Evolution of Wealth and Asset Prices in Markets with Case-Based Investors¹

Ani Guerdjikova²

November 2004

I analyze whether case-based decision makers (CBDM) can survive in an asset market in the presence of expected utility maximizers. Conditions are identified, under which the CBDM retain a positive mass with probability one. CBDM can cause predictability of asset returns, high volatility and bubbles. It is found that the expected utility maximizers can disappear from the market for a finite period of time, if the mispricing of the risky asset caused by the case-based decision-makers aggravates too much. Only in the case of logarithmic expected utility maximizers do the case-based decision makers disappear from the market for all parameter values.

Keywords: asset pricing, bubbles, volatility, case-based decision theory, evolution.

JEL classification: D81, G 11, G 12

¹ I am indebted to my advisor Juergen Eichberger for his helpful guidance. I would like to thank Hans Haller, Emanuela Sciubba, Carlos Allos-Ferrer, Itzhak Gilboa, Hans Gersbach, Larry Blume, David Easley, Thorsten Hens, Johannes Becker, as well as the participants of the workshop in Honour of David Schmeidler in Yale, of the workshop on Evolutionary and Behavioral Finance in Zurich and of seminars at the University of Heidelberg and Cornell University for helpful discussions and comments.

² Cornell University, Department of Economics, Uris Hall 462, Ithaca, NY 14853, Tel.: 607 255 4867, e-mail: ag334@cornell.edu.
1 Introduction

The empirical literature in financial markets has identified multiple paradoxes of asset pricing. Bubbles, high volatility and predictability of returns are commonly observed in real and experimental markets, see e.g. Kindelberger (1978), Sunder (1995), Jegadesh (1990) and Shiller (1981). These phenomena contradict the joint hypothesis of expected utility maximization and rational expectations. The explanations proposed in the literature usually rely on the introduction of boundedly rational players, whose misperceptions lead to deviation of prices from the predictions of the standard theory. However, the recent literature on evolution in financial markets casts doubt on the viability of these explanations. Correct beliefs are shown to be the only robust selection criterium in complete markets in which the equilibrium allocation satisfies Pareto-optimality, see Blume and Easley (2001) and in markets with perfect foresight, Sandroni (2000).

In this paper, I provide a model in which traders causing asset prices to deviate from prices under rational expectations can survive in a market populated by expected utility maximizers. Moreover, they are able to influence equilibrium prices and cause excess volatility, bubbles and predictability of returns. The model further shows that under certain conditions, the expected utility maximizers can be driven out of the market for a finite period of time, during which an asset with a positive fundamental value sells at a 0-price. Hence, it can provide an explanation for price crashes occurring on assets with positive fundamentals.

I use the case-based decision theory proposed by Gilboa and Schmeidler (1995) to model investors whose behavior significantly deviates from expected utility maximization with correct expectations. Case-based decision-makers are not assumed to have knowledge of possible states of nature or of the distribution of state-dependent outcomes. Instead they learn from experience and evaluate an alternative by the past performance of similar alternatives, taking into account whether past results were satisfactory compared to an aspiration level.

In Guerdjikova (2003), it is shown that an asset market populated only by case-based investors can exhibit 0-price equilibria and a price dynamic featuring excess volatility, bubbles and predictability of asset returns.

The current model applies these results to study the evolutionary dynamic of wealth in a market
populated by both case-based decision-makers and expected utility maximizers. The proportion of the two types of investors and, therefore, their wealth share, evolve according to the relative success of both groups. This endogenizes the initial endowment of the investors and allows to address the issue of the relative performance of these two strategies.

I address two main issues: first, I analyze whether case-based investors can retain a positive share in the economy over time and, second, I determine the influence of their behavior on prices.

The results crucially depend on the risk-attitude of the agents in the economy. Previous research indicates that the relationship between survival and risk-attitude is not unequivocal: De Long, Shleifer, Summers and Waldmann (1990, 1991) show that noise traders choosing risky portfolios can outperform rational traders with high risk-aversion. Blume and Easley (1992), Hens and Schenk-Hoppé (2001), Evstigneev, Hens and Schenk-Hoppé (2002, 2003), prove that the most successful strategy consists in maximizing a logarithmic expected utility function with correct beliefs. Should a logarithmic utility maximizer be absent from the market, Blume and Easley (1992) show that the market selects for investors with relative risk-aversion closest to 1.

Similarly, in this model, the case-based investors disappear with certainty if logarithmic expected utility maximizers are present in the market. Nevertheless, for all coefficients of relative risk-aversion below 1, it is possible to indicate a range of parameters, for which the case-based investors not only survive, but also influence the asset prices in a non-trivial way.

Differently from most of the literature in the field, this paper abstracts from determining the optimal strategy and concentrates on the comparison of two decision rules. The relevance of such comparative analysis stems from the fact that the use of optimal rules might be limited by informational costs. If a decision-maker cannot easily determine the correct probability distribution guiding the process of returns, he might have to compare simple rules with respect to their survival chances, see e.g. Sciubba (2001) who analyzes the relative performance of the CAPM rule as compared to logarithmic utility maximization and mean-variance utility maximization.

The paper will be organized as follows: section two gives a description of the economy. and introduces the evolutionary dynamic of investor types. In section three, the evolutionary dynamic is analyzed in order to ask the question, whether case-based decision makers can survive in a
financial market. Section four discusses how empirically observed phenomena, such as bubbles or price crashes can emerge in the presence of case-based decision makers in the market. Section five concludes. The proofs of all propositions are stated in the appendix.

2 The Economy

The economy consists of a continuum of investors, uniformly distributed on \([0; 1]\). Time is discrete: \(t = 0, 1, \ldots\). In period \(t\), a proportion \(e_t\) of the investors are expected utility maximizers (EUM), whereas the rest, \(c_t = 1 - e_t\) are case-based decision makers (CBDM). No population growth is considered.

The model has an OLG structure. Each investor lives for two periods. Investors consume only in the second period of their life. Preferences are represented by a CRRA utility function

\[
\begin{align*}
 u_{\beta}(x) &= x^\beta, \quad \beta \in (0; 1] \\
 u_{\beta}(x) &= \ln x, \quad \beta = 0,
\end{align*}
\]

which is identical for all investors. \((1 - \beta)\), therefore, denotes the coefficient of relative risk aversion. There is one consumption good in the economy with price normalized to 1. The initial endowment of the investors consists of one unit of the consumption good in the first period and is 0 in the second period.

Consumption can be transferred between two periods by either using a riskless storage technology \(b\), or investing in a risky asset \(a\). The payoff of \(b\) is \((1 + r)\) per unit of consumption good stored. It is available in a perfectly elastic supply at a price of 1.

The supply of \(a\) is \(A = 1\). Its payoff in period \(t\) is:

\[
\delta_t = \begin{cases}
\delta & \text{with probability } q \\
0 & \text{with probability } 1 - q
\end{cases},
\]

where \(\delta_t\) is i.i.d. Its price is \(p_t\). New emissions are not considered, since I am interested in the behavior of prices on the secondary asset market. Let the payoffs satisfy \(1 > \delta > r > 0\).

Short sales are not permitted. Therefore, the set of available acts reduces to:

\[
\gamma^*_i \in [0; 1],
\]

with \(\gamma\) denoting the share of endowment invested into \(a\) and \(i \in \{eu; cb\}\), where \(eu\) and \(cb\) identify the EUM and the CBDM, respectively. Since diversification is possible, I will assume
that all investors of a given type choose identical portfolios. This amounts to replacing each of
the types by a representative investor.

Given \(\gamma^i_{t-1} \), the indirect utility from consumption of \(i \) at time \(t \) can be written as:

\[
v_t \left(\gamma^i_{t-1} \right) = u_\beta \left(\gamma^i_{t-1} \left(\frac{p_t}{p_{t-1}} + \frac{\delta_t}{p_{t-1}} \right) + \left(1 - \gamma^i_{t-1} \right) (1 + r) \right).\]

(1)

Note, that \(v_t \left(\gamma^i_{t-1} \right) \) depends on \(p_t \), and hence, on the decisions of the young investors at time \(t \).

2.1 Information and Individual Decisions

The individual decision-making process will predetermine the evolution of asset prices, as well as of the shares of different investor types in the economy.

2.1.1 Case-Based Decision Makers

First consider the CBDM, as introduced in Gilboa and Schmeidler (2001). Their description of the situation contains the investment problem, they have to solve, as well as the available alternatives, \(\gamma^{cb}_t \in [0; 1] \). Unlike EUM, CBDM do not use information about possible states of nature, state-contingent outcomes and their probability distribution. Therefore, they can only base their decisions on the experience of previous generations, they know about. This information is called memory. I assume that the memory consists only of the act chosen and utility realized by the CBDM in the previous generation. The experience of the EUM is not taken into account. Hence, the memory at time \(t \) can be written as

\[
M_t = \left((\gamma^{cb}_{t-1}, v_t(\gamma^{cb}_{t-1})) \right)
\]

The assumption that CBDM base their decision on the observation of a single case might seem to be very limiting. However, as will become clear, it is possible to show that CBDM can survive and influence prices even with such limited knowledge about the environment they are facing. It, therefore seems intuitive that the results for survival of the CBDM and their influence on prices should be robust to extending the length and the contents of their memory.

