj
− q̂0.5)/(q̂α2 − q̂α1) over cells where both the estimated median and the

αj quantile lie below the censoring point. It should be noted that the estimated quantiles

q̂α1 and q̂α2 appearing in these expressions need not be the same as those used to calculate

µ̂. We keep them the same largely for convenience; we find that the estimates are not overly

sensitive to the choice of these two quantiles.

Table 1 contains summary statistics for the discrete characteristics, including the fraction

of claimants who exhaust their UI benefits. A typical UI claimant in New Jersey is male,

white, middle-aged, not a union member, and has a high school degree or less. Claimants

have varied previous earnings histories and a large fraction of UI claimants have been at

their job for less than two years. Exhaustion rates differ widely across characteristics. For

example, the exhaustion rate for whites is 40 percent compared to 53 percent for blacks and

the exhaustion rate for union members is 34 percent compared to 45 percent for non-union

members. Exhaustion rates are also higher for women, older workers, workers with long

tenure, and in counties with high unemployment rates.

The complete interaction of all the characteristics in Table 1 yields a possible 864 non-

overlapping cells, 862 of which are nonempty. In 598 of the cells, the median time on UI

benefits is below the censoring point of 26 weeks. These cells contain approximately 75

percent of all observations. The remaining 25 percent of the data are grouped in 264 cells

where more than 50 percent of claimants are observed to exhaust benefits.
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6.3 Results

6.3.1 Estimates at the Cell Level

Estimation parallels the stages described in Section 3. In the first two stages, for each cell

where the median lies below the censoring point, we calculate cell medians and obtain cell-

level estimates of the two unknown lower quantiles of the error term up to scale. We chose the

30th and 40th quantiles for these two quantiles below the median. To construct our estimates,

the 30th and 40th quantiles must be less than 26 weeks and the 40th quantile cannot equal

the median (to avoid division by zero). The first restriction eliminates approximately seven

percent of the data and the second restriction eliminates less than one quarter of one percent

of the data. Of course, other quantiles could be used as well. We find that other choices,

such as the 17th and 33rd quantiles, do not alter the general findings.

One gauge of the method’s applicability to UI claims is how well our estimate of the

location function compares to the observed median in cells with less than 50 percent cen-

soring. Figure 2 plots the observed median versus our estimate of the location function for

cells where the observed median is less than 26 weeks. For cells with few observations, the

estimate µ̂ is highly variable and has a large bootstrapped standard error. To simplify the

graph, we plot only those cells with more than 100 observations, or about 75 percent of the

data with observed cell medians below the censoring point. The observations are generally

clustered around the forty-five degree line, although the estimate µ̂ is somewhat higher in

the weeks immediately prior to censoring.

A primary objective of the empirical application is to estimate the location function

for cells with more than a 50 percent exhaustion rate. Since it is impractical to present

estimates for all 264 of these cells, in Table 2 we provide estimates for the subset of cells

with more than 250 observations. Since only 13 percent of claimants belong to a union and

union members have low exhaustion rates to begin with, all of the cells appearing in Table 2

contain only non-union claimants. Otherwise, there is a rich variety of characteristics defining

cells. The estimated medians vary substantially, ranging from approximately 27 weeks (male,

black, young, college, middle earnings, short tenure, high unemployment rate) to 40 weeks

(female, black, mid-age, high school, high earnings, long tenure, high unemployment rate).

The standard errors appearing in Table 2 are estimated using the bootstrap. The bootstrap

estimates are based on 400 replications for each cell, with samples equal in size to the number

of observations in a cell and drawn with replacement.
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Conditional quantiles for all cells can be estimated up to the largest probability αj for

which sufficiently many cells have αth
j quantiles observed below the censoring point. In

our application, we chose 85 percent as the cutoff probability. There are 17 cells with an

observed 85th quantile less than 26 weeks, with a total of 2,526 observations in these cells.

Using information from these observations, we are able to estimate up to the 85th quantile

for all cells in our dataset. For lower quantiles, of course, we are able to use information from

more than just these 17 cells. For example, there are 119 cells (18,688 total observations)

with an observed 70th quantile less than 26 weeks.

Figure 3 graphs the estimated quantiles of UI receipt for eight cells with a diverse set of

characteristics. We point out the varied shapes of the quantile functions suggest the presence

of conditional heteroskedasticity. The top four panels show the estimates for four cells with

observed medians well below the censoring point. The Kaplan-Meier estimates (with the axes

reversed) closely track the estimates obtained using our method and generally lie within the

bootstrapped 95 percent confidence intervals. As expected, these confidence intervals fan out

as the fraction of active claims falls, i.e., for estimates of the higher quantiles. Notice that

in panel 1, the observed 85th quantile occurs at less than 26 weeks. Intuitively, the structure

of our assumptions allows cells with more severe censoring to take advantage of information

on the error distribution from cells like those found in panel 1 to estimate quantiles beyond

the censoring point.