The utility obtained from \(\gamma^{cb}_{t-1} \) is then compared to an aspiration level \(\bar{u} \) assumed to be identical for all CBDM and constant over the time. If an act is considered satisfactory, it is chosen again, else, it is abandoned and a different act is chosen next.

The perceived similarity among acts allows the decision-maker to evaluate acts that weren’t
chosen before. Since the available acts are elements of \([0; 1]\), I assume that the similarity between \(\gamma\) and \(\gamma'\), \(s(\gamma; \gamma')\), is a strictly decreasing function of the Euclidean distance \(\|\gamma - \gamma'\|\).

Each act is evaluated according to its cumulative utility:

\[
U_t(\gamma) = \left[v_t(\gamma_{t-1}^{cb}) - \bar{u} \right] s(\gamma; \gamma_{t-1}^{cb})
\]

and

\[
\gamma_t^{cb} = \arg \max_{\gamma \in [0;1]} U_t(\gamma).
\]

Hence, the decision of a CBDM takes the form:

\[
\gamma_t^{cb} = \begin{cases}
\gamma_{t-1}^{cb} & \text{if } v_t(\gamma_{t-1}^{cb}) \geq \bar{u} \\
\arg \max_{\gamma \in [0;1]} U_t(\gamma) & \text{if } v_t(\gamma_{t-1}^{cb}) \leq \bar{u}
\end{cases}.
\] \(2\)

The following lemma obtains directly from (2).

Lemma 1 Let \(\gamma_0^{cb} \in (0; 1)\). If \(\bar{u}\) satisfies

\[
u_\beta (\gamma_0^{cb} (1 - \gamma_0^{cb}) (1 + r)) \geq \bar{u},
\]

then \(\gamma_t^{cb} = \gamma_{t-1}^{cb} = \gamma_0^{cb}\) for all \(t\). If

\[
u_\beta (\gamma_0^{cb} (1 - \gamma_0^{cb}) (1 + r)) < \bar{u},
\]

then \(\gamma_t^{cb} \in \{0; 1\}\) almost surely holds for all \(t \geq \bar{t}\) for some finite \(\bar{t}\).

To derive the share of the endowment of CBDM invested into \(a\), denote by \(\tilde{p}_t\) the price of \(a\), for which the CBDM are indifferent among all portfolios (if such a price exists):

\[
\tilde{p}_t : u_\beta \left(\frac{\gamma_{t-1}^{cb} (\tilde{p}_t/p_t) + \delta_t}{p_t} \right) + (1 - \gamma_{t-1}^{cb}) (1 + r) - \bar{u} = 0.
\]

Case 1: As long as \(\tilde{p}_t > 0\) and \(\gamma_{t-1}^{cb} \geq \frac{1}{2} \)

\[
\gamma_t^{cb} = \begin{cases}
\gamma_{t-1}^{cb} & \text{if } p_t > \tilde{p}_t \\
[0; \gamma_{t-1}^{cb}] & \text{if } p_t = \tilde{p}_t \\
0 & \text{if } p_t < \tilde{p}_t
\end{cases}.
\]

Case 2: For \(\gamma_{t-1}^{cb} \in (0; \frac{1}{2})\),

\[
\gamma_t^{cb} = \begin{cases}
\gamma_{t-1}^{cb} & \text{if } p_t > \tilde{p}_t \\
[0; \gamma_{t-1}^{cb}] & \text{if } p_t = \tilde{p}_t \\
1 & \text{if } p_t < \tilde{p}_t
\end{cases}.
\]

Case 3: For \(\gamma_{t-1}^{cb} = 0\), \(\tilde{p}_t\) exists only if \(1 + r = \bar{u}\):

\[
\gamma_t^{cb} = \begin{cases}
0 & \text{if } 1 + r > \bar{u} \\
[0; 1] & \text{if } 1 + r = \bar{u} \\
1 & \text{if } 1 + r < \bar{u}
\end{cases}.
\]

Figure 1 illustrates the three cases.

Note that \(\gamma_t^{cb} (p_t)\) is a non-empty, convex-valued, upper hemi-continuous correspondence.

The three cases demonstrate that the share of the endowment invested into the risky asset by
CBDM is monotonically increasing in the price \(p_t \), except if \(\gamma_{t-1}^{cb} \in (0; \frac{1}{2}) \). Since, for reasons to become obvious later, the main interest will be on the case of relatively high aspiration levels, which imply that diversified portfolios are held only for a finite number of periods, cases 1 and 3 will describe the demand of CBDM for assets. Hence, the relationship between \(p_t \) and \(\gamma_t^{cb} (p_t) \) will be positive. This will be the main difference between the CBDM and the EUM, whose share of endowment invested into the risky asset will decrease in \(p_t \).

2.1.2 Expected Utility Maximizers

Now I turn to the description of the EUM. I assume, as usual, that EUM have expectations about the state-contingent payments of each of the assets. Especially, the EUM are informed about the correct distribution of the dividends of the risky asset and of the returns of the safe technology. However, they are unable to predict the influence of the CBDM on asset prices. Instead, they act boundedly rational, forming their expectations about the price as if the economy consisted only of EUM, identical to themselves. Note that although in general, the EUM will not have rational expectations, their beliefs will be correct in the limit, when \(e \to 1 \).

Let \(p_{e \beta}^{eu} \) denote the price which would emerge in a stationary equilibrium if only EUM were present in the market. To compute \(p_{e \beta}^{eu} \), first write the maximization problem of an investor who
Since the EUM perceive $p_t = p_{t+1} = p$,
\[
\max_{\tilde{\gamma}_t \in [0;1]} q \left[\left(1 + \frac{\delta}{p} \right) \tilde{\gamma}_t + (1 + r) (1 - \tilde{\gamma}_t) \right]^\beta + (1 - q) \left[\gamma_t + (1 + r) (1 - \gamma_t) \right]^\beta
\]
for $\beta \in (0; 1)$ and
\[
\max_{\tilde{\gamma}_t \in [0;1]} q \ln \left[\left(1 + \frac{\delta}{p} \right) \tilde{\gamma}_t + (1 + r) (1 - \tilde{\gamma}_t) \right] + (1 - q) \ln \left[\gamma_t + (1 + r) (1 - \gamma_t) \right]
\]
for $\beta = 0$. For $\beta \in [0; 1)$ the f.o.c. becomes:
\[
\tilde{\gamma}_t (p) = \frac{(1 + r) \left[\frac{(1-q)r}{q(\frac{\delta}{p} - r)} \right]^{\frac{1}{\beta}} - 1}{\frac{\delta}{p} + r \left[\frac{(1-q)r}{q(\frac{\delta}{p} - r)} \right]^{\frac{1}{\beta}} - 1}, \quad (3)
\]

Hence,
\[
\tilde{\gamma}_t (p) = \begin{cases}
0, & \text{if } \frac{(1+r) \left[\frac{(1-q)r}{q(\frac{\delta}{p} - r)} \right]^{\frac{1}{\beta}} - 1}{\frac{\delta}{p} + r \left[\frac{(1-q)r}{q(\frac{\delta}{p} - r)} \right]^{\frac{1}{\beta}} - 1} < 0 \\
(1+r) \left[\frac{(1-q)r}{q(\frac{\delta}{p} - r)} \right]^{\frac{1}{\beta}} - 1, & \text{if } \frac{\delta}{p} + r \left[\frac{(1-q)r}{q(\frac{\delta}{p} - r)} \right]^{\frac{1}{\beta}} - 1 \in [0; 1] \\
1, & \text{if } \frac{\delta}{p} + r \left[\frac{(1-q)r}{q(\frac{\delta}{p} - r)} \right]^{\frac{1}{\beta}} - 1 > 0
\end{cases}
\]

Obviously, for $\beta \in [0; 1)$, p_{β}^e is the fixed point of $\tilde{\gamma}_t (p)$:
\[
\tilde{\gamma}_t (p_{\beta}^e) = p_{\beta}^e.
\]

Two special cases are of interest. If $u(x) = x$ then
\[
\tilde{\gamma}_t (p) = \begin{cases}
0 & p > \frac{q\delta}{r} \\
[0; 1] & p = \frac{q\delta}{r} \\
1 & p < \frac{q\delta}{r}
\end{cases}
\]
and
\[
p_{\beta}^e = \min \left\{ \frac{q\delta}{r}; 1 \right\},
\]

hence the price equals the fundamental value of the asset. If $u(x) = \ln x$, then
\[
p_{0}^e = \min \{ p_{\log}^e, 1 \} \text{ with } p_{\log}^e = \frac{1 + r + \delta - \sqrt{(1 + r + \delta)^2 - 4q\delta (1 + r)}}{2r}.
\]