The bottom four panels in Figure 3 depict estimates for cells with more severe censoring.

For example, in panel 5 close to 60 percent of the claimants in this cell exhaust benefits.

Even with such severe censoring, however, we are able to estimate quantile values greater

than 26 weeks. Although we could plot up to the 85th quantile for each of these cells as we

did in the top panels, we choose instead to include the estimated quantiles until the point

estimate exceeds 52 weeks. We made this choice so the scale of the graphs would more clearly

illustrate the comparison to the Kaplan-Meier estimate and what is happening immediately

after the 26 week censoring point. As before, the Kaplan-Meier estimates are similar to our

estimates.

6.3.2 Aggregate Survival Functions Based on Cell-Level Estimates

While cell-level estimates of medians and other quantiles beyond the censoring point are

useful, they do not provide a concise summary of what is happening at a more aggregate

level. In this section we describe how to combine cell-level estimates to create aggregate
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survival functions. The idea behind aggregation is to take a weighted vertical sum of the

survival curves of individual cells.

To calculate the aggregate survival function, first notice the failure time distribution for

all the data, F (·), can be written as a weighted average of the failure time distributions for

each cell. The weights are merely the fraction of observations belonging to each cell and

do not depend on the failure time. Let Fi(·) denote the distribution of failure times and wi

denote the weight for cell i. The pth quantile is the number t such that

F (t) =
∑

i

wiFi(t) = p (6.3)

For each cell, we have already obtained quantile estimates up to the 85th quantile. These

cell quantiles are just the inverse distribution functions, F−1
i (·), evaluated at various prob-

abilities. To calculate the unconditional pth quantile for the entire population, we need to

find p1, p2, . . . , pN such that

F−1
1 (p1) = F−1

2 (p2) = . . . = F−1
N (pN) (6.4)

and ∑
i

wipi = p (6.5)

where N indicates the total number of cells the data have been divided into.

We use a grid method to compute probabilities associated with a given value for the

inverse distribution function, F−1
i (·). For each cell we estimate the quantiles at 1,000 prob-

abilities evenly spaced between 0 and 1. To calculate the aggregate survival function at a

specific failure time, for each cell i we first find the probability pi which corresponds as closely

as possible to the quantile equaling this failure time. That is, we take a weighted average of

probabilities straddling integer failure times, where the weights on the probabilities depend

on the distance of the associated quantiles from the integer failure time. We then take the

weighted sum of these cell probabilities, where the weights are estimated by the fraction of

all observations belonging to cell i. We evaluate the overall survival function at failure times

which take on positive integer values, although it should be noted the survival function could

be evaluated at other points as well.

One difficulty arises in the current application since we are limited to quantile estimates

below our chosen cutoff, i.e., the 85th quantile. For cells where the 85th quantile occurs
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relatively early, for example at 23 weeks, what probability should be assigned for failure

times greater than 23 weeks? We adopt a very conservative approach. The maximum

probability for failure times beyond the 85th quantile would be one, implying all remaining

observations fail immediately after the 85th quantile. The minimum probability would not

increase at all, implying that no observations fail after the 85th quantile. These two extreme

assumptions provide an upper and lower bound on the cell-specific probabilities associated

with failure times beyond the 85th quantile in a cell.

We point out that aggregate estimates can be calculated for subsets of the data as well

as for the entire dataset. For example, unconditional survival functions can be calculated for

different races, men and women, or union and non-union members separately. In this paper

we present just one such example, for the subset of data with severe cell-level censoring.

Figure 4 displays the aggregate survival functions for claimants in cells with an observed

median greater than 26 weeks. For this group of heavily censored claimants, the predicted

median spell length is approximately 32 weeks, or 6 weeks longer than the actual censoring

point. Hence, this group is of special interest when considering extensions to UI benefits. The

figure includes the upper and lower bound estimates of the survival function calculated as

described above, as well as the Kaplan-Meier estimate. The standard errors for the Kaplan-

Meier estimate are relatively small, so to keep things visually simple confidence intervals for

the Kaplan-Meier estimate are excluded from the graph.

The upper and lower bound estimates of the survival curve are very similar, and do not

begin to noticeably separate until 40 weeks. The estimates track the Kaplan-Meier esti-

mate in the non-censored region fairly well. In the figure we have also added the estimated

survival curve using a Weibull model, a model which has both a proportional hazards and

an accelerated failure time (AFT) interpretation. We point out that our approach embeds

semiparametric AFT models, so if the Weibull model is correct it should yield a similar es-

timate. The pointwise confidence intervals appearing in the graph for the Weibull estimate

are based on standard errors calculated using the delta method. While the Weibull estimate

and our upper and lower bound estimates are similar immediately prior to the censoring

point, they have very different shapes to the right of 26 weeks. In particular, the Weibull

estimate is noticeably lower for failure times past the censoring point. For claimants belong-

ing to heavily censored cells, our approach predicts between 34.6 (upper bound estimate)

and 32.7 (lower bound estimate) percent of claims would still be active at 52 weeks com-

pared to 26.3 percent for the Weibull model. Put another way, the median residual life (i.e.,

median[t − 26 | t > 26]) for our model is between 35 and 39 weeks compared to only 24
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weeks for the Weibull model–a difference of approximately 50 percent. These inconsistencies

illustrate the costs of making incorrect distributional assumptions.

Figure 5 graphs the aggregate survival functions for all claimants in our dataset. To

the left of the censoring point, our upper and lower bound estimates are similar to the

Kaplan-Meier estimate. Table 3 lists the upper and lower bound estimates of the survival

function, along with pointwise standard errors calculated using the bootstrap. As before,

the bootstrap estimates are based on 400 replications, with samples equal in size to the total

number of observations and drawn with replacement. Immediately prior to the censoring

point at 25 weeks, between 43.2 (upper bound) and 41.0 (lower bound) percent of claims are

estimated to be active compared to 41.4 percent for the Kaplan-Meier estimate. To the right

of 26 weeks, the shape of the survival curve flattens out. Six weeks after the censoring point,

between 35.5 (upper bound) and 33.2 (lower bound) percent of claims are estimated to still

be ongoing. Starting around 34 weeks, the upper and lower bound point estimates start to

diverge as a larger fraction of cell-level estimates exceeds the 85th quantile. Although the

bounds become wide in latter weeks, our estimates suggest a significant fraction of claimants

would like to continue collecting UI benefits beyond the legally-specified maximum duration.

The information contained in the survival functions can readily be used to derive esti-

mates of the monetary cost of extending UI benefits in New Jersey. For each cell and each

week, cell-level costs are calculated by multiplying the average weekly benefit for individ-

uals in a cell by the number of claims estimated to be ongoing in a cell. Average payouts

vary across cells since benefit amounts depend on pre-displacement wages and work history.

Aggregate cost estimates are then calculated by summing these cell-level cost estimates. As

Table 3 documents, the first week of UI claims is estimated to cost around 49 million dollars

in benefit payouts. By the censoring point of 26 weeks, this aggregate weekly payout falls

to approximately 20 million dollars with an estimated cumulative cost of between 875 and

883 million dollars. Since the survival curve flattens out after the censoring point, predicted

costs decline slowly. Increasing the maximum duration by fifty percent to 39 weeks is pre-

dicted to cost between an extra 199 and 222 million dollars. We remind the reader that

these estimates represent aggregate costs assuming no behavioral shift associated with the

incentive effects of a longer program. Since time limit increases should not decrease the

length of time an individual receives UI, we interpret our estimates as the minimum cost of

extending the maximum allowed duration. Any behavioral response would further add to

the costs of extending UI benefits.
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7 Conclusions

This paper has established conditions for nonparametric identification of the location func-

tion in a censored regression model. An estimation procedure was proposed, and shown to

have desirable asymptotic properties. The procedure is simple to implement, as it is based

on various quantiles of the conditional distribution of the dependent variable, and can be

computed by linear programming methods. A Monte Carlo study indicates the estimator

performs well in finite samples. In an empirical application to unemployment insurance

spells we estimate the effects of extending benefits beyond the current 26 week maximum in

New Jersey.

The results in this paper suggest both empirical and theoretical areas for future research.

The estimator introduced here would suggest testing parametric forms of the regression

function against nonparametric alternatives in the censored regression model, as was done

in standard regression models (Bierens and Ploberger(1997) and Horowitz and Spokoiny

(2001)). Another important extension would be to allow for randomly censored data sets,

as in Buckley and James(1979), Koul et al.(1981), Ying et al.(1995), Honoré et al.(2001)

for semiparametric models. Furthermore, a more formal data driven approach needs to

be developed for selection of the quantiles used in the second and third stages, and the

asymptotics of such an approach needs to be derived. An empirical application we are

currently pursuing is estimating the demand for retirement savings beyong the current Roth

IRA and 401K limits, which are scheduled to increase.
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[20] Honoré, B.E. and J.L. Powell (1994) “Pairwise Difference Estimators of Censored and Truncated Re-

gression Models”, Journal of Econometrics, 64, 241-278.
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A Appendix

A.1 Proof of Theorem 2.1

Let x0 satisfy µ(x0) = maxx∈X µ(x), and let x1 satisfy σ(x1) = maxX σ(x). Note by the assumption

in the theorem, µ(x0) < 0 and by Assumption I4 σ(x1) is positive and bounded. Let δ > 0 and let

µ̃(x) = µ(x) − δσ(x)
σ(x0)

. We define the distribution of ε̃i through its quantiles α ∈ [0, 1]. Let α∗ = inf{α :

µ(x0) + cασ(x1) > 0}. Note by Assumptions I2-I5, α∗ ∈ (0.5, 1). Letting c̃α denote the quantiles of ε̃i, we

define c̃α to take the following values:

c̃α = cα 0 ≤ α ≤ 1/2 (A.1)