Since the EUM perceive p_{β}^e to be the "true" price of the risky asset, the share of their endowment
invested into the risky asset $\gamma^e_{u_t}$ is determined as a solution to
\[
\max_{\gamma^e_{u_t} \in [0;1]} q \left[\left(\frac{p_{\beta}^e + \delta}{p_t} \right) \gamma^e_{u_t} + (1 + r) (1 - \gamma^e_{u_t}) \right]^{\beta} + (1 - q) \left[\frac{p_{\beta}^e}{p_t} \gamma^e_{u_t} + (1 + r) (1 - \gamma^e_{u_t}) \right]^{\beta},
\]
respectively
\[
\max_{\gamma^e_{u_t} \in [0;1]} q \ln \left[\left(\frac{p_{\beta}^e + \delta}{p_t} \right) \gamma^e_{u_t} + (1 + r) (1 - \gamma^e_{u_t}) \right] + (1 - q) \ln \left[\frac{p_{\beta}^e}{p_t} \gamma^e_{u_t} + (1 + r) (1 - \gamma^e_{u_t}) \right]
\]
and is decreasing in p_t. Note that if $p_{\beta}^e = 1$, $\gamma^e_{u_t} (p_t) = 1$ for all p_t.

$\gamma^e_{u_t} (p_t)$ is a continuous function for $\beta \in [0;1)$, whereas for $\beta = 1$ it is a non-empty, convex-valued and upper hemicontinuous correspondence. The value of demand for a of the whole population is obtained as:

\[
d_t (p_t) = e_t \gamma^e_{u_t} (p_t) + (1 - e_t) \gamma^e_{c_b} (p_t).
\]

It is a correspondence, which also has the characteristics stated above and maps the interval $[0; 1]$ into $[0; 1]$.

2.2 The Evolution of Investor Types

After describing the decision process of the investors in the economy, I now introduce the selection dynamic. The fitness of a given type of investors is measured by the actual average returns they achieve relative to the average returns of the society as a whole. This gives rise to a replicator dynamic, in which the share of the type of investors who perform better grows. A higher wealth share for a particular type of investors in the economy then implies greater influence on market processes, see equation (4).

An OLG structure does not allow for a natural wealth dynamic to arise as in the works cited in section 2. However, since each investor is born with the same initial endowment of 1 unit of the consumption good, the share of a type of investors can be identified with the total income of the investors of this type. Hence, the replicator dynamic can be interpreted as a wealth dynamic in the model at hand.

2.2.1 Replicator Dynamic

Differently from the usual approach in evolutionary game theory, the replicator dynamic in this model is applied not to the portfolio strategy chosen by an individual, but to the "meta"-strategies used by the two types of investors, hence to the performance of case-based decision-making versus expected utility maximization.
The replicator dynamic is introduced, following Weibull (1995, pp. 124-125).

Denote by

$$
\begin{align*}
\bar{v}_t^i & = \gamma_{t-1}^{i} \frac{p_t + \delta_t}{p_{t-1}} + \left[1 - \gamma_{t-1}^{i}\right] (1 + r) \\
\bar{v}_t & = e_{t-1} \left[\gamma_{t-1}^{eu} \frac{p_t + \delta_t}{p_{t-1}} + \left[1 - \gamma_{t-1}^{eu}\right] (1 + r) \right] \\
& \quad + (1 - e_{t-1}) \left[\gamma_{t-1}^{cb} \frac{p_t + \delta_t}{p_{t-1}} + \left[1 - \gamma_{t-1}^{cb}\right] (1 + r) \right]
\end{align*}
$$

(5)

the average returns achieved by an investor of type \(i \in \{eu; cb\} \) and by the society as a whole. The replicator dynamic is written as:

$$
e_t = \frac{\bar{v}_t^{eu}}{\bar{v}_t} e_{t-1}
$$

(6)

Hence, the equilibrium share of EUM becomes:

$$
e_t^* = \frac{\left[p_t^* (e_t^*)^{1} + \delta_t \gamma_{t-1}^{eu} + (1 + r) \left(1 - \gamma_{t-1}^{eu}\right)\right] e_{t-1}}{p_t^* (e_t^*)^{1} + \delta_t + (1 + r) \left(1 - \gamma_{t-1}^{eu} e_{t-1} + \gamma_{t-1}^{cb} (1 - e_{t-1})\right)}.
$$

(7)

The numerator represents the wealth of the old EUM at time \(t \), the denominator is the wealth of the old investors in the economy at \(t \). Hence, the proportion of young investors following a decision rule at time \(t \) is equal to the relative share of wealth held by the old investors following the strategy. I therefore claim, that the replicator dynamic can be interpreted as a relative wealth dynamic in the sense of Blume and Easley (1992, 2001) and Hens and Schenk-Hoppé (2001), Evstigneev, Hens and Schenk-Hoppé (2002, 2003).

The analysis in section 2 shows that if \(e_{t-1} = 0, p_{t-1} = 0 \) might obtain, see figure 1. To insure that \(e_t^* \) is always well defined, compute the limit of (7) as \(e_{t-1} \) and \(p_{t-1} \) converge to 0. Obviously, \(p_{t-1} = \gamma_{t-1}^{eu} e_{t-1} \) and \(\gamma_{t-1}^{eu} = 1 \) will hold for prices near 0. Substituting in (7) gives:

$$
\lim_{e_{t-1} \to 0} e_t^* = \lim_{e_{t-1} \to 0} \frac{p_t^* (e_t^*)^{1} + \delta_t}{p_t^* (1 + (1 + r) (1 - e_{t-1})}\right) e_{t-1} = \frac{p_t^* (e_t^*)^{1} + \delta_t}{p_t^* (1 + \delta_t + 1 + r)},
$$

which is well defined. This means, especially, that starting with \(e_t = 0 \) the mass of EUM may become strictly positive if EUM hold an asset with positive fundamental value, the price of which is 0. On the other hand, if the initial mass of the CBDM is 0, then it remains 0 in all subsequent periods.

2.2.2 Temporary Equilibrium With Replicator Dynamic

Definition 1 Given \((e_{t-1}; \gamma_{t-1}^{eu}; \gamma_{t-1}^{cb}; p_{t-1}) \), a temporary equilibrium with replicator dynamic
at time t is defined as a vector: $(e_t^*; \gamma_t^{eu}; \gamma_t^{cb}; p_t^*)$, such that:

(i) $\gamma_t^{eu} = \gamma_t^{eu} (p_t^*)$;

(ii) $\gamma_t^{cb} = \gamma_t^{cb} (p_t^*)$;

(iii) $p_t^* (e_t^*)$ clears the market for the risky asset given e_t^*;

(iv) e_t^* is determined by the replicator dynamic:

$$e_t^* = \frac{\left(p_t (e_t^*) + \delta_t \cdot \gamma_t^{eu} (e_t-1) \right) \cdot (1 + r) \left(1 - \gamma_t^{eu} (e_t-1)\right) + \left(1 - \gamma_t^{eu} (e_t-1)\right) \cdot (1 + r) \left(1 - \gamma_t^{eu} (e_t-1)\right)}{p_t (e_t^*) + \delta_t \cdot \gamma_t^{cb} (e_t-1) \left(1 - e_t-1\right) + \left(1 - \gamma_t^{cb} (e_t-1)\right) \cdot (1 + r) \left(1 - \gamma_t^{cb} (e_t-1)\right)}$$

In appendix B, it is shown that such an equilibrium exists in each period of time as long as the initial state $(e_{t-1}; \gamma_t^{eu}_{t-1}; \gamma_t^{cb}_{t-1}; p_{t-1})$ is an equilibrium. The evolution of the system is therefore well defined.

3 The Evolution of Wealth

The definition of a temporary equilibrium with evolutionary dynamic, combined with the dividend process determine the evolution of the system. I first discuss the stationary states.

3.1 Stationary states

Proposition 2 (i) $e_t^* = 1$, $p_t^* = \gamma_t^{eu} = p_t^{eu}$ is a stationary state.

(ii) $e_t^* = 0$, $p_t^* = \gamma_t^{cb} = \gamma_0^{cb}$ is a stationary state, if $\gamma_0^{cb} > 0$ and

$$\tilde{u} < u_\beta \left(\gamma_0^{cb} + (1 + r) \left(1 - \gamma_0^{cb}\right)\right)$$

hold.

If only EUM are present in the market, a REE emerges. If $e = 0$, the price $p_t^* = \gamma_0^{cb}$ is constant over time, but, in general $p_0^{eu} \neq p_t^*$. Hence, arbitrage opportunities might remain unused in the market. However, the state in which only CBDM are present in the market is stationary only if the aspiration level is relatively so that $\gamma_t^{cb} > 0$ holds for all t. As the discussion in section 1 implies, $p_t^* = 0$ leads almost surely to $e_T^* > 0$ for some finite $T > t$, contradicting the assumption of stationarity.

Proposition 3 Let

$$\tilde{u} < u_\beta \left(p_0^{eu} + (1 + r) \left(1 - p_0^{eu}\right)\right)$$

Then each $e \in [0; 1]$ is a stationary state, if the portfolios held and the price of a fulfill:

$$\gamma_t^{eu} = \gamma_t^{cb} = p_\beta = p_t^*$$
Proposition 3 identifies stationary states, in which both types of traders coexist. The equilibrium price and allocations coincide with the REE. By mimicking the EUM, CBDM with relatively low aspiration levels are thus able to survive in a financial market. However, they will not influence prices and it would not be possible to empirically reject the hypothesis of rational expectations and expected utility maximization in such a market. It is, therefore, interesting, whether a positive share of case-based decision-makers can survive if the portfolio strategies of EUM and CBDM differ.

3.2 Can the Case-Based Investors Survive?

It has been shown, that CBDM with a relatively low aspiration level can survive in a market, without influencing prices if \bar{u} is relatively low.

The further discussion will concentrate on the case, in which the stationary states in which CBDM are present in the market, as described in propositions 2 and 3 do not occur, i.e. on

$$\bar{u} > u_\beta (\gamma_0^{cb} - \gamma_0^{cb} + 1 + r (1 - \gamma_0^{cb}))$$

for $\gamma_0^{cb} > 0$, since then the CBDM will change their portfolio holdings over time generating a non-trivial dynamic. The discussion of the results for asset markets without EUM in Guerdjikova (2003) shows, that the dynamic of the system crucially depends on the aspiration level of the CBDM. Two cases will be of importance:

$\bar{u} \in (u_\beta (1 + r) ; u_\beta (1 + \delta))$, referred to as high aspiration level and

$\bar{u} \in (u_\beta (\gamma_0^{cb} + (1 + r) (1 - \gamma_0^{cb})) ; u_\beta (1 + r))$, the case of low aspiration level.

For

$$\bar{u} \in (u_\beta (\gamma_0^{cb} + (1 + r) (1 - \gamma_0^{cb})) ; u_\beta (1 + r)),$$

it is easy to see, that the return of b is satisfactory for the CBDM, whereas the return of a, given that the dividend is 0 and the price of a remains unchanged or falls is not satisfactory. Hence, $\gamma_0^{cb} = 0$ obtains and holds forever.
For
\[\bar{u} \in (u_\beta (1 + r) ; u_\beta (1 + \delta)) , \]
the return of \(a \) is considered satisfactory, when the dividend is high and the price of \(a \) weakly increases, whereas the return of \(b \) and the return of \(a \) if its dividend is low, are regarded as unsatisfactory. Hence, the CBDM will switch infinitely often between \(\gamma^{cb} = 1 \) and \(\gamma^{cb} = 0 \).

Since the influence of CBDM on prices depends positively on their share \(c \), in the following I examine the stability of the stationary state \(e = 1 \) to determine whether the CBDM can survive and influence the prices in the market.

3.2.1 The case of high aspiration levels

Consider first the case of high aspiration level:
\[\bar{u} \in (u_\beta (1 + r) ; u_\beta (1 + \delta)) . \]

Proposition 4 Let
\[\bar{u} \in (u_\beta (1 + r) ; u_\beta (1 + \delta)) . \]

1. If
\[q \in \left[\frac{r}{r + (\delta - r) (1 + \delta)^{\beta-1}} \left(\frac{(1 + \delta) r}{(1 + r) \delta} \right) , \right) , \]
then for each \(\beta \in (0; 1] \), there exists an \(\bar{e} \in (0; 1) \), such that \(e^*_t \) is a submartingale for \(e^*_{t-1} < \bar{e} \) and a supermartingale for \(e^*_{t-1} \geq \bar{e} \).

2. For all values of \(\beta \in [0; 1] \) if
\[q \in \left[\frac{(1 + \delta) r}{(1 + r) \delta} , 1 \right] , \]
\(e^*_t \) is a submartingale for all \(e_{t-1} \in [0; 1] \). The CBDM disappear with probability 1.

Proposition 4 establishes conditions under which the stationary state \(e = 1 \) is not stable, in the sense that the replicator dynamics does not converge to it with probability 1.

To see the intuition behind the result, consider the case of \(\beta = 1 \). The condition on \(q \) in the first part of proposition 4 insures that \(p_1^{eu} = 1 \), hence, the EUM hold \(a \) in each period of time, independently of \(p_t \). The high aspiration level implies that the CBDM are constantly switching between \(\gamma^{cb} = 1 \) and \(\gamma^{cb} = 0 \). The replicator dynamic of \(e^*_t \) is concave in the returns of the EUM. Therefore, it selects for the less risky strategy, given that the expected returns of two strategies

13
are identical. When \(\gamma^{cb} = 0 \), the portfolio of the CBDM is less risky than the portfolio of the EUM, \(\gamma^{eu} = 1 \). Moreover, if \(p_{1}^{eu} = \frac{q}{r} = 1 \), as \(c \to 0 \) the expected returns of both portfolios are the same and the replicator dynamic selects for the less risky one — those of the CBDM. By continuity, the same result holds in some surrounding of \(e = 1 \) and in some surrounding of \(q = \frac{r}{\delta} \). Hence, as long as \(q \) is not very large, a positive share of CBDM survives.

If, however, \(q \) exceeds \(\frac{(1+\delta)r}{(1+r)\delta} \), the excess return of the EUM becomes sufficiently high to compensate for the higher risk of their portfolio. In this case, they accumulate the whole market wealth with probability 1. If the utility function is logarithmic, only this case is relevant and the CBDM almost surely disappear. This result is consistent with the findings cited in section 2.

Higher values of \(p_{\beta}^{eu} \) coincide with higher values of \(q \) ceteris paribus. The probability of high dividends has two effects on the evolutionary dynamic. On the one hand, higher \(q \) implies higher expected returns of \(a \) and therefore higher profits for the investors holding it, i.e. for the EUM. On the other hand, higher values of \(q \) cause the CBDM to switch less frequently between the two undiversified portfolios and to hold the risky asset during a larger share of time, hence to behave in a less risk-averse manner. These two effects work in the same direction, making the strategy of the EUM more successful.

A result similar to the one of proposition 4 can be derived for lower fundamental values of the risky asset, when the utility function is linear.

Proposition 5 Suppose that \(\beta = 1 \). Let the aspiration level satisfy

\[
\bar{u} \in (1 + r; 1 + \delta).
\]

Then there is a critical value \(\bar{p}_{1}^{eu} \in \left(\frac{1}{2}; 1 \right) \) such that \(E \left[e_{t+2}^{*} \mid e_{t}^{*} \right] < e_{t}^{*} \) holds for

\[
e_{t}^{*} \in \max \left\{ p_{1}^{eu} ; 1 - p_{1}^{eu} + \frac{r p_{1}^{eu}}{1 + r} \right\} ; 1
\]

if \(p_{1}^{eu} \in (\bar{p}_{1}^{eu}, 1) \).

Although the result is stated for the case of a linear utility function, the argument can be extended to all \(\beta > 0 \). Indeed, because of proposition 4, we know that \(e = 1 \) is unstable at

\[
q = \frac{r}{r + (\delta - r)(1 + \delta)^{\beta - 1}}.
\]

Since the dynamic of the system is continuous w. r. t. \(q \), it follows that this property still holds
in some surrounding of \(p_{\beta}^{eu} = 1 \) and especially for

\[
q \in \left(\tilde{q}; \frac{r}{r + (\delta - r)(1 + \delta)^{\beta - 1}} \right)
\]

for some \(\tilde{q} \in \left(0; \frac{r}{r + (\delta - r)(1 + \delta)^{\beta - 1}} \right) \).

For lower values of \(p_{\beta}^{eu} \) (even in the case of a linear utility function), the results are not clear. For \(\beta = 1 \), it can be shown that

\[
E \left[e_{t+2}^{*} \mid e_{t}^{*}, \gamma_{t}^{*eb} = 1 \right] < 0
\]

and

\[
E \left[e_{t+2}^{*} \mid e_{t}^{*}, \gamma_{t}^{*eb} = 0 \right] > 0
\]

hold for \(e_{t} \) sufficiently close to 1. It is, à priori, not clear which of these two effects will dominate. Nevertheless, the intuition suggests that for sufficiently low \(p_{\beta}^{eu} \), the CBDM will disappear. Let, e.g. \(\delta = 0 \), so that \(p_{1}^{eu} = 0 \). In this case, the CBDM, hold a strictly dominated asset with positive frequency and disappear. By continuity, this result holds in some surrounding of \(p_{1}^{eu} = 0 \) \((\delta = 0) \) and, therefore, CBDM with high aspiration level cannot survive for low fundamental values of the risky asset.