= cα +
δ

σ(x0)
α∗ ≤ α ≤ 1 (A.2)

=
α− 0.5
α∗ − 0.5

· c̃α∗ α ∈ (0.5, α∗) (A.3)
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Let x be an arbitrary point in X . We will show that L(yi|xi = x) = L(ỹi|xi = x) by showing all the

conditional quantiles are the same. Let qα(x) and q̃α(x) denote the respective quantiles. Let α† = inf{α :

µ(x) + cασ(x) > 0}. Note that α† ≥ α∗ > 0.5. Note that for α ∈ [0, α†), we have qα(x0) = 0. We also have:

q̃α(x) = max (µ̃(x) + c̃ασ(x), 0) (A.4)

= max
(

µ(x)− δσ(x)
σ(x0)

+ c̃ασ(x), 0
)

(A.5)

≤ max
(

µ(x)− δσ(x)
σ(x0)

+ c̃α†σ(x), 0
)

(A.6)

= max
(

µ(x)− δσ(x)
σ(x0)

+
δσ(x)
σ(x0)

+ cα†σ(x), 0
)

(A.7)

= 0 (A.8)

where the inequality follows from c̃ασ(x) < c̃α†σ(x), as α < α∗ and σ(x) > 0. The last equality follows from

µ(x) + cασ(x) ≤ 0 when α < α†.

For α ≥ α†, we have qα(x) = max(µ(x) + cασ(x), 0) = µ(x) + cασ(x). We also have:

q̃α(x) = max (µ̃(x) + c̃ασ(x), 0) (A.9)

= max
(

µ(x)− δσ(x)
σ(x0)

+
δσ(x)
σ(x0)

+ cασ(x), 0
)

(A.10)

= µ(x) + cασ(x) (A.11)

Thus we have shown all the quantiles match up, making µ(·) indistinguishable from µ̃(·), establishing the

desired result. �

A.2 Proof of Theorem 3.1

In this section, we prove the limiting distribution results stated in the theorem. Throughout this section, we

adopt new notation. Here we let τi, σi, wi, ŵi, q̂0i, q̂1i, q̂2i, q0i, q1i, q2i, q̂0, q̂1, q̂2, q0, q1, q2, Cni, Cn, Nni denote

τ(xi), σ(xi), w(q0.5(xi)), w(q̂0.5(xi)), q̂0.5(xi), q̂α1(xi), q̂α2(xi), q0.5(xi), qα1(xi), qα2(xi), q̂0.5(x), q̂α1(x), q̂α2(x),

q0.5(x), qα1(x), qα2(x), Cn(xi), Cn(x),
∑

j 6=i I[xj ∈ Cn(xi)], respectively. Noting that the conditional me-

dian function is estimated in both the first and second stages, we let q̂
(p)
0i denote the second stage local

polynomial estimator, to distinguish it from the first stage local constant estimator. Also, we let µ̂, µ denote

µ̂(x), µ(x) respectively. For a matrix A, with elements {aij}, we let ‖A‖ denote
(∑

i,j a2
ij

)1/2

.

We note that since we aim to prove that the estimator converges at the optimal nonparametric rate of

Op

(
n−

p
2p+dc

)
, we will use the term “asymptotically negligible” when referring to remainder terms which are

op

(
n−

p
2p+dc

)
. Our proof will rely heavily on three previously established properties of the nonparametric

conditional quantile estimator used. The first is a uniform rate of convergence of the local constant estimator

used in the first stage. The rate is uniform over regressor values for which the conditional median function is

bounded away from the censoring point. We denote this set of regressor values as Xη ≡ {xi ∈ Xτ : q0i ≥ η}.
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Lemma A.1 (From Chaudhuri et al. Lemma 4.3a) Under Assumptions RS, RD, ES, OS, BC.1,

sup
xi∈Xη

|q̂0i − q0i| = op(1)

The second previously established property is an exponential bound for the local constant and local polyno-

mial estimators for regressor values in a neighborhood of the censoring point:

Lemma A.2 (From Lemma 2 in Chen and Khan(2000)) Let X c
η/2 denote the set

{xi ∈ Xτ , q0i ≤ η/2}

and let An denote the event:

{q̂0i ≥ η for all xi ∈ X c
η/2}

then under Assumptions RS,RD,ED,OS,BC.1, there exists constants C1, C2 such that

P (An) ≤ C1e
−C2nhdc

1n

The third property of the conditional quantile estimator is the local Bahadur representation developed in

Chaudhuri(1991a) and Chaudhuri et al.(1997).