To summarize, if the fundamental value of the risky asset is neither too high, nor too low, there is a positive probability that the CBDM will not disappear from the market. This result can be made even stronger:

Proposition 6 Suppose that \(e_{t}^{*} \) is a supermartingale on some interval \([\tilde{e}; 1] \). Then

\[
Pr\{e_{t}^{*} \rightarrow 1\} = 0.
\]

The share of CBDM thus remains almost surely positive, as long as it can be shown, that \(e_{t}^{*} \) is a supermartingale near 1. This result can be interpreted in terms of the definition of survival and dominance introduced by Blume and Easley (1992). In their terminology survival requires that the share of an investor type, say of CBDM, fulfills:

\[
Pr \left\{ \limsup_{t \to \infty} c_{t} > 0 \right\} = 1,
\]

whereas the CBDM dominate the market, if

\[
Pr \left\{ \liminf_{t \to \infty} c_{t} > 0 \right\} = 1
\]

is satisfied. Proposition 6 implies that both (8) and (9) are fulfilled, as long as \(e_{t}^{*} \) is a supermartingale on some interval \([\tilde{e}; 1] \).
3.2.2 The case of low aspiration level

Now suppose that the CBDM have an aspiration level which satisfies
\[u_\beta \left(\gamma_0^{cb} + (1 + r) \left(1 - \gamma_0^{cb}\right) \right) < \bar{u} < u_\beta \left(1 + r\right), \]
implying that the CBDM hold \(b \) in each period of time. Again, it is possible to identify values of the parameters, for which the state \(e = 1 \) is not stable and the CBDM almost surely survive in positive proportion.

Proposition 7 If
\[\bar{u} \in \left(u_\beta \left(\gamma_0^{cb} + (1 + r) \left(1 - \gamma_0^{cb}\right) \right) ; u_\beta \left(1 + r\right) \right) \]
and

1. \(q \in \left[\frac{r}{r + (\delta - r)(1 + \delta)^{\beta - 1}} ; \frac{(1 + \delta) r}{(1 + r)^{\delta}} \right] \), then for each \(\beta \in (0; 1] \), there exists an \(\hat{e} \in (0; 1) \), such that \(e_t \) is a supermartingale above \(\hat{e} \) and a submartingale below \(\hat{e} \).

2. If \(q \in \left[\frac{(1 + \delta) r}{(1 + r)^{\delta}} ; 1 \right] \), for any \(\beta \in [0; 1] \), the share of the CBDM converges to 0 almost surely.

For low aspiration levels, the CBDM survive for exactly the same values of \(q \), which were found in proposition 4. Although in the case of low aspiration level, \(q \) influences the selection only by increasing the average return of the EUM and not through the less risk-averse behavior on the side of the CBDM, in the limit when \(c \to 0 \), the conditions for survival of the CBDM are identical in both cases.

However, the cut-off values \(\tilde{e} \) (as defined in proposition 4) and \(\hat{e} \) from proposition 7 reflect the fact that the strategy of the CBDM is riskier in the case of high aspiration level. Hence, CBDM with low aspiration levels are likely to survive in a higher proportion than CBDM with high aspiration levels, as the following proposition demonstrates:

Proposition 8 \(\tilde{e} \), as defined in proposition 4 and \(\hat{e} \) from proposition 7 satisfy:
\[\tilde{e} > \hat{e}. \]

Proposition 9 Suppose that
\[\bar{u} \in \left(u_\beta \left(\gamma_0^{cb} + (1 + r) \left(1 - \gamma_0^{cb}\right) \right) ; u_\beta \left(1 + r\right) \right) \]
Let
\[q < \frac{r}{r + (\delta - r)(1 + \delta)^{\beta - 1}}. \]
Then for all \(\beta \in (0; 1] \), there is an \(\tilde{e} (\beta) \in (0; 1) \) such that \(e_t^* \) is a supermartingale on \([\tilde{e} (\beta) ; 1] \).
The result of proposition 6 applies in this case as well, implying that the share of CBDM remains positive with probability 1, as long as \(e_t^* \) is a supermartingale in some interval \([\hat{e}; 1]\). Note that as in the case of high aspiration levels, CBDM cannot survive in the presence of logarithmic EUM.

4 Asset Prices in the Presence of Case-Based Decision Makers

The results of section 3 show that CBDM can survive in strictly positive proportion in the presence of EUM. This section analyzes the effect of their behavior on asset prices.

Consider first the case of high aspiration level. If \(p_{eu}^\beta < 1 \), the CBDM can influence prices and cause bubbles, excessive volatility and predictability of returns, as long as their share is sufficiently high. First note that in an OLG model with constant initial endowments and no population growth, the REE predicts \(p_t^* = p_{eu}^\beta \) for all \(t \). This would obviously obtain for \(e = 1 \).

Denote by
\[
\hat{p}_{eu}^\beta = \min \{ p \mid \gamma_{eu}^p (p) = 0 \}
\]
the minimal price at which the EUM hold only bonds. Suppose now that \(c_t > \hat{p}_{eu}^\beta \) holds. Since the CBDM switch between \(a \) and \(b \) infinitely often, the price of \(a \) will fluctuate depending on the share of CBDM and on their behavior, exhibiting excessive volatility. Moreover, the returns of \(a \) are predictable. Especially, if in a certain period only EUM hold \(a \), an external observer could predict, that the price of \(a \) in the next period will (weakly) rise, since the young CBDM will buy \(a \) in \(t \), independently of the dividend paid by the risky asset.

CBDM can cause a bubble to emerge and to persist in the market for several periods. Suppose for instance that the share of EUM is lower than \((1 - \hat{p}_{eu}^\beta) \) at some time \(t \) and that CBDM choose \(\gamma_{cb}^t = 1 \). Then the equilibrium price of \(a \) will satisfy
\[
p_t^* = (1 - e_t^*) > \hat{p}_{eu}^\beta \geq p_{eu}^\beta.
\]
Moreover, if \(\delta_{t+1} = \delta \), then the returns of the CBDM will exceed those of the EUM and \(e_{t+1}^* < e_t^* \) will hold. Since the young CBDM choose \(\gamma_{cb}^{t+1} = 1 \),
\[
p_t^* = (1 - e_{t+1}^*) > p_t^* > \hat{p}_{eu}^\beta \geq p_{eu}^\beta
\]
holds in equilibrium. Hence, the price increases above the price under rational expectations, as long as the dividend of the risky asset remains positive. In the first period \(t' \), such that \(\delta_{t'} = 0 \),
the bubble will burst, since the CBDM will switch to $\gamma^{cb} = 0$ and their share will decrease. Moreover, the price of the risky asset might even fall below the price under rational expectations p_{β}^{eu}. For instance, in the case of a linear utility function this would happen, if

$$(1 - e^*_t) > \frac{(p_{1}^{eu} - 1)^2}{p_{1}^{eu}(1 + r)},$$

hence, if the bubble has lasted long enough to decrease substantially the share of the EUM.

Now consider the case of low aspiration levels, hence, $\gamma^{*cb}_t = 0$ holds for each t. It turns out that CBDM with low aspirations can drive the EUMd out of the market for a finite number of periods.

Denote by

$$\tilde{p}_{\beta}^{eu} = \max \{p \mid \gamma^{eu}(p) = 1\}.$$

Let $e_t \leq \tilde{p}_{\beta}^{eu}$ so that $\gamma^{eu}_t = 1$, $p^*_t = e^*_t$ and let the next period dividend be low, $\delta_{t+1} = 0$. The equilibrium share of the EUM is given by the solution of the equation:

$$e_{t+1}^* = \frac{e_{t+1}^*e_t^*}{e_{t+1}^*e_t + (1 + r)(1 - e_t^*)} = \frac{e_{t+1}^*}{e_{t+1}^* + (1 + r)(1 - e_t^*)}. \tag{10}$$

(10) has two solutions: $e_{t+1}^* = 0$ and

$$e_{t+1}^{**} = e_t^*(1 + r) - r < e_t^*$$

Hence, if the initial share of the EUM is relatively small:

$$e_t^* < \min \left\{ \frac{r}{1 + r}; 1 - \tilde{p}_\beta^{eu} \right\}.$$

e_{t+1}^{**} < 0$ and $e_{t+1}^* = 0$ obtains in equilibrium.

The EUM can vanish, if they hold the risky asset, hoping that it is valuable, but if there are not enough of their type to prevent prices from falling, when the dividend of the asset is low. This effect is similar to the noise trader risk identified by De Long, Shleifer, Summers and Waldmann (1990). Although the EUM don’t have rational expectations in this model, they suffer from an undervaluation of the risky asset, caused by the CBDM. If further the returns of the EUM are relatively low compared to those of the population as a whole, then the share of the CBDM will increase causing the undervaluation of the risky asset to become even more severe.