Lemma A.3 (From Lemmas 4.1 and 4.2 in Chaudhuri et al.(1997)) Let q∗α(xi, x) denote the kth order

Taylor polynomial approximation of qα(xi) for xi close to x. Under assumptions RS, RD, ED, OS, and BC,

for all α ≥ 0.5, x : q0.5(x) ≥ η, we have the following linear representation for the local polynomial estimator

used in the second and third stages:

q̂α(x)− qα(x) =
1

nhdc

(2,3)nfY,X(qα(x), x)

n∑
i=1

(I[yi ≤ q∗α(xi, x)]− α) I[xi ∈ Cn(x)] + Rn(x) (A.12)

where h(2,3)n denotes the bandwidth used either in the second or third stages, and the remainder term satisfies:

sup
x∈Xη

Rn(x) = op

(
n

−p
2p+dc

)

The main step in the proof is to show that the difference between the constants cα1
∆c ,

cα2
∆c and their estimators

ĉ1, ĉ2, are asymptotically negligible. We only show this result for the first quantile, as the same arguments

can be used for the second quantile. We let c1 denote the constant cα1
∆c and let βi denote q1i−q0i

q2i−q1i
and β̂i its

estimated value, obtained by replacing quantile functions with their local polynomial estimators.
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We adopt the convention 0/0=0, and define

c†1 =
∑n

i=1 τiŵic1∑n
i=1 τiŵi

and we note that it can be easily be shown that

P (c†1 6= c1) → 0

by Assumption ID, WF and Lemma A.1. Thus it will suffice to show that ĉ1−c†1 is asymptotically negligible.

This difference is of the form:

ĉ1 − c†1 =
1
n

∑n
i=1 τiŵi(β̂i − c1)
1
n

∑n
i=1 τiŵi

(A.13)

The following lemma shows that the denominator of the above expression converges in probability to a

positive constant.

Lemma A.4 Under Assumptions WF,ID,ED,OS,RD,BC.1,

1
n

n∑
i=1

τiŵi
p→ E[τiwi] (A.14)

Proof : A mean value expansion of ŵi around wi yields:

1
n

n∑
i=1

τiwi +
1
n

n∑
i=1

τiw
′∗
i (q̂0i − q0i)

where τiw
′∗
i denotes the derivative of the weighting function evaluated at an intermediate value. We can

decompose the summation involving this intermediate value as:

1
n

n∑
i=1

τiw
′∗
i (q̂0i − q0i)I[q0i ≥ η/2] +

1
n

n∑
i=1

τiw
′∗
i (q̂0i − q0i)I[q0i < η/2]

It follows by the bound on the derivative of the weighting function and Lemmas A.1, A.2 that each of these

terms is op(1). The LLN implies that 1
n

∑n
i=1 τiwi

p→ E[τiwi]. �

Thus it will suffice to show the numerator term in (A.13) is op

(
n

−p
2p+dc

)
. To do so, we take a mean value

expansion of ŵi around wi, yielding the terms:

1
n

n∑
i=1

τiwi(β̂i − c1) (A.15)

+
1
n

n∑
i=1

τiw
∗′
i (q̂0i − q0i)(β̂i − c1) (A.16)

where τiw
∗′
i again denotes the derivative of the weighting function evaluated at an intermediate value. The

following lemma establishes the asymptotic negligibility of (A.15).
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Lemma A.5 Under Assumptions WF, RD, ED, OS, BC1,

1
n

n∑
i=1

τiwi(β̂i − c1) = op

(
n

−p
2p+dc

)
(A.17)

Proof : Note that τiwic1 = τiwiβi. We linearize β̂i − βi to yield:

1
n

n∑
i=1

τiwi(β̂i − βi) =
1
n

n∑
i=1

τiwi∆q−1
i

(
ˆ̄qi − q̂

(p)
0i − q̄i − q0i

)
(A.18)

− 1
n

n∑
i=1

τiwi
q̄i − q0i

(∆qi)2
(∆q̂i −∆qi) (A.19)

+ Rn (A.20)

where

Rn = Op

(
1
n

n∑
i=1

τiwi

(
|q̂2i − q2i|2 + |q̂1i − q1i|2 + |q̂(p)

0i − q0i|2
))

It follows by Lemma 4.1 in Chaudhuri et al.(1997) that

Rn = Op

(√ log n

nhdc
2n

+ hp
2n

)2


and is thus asymptotically negligible by Assumption BC.2. The expressions in (A.18) and (A.19), are sample

averages of undersmoothed conditional quantile estimators. We will thus only show that

1
n

n∑
i=1

τiwi(q̂1i − q1i) = op

(
n

−p
2p+dc

)
(A.21)

as similar arguments may used for the other terms. (A.21) follows from the same arguments used in Lemma

2 of Chen and Khan(2000). The only difference is in that paper, the smoothness and bandwidth conditions

implied that the bias term was op(n−1/2), whereas in this case, using Assumptions OS, BC.2, the bias term

is op

(
n

−p
2p+dc

)
. �

The following lemma shows that (A.16) is also asymptotically negligible.