The effect arises, because of the dependence of the replicator dynamic on the price of the risky asset and therefore indirectly on e_t itself. It shows, that even in markets, in which EUM are à priori present, the price of an asset with positive fundamental value may fall to 0 and remain so
for few periods. The EUM will, however, not disappear forever. Since they will hold an asset with positive fundamental value, their share in the population will become positive in the first period, in which the dividend of the risky asset becomes strictly positive. Hence, the price of the asset becomes positive in finite time.

The results of this section imply that some of the phenomena empirically observed in financial markets could be attributed to the presence of CBDM in the economy. However, the emergence of bubbles or price crashes requires a relatively high proportion of CBDM in the market. Although the probability of such events is positive, it is not clear, whether its analytical computation is possible. Future work will therefore have to deal with simulations of the model, from which the frequency of such phenomena could be estimated.

5 Conclusion

The analysis of the model answers the two questions stated in the introduction by identifying conditions under which CBDM survive in the presence of EUM and discussing their influence on prices. It is shown that CBDM can survive for certain ranges of the parameters if the coefficient of relative risk aversion is less than 1. Case-based investors are shown to cause predictability of asset prices, high volatility and bubbles, as well as price crashes when the share of EUM in the market is relatively low.

A final note has to be made on the issue of introducing EUM with rational expectations. It is straightforward to see, that in the case of a linear utility function, as long, as the short-sale constraints are not binding, the expected returns of the two assets will be identical at each period of time. Therefore, the replicator dynamic will select for the less risky strategy in each period and the CBDM would retain a positive proportion in the market. Since the replicator dynamic and the demand of the investors are continuous with respect to β, it can be expected that similar results will obtain in a surrounding of $\beta = 1$. Hence, the results about the instability of the stationary state $e = 1$ would remain valid at least for a range of coefficients of relative risk-aversion close to 1.
Appendix A

Proof of Proposition 2

(i) Let $e_{t-1} = 1$. Since

$$e_t^* = \left[\frac{p_t^e(e_t^*) + \delta_t - e_{t-1} + (1 + r)(1 - e_{t-1})}{p_t^e(e_t^*) + \delta_t - e_{t-1} + (1 + r)(1 - e_{t-1})e_{t-1}} \right] e_{t-1} = 1,$$

the claim of the proposition obtains.

(ii) If $p_{t-1} > 0$ and $e_{t-1} = 0$, then $e_t^* = \overline{e}_t = 0$. Therefore, if $\gamma_{t}^{cb} > 0$ for all $t \geq 1$, $e_t = 0$ will obtain for all t. Since $\gamma_{t}^{cb} > 0$, in $t = 1$, all CBDM remember the case $(\gamma_{0}^{cb}; v_t(\gamma_{0}^{cb}))$ and observe a return of at least

$$u_\beta (\gamma_{0}^{cb} + (1 + r)(1 - \gamma_{0}^{cb})) > \overline{u}_\beta,$$

if $p_0 = p_1$, implying $\gamma_t^{cb} = \gamma_{0}^{cb}$. By induction,

$$\gamma_t^{cb} = p_t^* = \gamma_{0}^{cb}$$

obtains in each period t. [Q.E.D.]

Proof of Proposition 3:

Let $p_t = p_{\beta}^{eu}$ for all t. Then, the assumption

$$\overline{u}_\beta < u_t (p_{\beta}^{eu} + (1 + r)(1 - p_{\beta}^{eu}))$$

guarantees that $\gamma_t^{cb} = \gamma_{0}^{cb} = p_{\beta}^{eu}$ for all t. Indeed, if a CBDM remembers $(\gamma_t^{cb} = p_{\beta}^{eu}; v_t(p_{\beta}^{eu}))$,

$$v_t(p_{\beta}^{eu}) \geq u_\beta (p_{\beta}^{eu} + (1 + r)(1 - p_{\beta}^{eu})) > \overline{u}_\beta$$

holds and $\gamma_t^{cb} = p_{\beta}^{eu}$. Moreover, $\gamma_t^{eu}(p_{\beta}^{eu}) = p_{\beta}^{eu}$ is the optimal choice of the EUM. Since $\gamma_t^{eu} = \gamma_{0}^{cb}$, $e_t^{eu} = \overline{u}_t^{cb} = \overline{u}$, hence $e_t = const$. [Q.E.D.]

Proof of proposition 4

Lemma 10 If $q \geq \frac{\epsilon(1 + \epsilon)}{\delta(1 + r)}$, $p_{\beta}^{eu} = 1$ holds.

Proof of lemma 10

Let first $\beta = 0$. Observe that p_{0}^{eu} is strictly decreasing in q and

$$p_{0}^{eu}(q) = 1$$

obtains at $q = \frac{\epsilon(1 + \epsilon)}{\delta(1 + r)}$. Hence, $p_{0}^{eu} \geq 1$ is inconsistent with the condition necessary for c_t^* to be a submartingale.

20
Now let $\beta \in (0; 1]$. The value of q, for which $\gamma_t^{eu} = p_t^{eu} = 1$ is an interior solution of (3) is given by:

$$
(1 + r) \left[\frac{\left(\frac{(1-q)r}{q(\delta-r)}\right)^{\beta-1}}{\delta + r \left[\frac{(1-q)r}{q(\delta-r)} \right]^{\beta-1}} - 1 \right] = 1,
$$

which simplifies to

$$
q = \frac{r}{r + (\delta - r) (1 + \delta)^{\beta-1}}. \tag{11}
$$

Denote

$$
\left(\frac{(1-q)r}{q\left(\frac{2}{p} - r\right)} \right)^{\frac{1}{\beta-1}} =: z.
$$

From $\frac{\partial z^{eu}}{\partial q} > 0$ and

$$
\frac{\partial z}{\partial q} = \frac{1}{\beta - 1} \left(\frac{(1-q)r}{q(\frac{2}{p} - r)} \right)^{\frac{2-\beta}{\beta-1}} \left(\frac{-r(\delta-r)}{q^{2}(\delta-r)^{2}} \right) > 0,
$$

it follows that $\frac{\partial z^{eu}}{\partial q} > 0$ and since $\tilde{\gamma}_t^{eu}$ falls in price, it follows that the equilibrium price is increasing in the probability of high dividend q. Therefore, for values of q, higher than (11), the price under rational expectations (for a given β) is equal to 1, see figure 2.

Hence, $\gamma_t^{*eu} = 1$ whenever $p_t \leq 1$. Hence, for

$$
q \in \left[\frac{r}{r + (\delta - r) (1 + \delta)^{\beta-1}}; 1 \right],
$$

$\gamma_t^{*eu} = 1$ for all $t \geq 1$. The dynamics of prices and asset holdings are given by:

$$
\begin{align*}
\gamma_t^{*eu} &= 1 \text{ for each } t; \\
\gamma_t^{*cb} &= \begin{cases}
1, & \text{if } \gamma_{t-1}^{cb} = 1 \text{ and } \delta_t = \delta \text{ or } \\
0, & \text{if } \gamma_{t-1}^{cb} = 1 \text{ and } \delta_t = 0
\end{cases}; \\
p_t^* &= \begin{cases}
1, & \text{if } \gamma_{t-1}^{cb} = 1 \text{ and } \delta_t = \delta \text{ or } \\
0, & \text{if } \gamma_{t-1}^{cb} = 1 \text{ and } \delta_t = 0
\end{cases}.
\end{align*}
$$

In periods such that $\gamma_t^{*eu} = \gamma_t^{*cb} = 1$, $\tilde{v}_t^{eu} = \tilde{v}_t^{cb} = \tilde{v}_t$, hence

$$
\tilde{e}_t^* = \tilde{e}_{t-1}^*, \text{ if } \gamma_{t-1}^{*cb} = 1.
$$

These periods have, therefore, no effect on the dynamic of e_t. It is, hence sufficient to analyze

21
Figure 2

In periods in which $\gamma_{t}^{ceu} \neq \gamma_{t}^{cb}$ holds. In such periods we have:

$$E \left[c_t^* \mid c_{t-1}^* \right] = q \frac{(1 + r) c_{t-1}}{(1 + r) c_{t-1}^* + \frac{(1 + \delta)}{p_{t-1}^*} c_{t-1}^*} + (1 - q) \frac{(1 + r) c_{t-1}}{(1 + r) (1 - c_{t-1}^*) + \frac{1}{p_{t-1}^*} c_{t-1}^*}.$$

Since $\gamma_{t-1}^{ceu} = 1$ and $\gamma_{t-1}^{cb} = 0$, $p_{t-1}^* = e_{t-1}^*$. Therefore,

$$E \left[c_t^* \mid c_{t-1}^* \right] = q \frac{(1 + r) c_{t-1}^*}{(1 + r) c_{t-1}^* + (1 + \delta)} + (1 - q) \frac{(1 + r) c_{t-1}^*}{(1 + r) c_{t-1}^* + 1} \geq c_{t-1}^*$$

\[\Rightarrow \]

$$r (1 + \delta) + r (1 + r) c_{t-1}^* - q(1 + r) \geq (1 + \delta) (1 + r) c_{t-1}^* + (1 + r)^2 c_{t-1}^*$$

$$r \left(1 + \delta + (1 + r) c_{t-1}^* \right) - (1 + r) c_{t-1}^* \left(1 + \delta + (1 + r) c_{t-1}^* \right) - q(1 + r) \geq 0$$

$$\left(1 + \delta + (1 + r) c_{t-1}^* \right) \left[r - (1 + r) c_{t-1}^* \right] - q(1 + r) \geq 0.$$ \hspace{1cm} (12)