Lemma A.6 Under Assumptions WF,RD,ED,OS,BC.1,BC.2,

1
n

n∑
i=1

τiw
′∗
i (q̂0i − q0i)(β̂i − c1) = op

(
n

−p
2p+dc

)
(A.22)

Proof: We multiply the left hand side of the above expression by I[q0i ≥ η/2] + I[q0i < η/2], to separate

the terms where the median function is bounded away from 0, from the terms where it is not. Terms where
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q0i < η/2 are asymptotically negligible by Lemma A.2, since τiw
′∗
i > 0 ⇒ q̂0i ≥ η. For the terms where

q0i ≥ η/2, note that c1 = βi, and we can apply the uniform rates of convergence in Chaudhuri(1991a,b) and

Chaudhuri et al.(1997) after linearizing the difference β̂i−βi as before. We note that the uniform rates for the

local constant estimator and the local polynomial estimator are different, but it will follow by Assumptions

BC.1,BC.2, and OS, that their product will be asymptotically negligible. To make this argument precise, we

note from the arguments used in Lemma 4.1 of Chaudhuri et al.(1997) that the uniform rate for the local

constant estimator is

Op

(√
log n

nhdc
1n

+ h2
1n

)

and for the local polynomial estimator it is

Op

(√
log n

nhdc
2n

+ hp
2n

)

Letting ‖ · ‖∞ denote max1≤i≤n | · |, we note that

1
n

n∑
i=1

τiw
′∗
i I[q0i ≥ η/2](q̂0i − q0i)(β̂i − βi)

is of order:

‖q̂0i − q0i‖∞‖q̂1i − q1i‖∞ + ‖q̂0i − q0i‖∞‖q̂2i − q2i‖∞ + ‖q̂0i − q0i‖∞‖q̂(p)
0i − q2i‖∞

which by the states uniform rates is

Op

((√
log n

nhdc
1n

+ h2
1n

)(√
log n

nhdc
2n

+ hp
2n

))

which is op

(
n

−p
2p+dc

)
by Assumptions OS,BC.1,BC.2. �

Combining all our results, we can now replace the estimated constants with their true values:

µ̂(x)− µ(x) =
cα2

∆c
(q̂1 − q1)−

cα1

∆c
(q̂2 − q2) + op

(
n

−p
2p+dc

)
(A.23)

The limiting distribution of the estimator follows from (A.12).
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Table 1.  Characteristics of Unemployment Insurance Recipients in New Jersey. 
 
   
 
Characteristic 

 
Percent 

Percent Exhausting 
Benefits 

   
   
Gender 
     male 
     female 

 
56.7 
43.3 

 
40.1 
47.1 

Race 
     white (not hispanic) 
     black (not hispanic) 
     hispanic and other 

 
62.7 
18.0 
19.3 

 
39.8 
53.4 
44.4 

Age 
     age ≤ 35 
     35 < age ≤ 50 
     50 < age ≤ 65 

 
37.8 
40.3 
21.9 

 
40.0 
43.0 
48.5 

Education 
     high school or less 
     some college or more 

 
60.3 
39.7 

 
43.9 
41.8 

Weekly Earnings at Previous Job 
     earnings ≤ $375 
     $375 < earnings ≤ $625 
     earnings > $625 

 
33.2 
33.5 
33.3 

 
42.1 
47.6 
39.5 

Tenure at Previous Job 
     less than 2 years 
     greater than 2 years 

 
43.3 
56.7 

 
39.6 
45.8 

Union Status at Previous Job 
     union member 
     not a union member 

 
12.7 
87.3 

 
33.5 
44.5 

County Unemployment Rate 
     less than 5.5% 
     greater than or equal to 5.5% 

 
49.6 
50.4 

 
40.9 
45.3 

   
All Observations 100.0 43.1 
   
Notes:  Data consists of 192,162 individuals from administrative records of the New Jersey Department of Labor.  
Sample is restricted to claimants age 18 to 65 who were eligible for 26 weeks of benefits and received their first 
payment between June 1, 1996 and October 25, 1997.  Sample also excludes claimants with missing information on 
age, earnings, or UI claim characteristics. 
 



Table 2.  Estimated Medians for Cells with More Than a Fifty Percent Exhaustion Rate and More Than 
250 Observations. 
 
          

 
Gender 

 
Race 

 
Age 

 
Education

 
Earnings 

 
Tenure 

Unemp. 
Rate 

Estimated 
Median 

 
Std. Error

Obs. in 
Cell 

          
male white young H.S. middle long low 33.50 1.95 992 
male white young H.S. middle long high 32.33 1.92 731 
male white young H.S. middle short high 32.72 2.26 477 
male white young H.S. high long low 28.74 2.38 304 
male white mid-age H.S. middle long low 29.76 1.59 1500 
male white mid-age H.S. mid-age long high 35.82 2.49 1135 
male white mid-age H.S. high long low 34.31 2.49 819 
male white mid-age college mid-age long high 31.25 3.02 712 
male white older H.S. mid-age short high 33.50 4.98 258 
male white older college mid-age long low 38.47 3.36 607 
male white older college mid-age long high 39.70 3.84 353 
male white older college high long low 33.50 2.85 857 
male black young H.S. low long low 34.52 5.56 253 
male black young H.S. low short high 34.31 1.91 1091 
male black young college mid-age long high 35.14 2.24 429 
male black young college mid-age short high 26.95 2.96 387 
male black mid-age H.S. low short high 34.31 2.65 524 
male black mid-age college low short high 32.72 4.01 251 
male hispanic young H.S. mid-age long high 37.28 3.59 262 
male hispanic young college mid-age long high 30.57 2.37 253 

female white older H.S. mid-age long low 32.72 2.70 699 
female white older H.S. high long low 28.94 1.97 1345 
female white older H.S. high long high 32.72 3.63 981 
female white older college mid-age long low 31.46 3.35 276 
female white older college mid-age short low 35.14 4.95 277 
female white older college high long low 31.97 1.79 2114 
female white older college high long high 29.76 2.28 1085 
female black young H.S. low long high 33.50 2.81 649 
female black young H.S. mid-age short high 28.54 1.64 415 
female black young college mid-age short high 26.95 4.40 321 
female black mid-age H.S. low long high 33.22 2.34 488 
female black mid-age H.S. low short low 31.97 4.23 301 
female black mid-age H.S. mid-age long low 31.50 2.23 288 
female black mid-age H.S. mid-age short high 31.50 2.24 344 
female black mid-age H.S. high long high 39.70 4.13 297 
female black mid-age college low short high 33.22 3.06 252 
female black mid-age college high long high 33.50 4.67 339 
female black older H.S. mid-age long high 36.53 4.58 337 

          
Notes:  All cells contain non-union claimants.  Standard errors are calculated using the bootstrap, based on 400 
replications with samples equal in size to the number of observations in a cell and drawn with replacement. 
 



Table 3.  Aggregate Survival Function and Total Cost Estimates for All Claimants. 
 

Prior to Censoring Point  Censoring Point and After 
     
 Survival Function Total Cost Survival Function Total Cost

Week 
Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

 
Week 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

      
0 1.0000  0.9592  48.64 46.55 26 0.4212 0.3990  20.53  19.41 
 (0.0000)  (0.0013) (0.70) (0.68) (0.0040) (0.0067) (0.38) (0.47)
1 0.9724  0.9592  47.22 46.55 27 0.4109 0.3887  19.98  18.80 
 (0.0015) (0.0013) (0.69) (0.68) (0.0044) (0.0053) (0.38) (0.42)
2 0.9423  0.9395  45.71 45.55 28 0.3967 0.3745  19.43  18.22 
 (0.0014) (0.0014) (0.67) (0.66) (0.0053) (0.0053) (0.41) (0.42)
3 0.9174  0.9164  44.45 44.39 29 0.3851 0.3627  18.85  17.63 
 (0.0014) (0.0015) (0.65) (0.65) (0.0062) (0.0059) (0.44) (0.42)
4 0.8931  0.8925  43.23 43.19 30 0.3771 0.3538  18.29  17.04 
 (0.0014) (0.0015) (0.64) (0.64) (0.0066) (0.0072) (0.46) (0.48)
5 0.8679  0.8673  41.98 41.95 31 0.3650 0.3417  17.76  16.49 
 (0.0013) (0.0014) (0.62) (0.62) (0.0070) (0.0079) (0.47) (0.51)
6 0.8413  0.8410  40.68 40.67 32 0.3554 0.3321  17.27  15.92 
 (0.0014) (0.0014) (0.61) (0.61) (0.0072) (0.0106) (0.48) (0.63)
7 0.8139  0.8138  39.35 39.34 33 0.3455 0.3215  16.81  15.28 
 (0.0013) (0.0013) (0.59) (0.59) (0.0069) (0.0146) (0.46) (0.82)
8 0.7857  0.7857  37.99 37.99 34 0.3378 0.3050  16.42  14.64 
 (0.0013) (0.0013) (0.57) (0.57) (0.0067) (0.0173) (0.45) (0.95)
9 0.7570  0.7569  36.62 36.62 35 0.3313 0.2908  16.07  14.01 
 (0.0014) (0.0014) (0.55) (0.55) (0.0066) (0.0181) (0.44) (0.99)

10 0.7283  0.7282  35.25 35.25 36 0.3253 0.2772  15.75  13.38 
 (0.0014) (0.0014) (0.53) (0.53) (0.0068) (0.0172) (0.44) (0.94)

11 0.6999  0.6999  33.91 33.91 37 0.3180 0.2598  15.45  12.86 
 (0.0015) (0.0015) (0.52) (0.52) (0.0071) (0.0157) (0.44) (0.87)

12 0.6730  0.6728  32.62 32.61 38 0.3103 0.2521  15.15  12.38 
 (0.0016) (0.0016) (0.50) (0.50) (0.0075) (0.0140) (0.45) (0.79)

13 0.6468  0.6466  31.38 31.36 39 0.3042 0.2459  14.84  11.96 
 (0.0017) (0.0017) (0.48) (0.48) (0.0077) (0.0128) (0.46) (0.72)