For $c_{t-1}^* \geq \frac{r}{1+r}$, $E \left[c_t^* \mid c_{t-1}^* \right] < c_{t-1}^*$, therefore c_t^* is a supermartingale. Hence, e_t^* is a sub-
martingale, if \(e_{t-1}^* \leq \frac{1}{1+r} \). On the other hand, if \(c_{t-1}^* \to 0 \), the l.h.s. of (12) becomes:

\[
(1+\delta)\, r - q \delta \, (1+r) > 0, \text{ if } q < \frac{(1+\delta)\, r}{(1+r)\, \delta}.
\]

If \(q < \frac{(1+\delta)\, r}{(1+r)\, \delta} \), the continuity of the l.h.s. of (12) guarantees, that \(E\left[c_t^* \mid c_{t-1}^*\right] > c_{t-1}^* \) (and hence \(c_t^* \) is a submartingale) for \(c_{t-1}^* \) close to 0. It follows that for some \(\hat{c} \in (0; \frac{r}{1+r}) \), \(E\left[c_t^* \mid c_{t-1}^* = \hat{c}\right] = 0 \). The assertion of the first part of the proposition now follows by defining \(\tilde{c} = 1 - \hat{c} \).

If \(q > \frac{(1+\delta)\, r}{(1+r)\, \delta} \), the l.h.s. of (12) is negative for all \(c_{t-1}^* \in [0; 1] \) and, therefore \(E\left[e_t^* \mid e_{t-1}^*\right] > e_{t-1}^* \) for all \(e_{t-1}^* \in [0; 1] \). It follows, that \(e_t^* \) is a submartingale on \([0; 1] \) and converges almost surely.

Hence, on almost each dividend path

\[
limit_{t \to \infty} \frac{e_t^*}{c_{t-1}^*} = \lim_{t \to \infty} \frac{(1+\delta_t)}{1+(1-e_t^*)\, r + \delta_t} = 1
\]

must hold, which is only possible, if \(e_t^* \to 1 \) with probability 1.

It remains to show that the condition \(q < \frac{(1+\delta)\, r}{(1+r)\, \delta} \) is consistent with the assumption that \(p_{\beta}^e = 1 \) only for \(\beta \in (0; 1] \), but not for \(\beta = 0 \).

Lemma 11 \(q < \frac{(1+\delta)\, r}{(1+r)\, \delta} \) and

\[
q \geq \frac{r}{r + (\delta - r)\, (1 + \delta)^{\beta - 1}}
\]

can hold simultaneously for all \(\beta \in (0; 1] \), but not for \(\beta = 0 \).

Indeed,

\[
\frac{r}{r + (\delta - r)\, (1 + \delta)^{\beta - 1}} < \frac{(1+\delta)\, r}{(1+r)\, \delta}
\]

is equivalent to

\[
(\delta - r)\left[(1 + \delta)^{\beta} - 1\right] > 0,
\]

which is always satisfied for \(\beta > 0 \). The logarithmic utility function represents the limit case, \(\beta = 0 \), in which the equality holds.\(\blacksquare \)

Proof of proposition 5:

Assume that \(e_t \in \left[\max \left\{ p_t^{cu}; 1 - p_t^{cu} + \frac{p_t^{cu^2}}{1-p_t^{cu}} \right\}; 1 \right) \).

The proposition is proved separately for periods \(t \) with \(\gamma_t^{cb} = 1 \) and those with \(\gamma_t^{cb} = 0 \).

Let first \(\gamma_t^{cb} = 1 \). \(\gamma_{t+1}^{cb} = 1 \) holds only if \(\delta_{t+1} = \delta \) and then:

\[
p_{t+1} = p_t = p_1^{cu}.
\]
By assumption,
\[c_t^* = 1 - e_t^* \leq 1 - p_{1}^{eu} < p_{1}^{eu}, \]
since \(p_{1}^{eu} < \frac{1}{2} \). Therefore,
\[\tilde{v}_{t+1}^{cb} = 1 + \frac{\delta}{p_{1}^{eu}} \quad \text{and} \quad \tilde{v}_{t+1} = p_{1}^{eu} + \delta + (1 + r)(1 - p_{1}^{eu}) = 1 + r - rp_{1}^{eu} + \delta, \]
as long as \(e_{t+1}^* < p_{1}^{eu} \) holds. Furthermore, since \(1 + \frac{\delta}{p_{1}^{eu}} > 1 + \delta > \bar{u}, \gamma_{t+1}^{cb} = 1. \) Therefore,
\[\tilde{v}_{t+1}^{cb} + 1 = 1 + \delta p_{1}^{eu} \quad \text{and} \quad \tilde{v}_{t+1} + 1 = p_{1}^{eu} + (1 + r)(1 - p_{1}^{eu}) = 1 + r - rp_{1}^{eu} + \delta, \]
as long as \(e_{t+1}^* < p_{1}^{eu} \) holds. Furthermore, since \(1 + \delta p_{1}^{eu} > 1 + \delta > \bar{u}, \gamma_{t+1}^{cb} = 1. \) Alternatively, if \(\delta_{t+1} = \delta \), the returns and the behavior of the investors in \((t + 2)\) is described exactly as in \((t + 1)\), except if \(c_{t+1}^* > p_{1}^{eu} \), since then \(p_{t+2}^{eu} > p_{1}^{eu} \) may obtain. This is the case if:
\[c_{t+1}^* = \frac{1 + \frac{\delta}{p_{1}^{eu}}}{1 + r - rp_{1}^{eu} + \delta} c_t^* > p_{1}^{eu}. \quad (13) \]
However, if \(p_{1}^{eu} \) is sufficiently large, \(c_{t+1}^* < p_{1}^{eu} \) holds for all \(c_t^* \in (0; 1 - p_{1}^{eu}) \). Indeed, rewrite (13) as
\[c_t^* > \frac{p_{1}^{eu} (1 + r - rp_{1}^{eu} + \delta)}{1 + \frac{\delta}{p_{1}^{eu}}}. \]
To exclude the case, in which the inequality in (13) holds, it is necessary that:
\[\frac{p_{1}^{eu} (1 + r - rp_{1}^{eu} + \delta)}{1 + \frac{\delta}{p_{1}^{eu}}} > 1 - p_{1}^{eu}, \]
or that
\[-rp_{1}^{eu} + p_{1}^{eu} (2 + r + \delta) - (1 - \delta) p_{1}^{eu} - \delta > 0. \quad (14) \]
Note first that for \(\delta = \frac{r}{2q} (p_{1}^{eu} = \frac{1}{2}) \), the l.h.s. is negative and that for \(\delta = \frac{r}{q} (p_{1}^{eu} = 1) \), the l.h.s. is positive. Using now the fact that \(p_{1}^{eu} = \frac{q\delta}{r} \), rewrite (14) as:
\[q^{2}\delta^{2} (1 - q) + \delta q (2q + qr + r) - r > 0 \]
and since the l.h.s. of this expression is a convex quadratic function, there exists a \(\hat{\delta} \), such that for every \(\delta > \hat{\delta} \) (14) is satisfied.
Then:

$$E \left[c_{t+2}^* \mid c_t^*, \gamma_{ct}^b = 1 \right] = c_t^* q \left(1 + \frac{\delta}{R + \delta} \right) \left[q \frac{1 + \delta}{R + \delta} + (1 - q) \frac{1}{R} \right] +$$

$$+ c_t^* \left(1 - q \right) \frac{1}{R} \left[q \frac{1 + r}{R + \delta} + (1 - q) \frac{1 + r}{R} \right],$$

where $R = 1 + r - rp^{\text{eu}}$. Using simple algebra and the fact that $p_t^{\text{eu}} = \frac{q \delta}{r}$ shows that

$$E \left[c_{t+2}^* \mid c_t^*, \gamma_{ct}^b = 1 \right] > c_t^*,$$

if and only if

$$(q + r) R (R (1 + r) + \delta (1 - q)) + (1 - q) (1 + r) (R + \delta (1 - q)) (R + \delta) > (R + \delta)^2 R^2$$

holds. If

$$p_t^{\text{eu}} = \frac{q \delta}{r} = 1,$$

meaning that $R = 1$ and $q \delta = r$, condition (10) simplifies to:

$$(1 + \delta) r (\delta - r + qr) > 0,$$

which is always true. On the other hand, for

$$p_t^{\text{eu}} = \frac{q \delta}{r} = \frac{1}{2}$$

and, hence, $R = 1 + \frac{r}{2}$ and $q \delta = \frac{r}{2}$, (15) is equivalent to