14 0.6234  0.6231  30.26 30.22 40 0.2985 0.2394  14.53  11.57 
 (0.0017) (0.0018) (0.46) (0.47) (0.0079) (0.0120) (0.46) (0.68)

15 0.6008  0.6002  29.19 29.13 41 0.2904 0.2307  14.23  11.20 
 (0.0018) (0.0018) (0.45) (0.45) (0.0081) (0.0110) (0.47) (0.63)

16 0.5795  0.5787  28.18 28.09 42 0.2845 0.2248  13.95  10.86 
 (0.0020) (0.0022) (0.43) (0.43) (0.0082) (0.0106) (0.47) (0.60)

17 0.5598  0.5575  27.25 27.10 43 0.2806 0.2199  13.68  10.52 
 (0.0019) (0.0027) (0.42) (0.42) (0.0081) (0.0114) (0.47) (0.63)

18 0.5411  0.5378  26.36 26.18 44 0.2764 0.2155  13.44  10.17 
 (0.0018) (0.0025) (0.41) (0.41) (0.0080) (0.0127) (0.46) (0.66)

19 0.5223  0.5190  25.49 25.30 45 0.2721 0.2112  13.21  9.84 
 (0.0019) (0.0023) (0.40) (0.39) (0.0081) (0.0140) (0.46) (0.72)

20 0.5044  0.5010  24.61 24.42 46 0.2662 0.2021  13.00  9.49 
 (0.0024) (0.0024) (0.40) (0.39) (0.0082) (0.0150) (0.46) (0.77)

21 0.4875  0.4827  23.76 23.55 47 0.2597 0.1850  12.79  9.14 
 (0.0031) (0.0033) (0.40) (0.40) (0.0084) (0.0156) (0.47) (0.79)

22 0.4723  0.4675  22.98 22.69 48 0.2545 0.1789  12.58  8.77 
 (0.0036) (0.0054) (0.40) (0.45) (0.0086) (0.0157) (0.48) (0.80)

23 0.4580  0.4532  22.30 21.82 49 0.2492 0.1745  12.37  8.41 
 (0.0036) (0.0086) (0.39) (0.54) (0.0089) (0.0152) (0.49) (0.78)

24 0.4451  0.4271  21.70 20.94 50 0.2457 0.1614  12.16  8.07 
 (0.0038) (0.0097) (0.39) (0.58) (0.0090) (0.0145) (0.49) (0.74)

25 0.4317  0.4096  21.11 20.11 51 0.2418 0.1580  11.97  7.71 
 (0.0040) (0.0083) (0.38) (0.52) (0.0091) (0.0130) (0.49) (0.67)
    52 0.2385 0.1408  11.79  7.34 
    (0.0091) (0.0119) (0.50) (0.62)
      

Notes:  Total cost is measured in millions of dollars.  Standard errors are calculated using the bootstrap, based on 
400 replications with samples equal in size to the number of observations and drawn with replacement. 
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Figure 2.  Comparison of the Estimated Location Function µ̂  to the Observed Median for Cells 
with Less than Fifty Percent Censoring. 
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Notes:  Solid line indicates the 45 degree line.  Sample restricted to cells with at least 100 observations. 
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Figure 3.  Estimated Quantiles of Unemployment Insurance Receipt for Selected Cells, with a 
Comparison to the Kaplan-Meier Estimates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Notes:  Smooth lines indicate estimated quantiles and broken lines indicate pointwise 95 percent 
confidence intervals.  The step function is the Kaplan-Meier estimate (with the axes reversed).  A line is 
drawn at 26 weeks to indicate the censoring point.  Panels 1-4 plot the estimated quantiles up to the point 
where 15 percent of claims are predicted to be active.  Panels 5-8 plot the estimated quantiles until the point 
estimate exceeds 52 weeks. 



Figure 4.  Upper and Lower Bound Estimates of the Aggregate Survival Function for Claimants 
in Cells with More than Fifty Percent Censoring, with a Comparison to the Kaplan-Meier and 
Weibull Accelerated Failure Time Estimates. 
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Notes:  Two solid lines indicate the upper and lower bound estimates of the aggregate survival function.  
The Weibull estimate is labeled on the graph.  Broken lines indicate pointwise 95 percent confidence 
intervals for the estimates.  The step function is the Kaplan-Meier estimate.  A vertical line is drawn at 26 
weeks to indicate the censoring point. 
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Figure 5.  Upper and Lower Bound Estimates of the Aggregate Survival Function for All 
Claimants, with a Comparison to the Kaplan-Meier Estimate. 
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Notes:  Two solid lines indicate the upper and lower bound estimates of the aggregate survival function.  
Broken lines indicate pointwise 95 percent confidence intervals for the estimates.  The step function is the 
Kaplan-Meier estimate.  A vertical line is drawn at 26 weeks to indicate the censoring point. 
 