$$\frac{qr}{2} + \frac{qr^2}{4} + \frac{3r^3}{16} - \frac{1}{2} - r - \delta r - \delta^2 r - \delta r^2 > 0,$$

which is never satisfied, since

$$\frac{qr}{2} < \frac{r}{2} < \frac{1}{2}$$

$$\frac{qr^2}{4} < r^2 < r$$

$$\frac{3r^3}{16} < r^3 < r^2 < \delta r.$$

Therefore,

$$E \left[c_{t+2}^* \mid c_t^*, \gamma_{ct}^b = 1 \right] > c_t^*$$

holds for $\delta = \frac{r}{q}$ and since the expected value of c_{t+2}^* is continuous in δ, it follows that the process $c_t^*, c_{t+2}^*, c_{t+4}^*$ is a submartingale in some surrounding of $\delta = \frac{r}{q}$. At the same time,

$$E \left[c_{t+2}^* \mid c_t^*, \gamma_{ct}^b = 1 \right] < c_t^*$$

3 In fact, as above, it should be taken into account that the share of the case-based decision-makers might exceed p^{eu} in $(t + 2)$ if the risky asset pays a high dividend. However, this will only increase the expected value of c_{t+2}^*. Since the argument relies on showing that the expected value of c_{t+2}^* exceeds c_t^*, neglecting this effect has no influence on the results.
holds for $\delta = \frac{r}{2q}$. By continuity of the expected value of c_{t+2}^*, there is, therefore, a value for δ, $\bar{\delta} \in \left(\frac{r}{2q} : \frac{r}{q} \right)$ such that the expected value of c_{t+2}^* exceeds c_t^* for $\delta > \bar{\delta}$.

Let now $\gamma_{cb}^t = 0$.

$$
E \left[c_{t+2}^* \mid c_t^*, \gamma_{cb}^t = 0 \right] = c_t^* q \frac{(1+r)}{R + \delta} \left[q \left(\frac{1 + \frac{\delta}{P_t}}{R + \delta} \right) + (1 - q) \frac{1}{R} \right] +
$$

$$
c_t^* (1 - q) \frac{(1+r)}{R} \left[q \left(\frac{1 + \frac{\delta}{P_t}}{R + \delta} \right) + (1 - q) \frac{1}{R} \right].
$$

Again, one should take into account that $c_{t+1}^* > p_{1u}^e$ might obtain if $\delta = 0$. This requires that:

$$
\frac{(1+r)}{1 + r - rp_{1u}^e} c_t^* > P_{1u}^e,
$$

or, equivalently

$$
e_t^* < 1 - P_{1u}^e + \frac{rp_{1u}^e}{1 + r},
$$

which is excluded by the assumptions made.

Using simple algebra and the fact that $p_{1u}^e = \frac{q^*}{r}$ shows that

$$
E \left[c_{t+2}^* \mid c_t^*, \gamma_{cb}^t = 0 \right] > c_t^*
$$

holds if

$$
(1 + r) [R (1+r) + \delta (1-q)] [R + \delta (1-q)] > (R + \delta)^2 R^2. \tag{16}
$$

For $p_{1u}^e = 1$, (16) is equivalent to

$$
(1 + r) (1 + \delta - r) > 0,
$$

which is always satisfied. For $p_{1u}^e = \frac{1}{2}$, (16) becomes

$$
\frac{3r^2}{8} + \frac{r}{4} + \frac{r^2\delta}{2} + \frac{r\delta}{2} + \frac{\delta}{2} > 0,
$$

which is obviously satisfied for all positive values of r and δ. Since the expected value of c_{t+2}^* is continuous in δ, it follows that there is a $\tilde{\delta} \in \left[\frac{r}{2q} : \frac{r}{q} \right]$ such that

$$
E \left[c_{t+2}^* \mid c_t^*, \gamma_{cb}^t = 0 \right] > c_t^*
$$

for all $\delta > \bar{\delta}$. Now choose the maximal of the three values $\hat{\delta}$, $\tilde{\delta}$, $\bar{\delta}$ and denote it by $\bar{\delta}$. Let $p_{1u}^e = \frac{q^*}{r}$. It follows that $p_{1u}^e \in \left(\frac{1}{2} : 1 \right)$ and that

$$
E \left[c_{t+2}^* \mid c_t^* \right] > c_t^*.
$$
for $p_{eu}^c > \tilde{p}_{eu}^c$ and
\[
e_t \in \max \left\{ p_{eu}^c; 1 - p_{eu}^c + \frac{r^2}{1 - p_{eu}^c} \right\} ; 1 \right\}.\]

Obviously, then:
\[
E \left[e_{t+2}^* \mid e_t^*, \gamma_{cb}^t = 0 \right] < e_t^*
\]
\[
E \left[e_{t+2}^* \mid e_t^*, \gamma_{cb}^t = 1 \right] < e_t^*,
\]
if $p_{eu}^c > \tilde{p}_{eu}^c$ and
\[
e_t \in \max \left\{ p_{eu}^c; 1 - p_{eu}^c + \frac{r^2}{1 - p_{eu}^c} \right\} ; 1 \right\}
\]
are fulfilled simultaneously.

Proof of Proposition 6:

In Lemma 19 in Sciubba (1999, p. 40) it is demonstrated, that a supermartingale bounded between $[0; 1]$ and starting below 1 cannot converge to its upper boundary with probability 1. The following argument follows closely the proof of Proposition 17 in Sciubba (1999, pp. 40-41).

Suppose that e_t^* converges to 1 with strictly positive probability and denote the event on which this happens by Θ. Now consider e_t^* on the event Θ and suppose that on Θ, $\Pr\{e_t^* \rightarrow 1\} = 1$. Denote by $\Theta_0 \subseteq \Theta_1 \subseteq ... \Theta_t \subseteq ... \Theta$ the natural filtration of Θ. Since $\Pr\{\Theta\} > 0$, and since the process of the dividends is i.i.d., the law of large numbers applies and the distribution of dividends on Θ coincides with the distribution of the dividends on Ω, the set of all possible dividend paths. Especially, $\Pr\{\delta_t = \delta \mid \Theta_{t-1}\} = \Pr\{\delta_t = \delta\} = q$. Therefore the process e_t^* on Θ can be described in exactly the same way, as the process e_t^* on Ω and therefore e_t^* is a supermartingale on Θ. But, according to Lemma 19 in Sciubba (1999, p. 40) $\Pr\{e_t^* \rightarrow 1 \mid \Theta\} \neq 1$, since e_t^* is a supermartingale bounded above by 1. Therefore, there is no event with positive probability, on which $e_t^* \rightarrow 1$ occurs almost surely. Hence, $\Pr\{e_t^* \rightarrow 1\} = 0$ and the CBDM survive with probability 1.

Proof of Proposition 7:

As demonstrated in lemma 10,
\[
q > \frac{r}{r + (\delta - r)(1 + \delta)^{\beta - 1}}
\]
implies $p_{eu}^c = 1$ and $\gamma_{eu}^c = 1$ for all t. For $\bar{u} \in (1; (1 + r))$, $\gamma_{cb}^t = 0$ for all t. Hence, $p_t^* = e_t^* = 1 - c_t^*$, $v_t^c = \bar{v}_t^c = (1 + r)$, whereas
\[
\bar{v}_t = e_t^* + \delta_t + (1 - e_t^*)(1 + r) = 1 + \delta_t + c_t^* r
\]
for all \(t \). Hence, \(E \left[c_{t+1}^* \mid c_t^* \right] \) becomes:

\[
E \left[c_{t+1}^* \mid c_t^* \right] = \left[q \frac{(1+r)}{1+c_t^*r+\delta} + (1-q) \frac{(1+r)}{1+c_t^*r} \right] c_t^* \geq c_t^*
\]

This simplifies to:

\[
(1 - c_t^*) r (1 + c_t^* r + \delta) - q (1 + r) \delta \geq 0.
\]

(17)

For \(c_t \to 0 \) the l.h.s. becomes:

\[
r (1 + \delta) - q (1 + r) \delta > 0, \text{ iff } q < \frac{(1 + \delta) r}{(1 + r) \delta}.
\]

For \(c_t^* = 1 \), the l.h.s. is negative. Since the left-hand side of (17) is a concave quadratic function of \(c_t^{*2} \), it follows that for \(q < \frac{(1 + \delta) r}{(1 + r) \delta} \), there exists a unique \(\hat{c} \in (0; 1) \), for which the l.h.s. of (17) is 0. For \(c_t^* > \hat{c} \), \(c_t^* \) is a supermartingale and vice versa. Defining \(\hat{c} = 1 - \hat{c} \) gives the desired result.

If \(q \geq \frac{(1 + \delta) r}{(1 + r) \delta} \), then \(c_t^* \) is a supermartingale on \([0; 1]\). Hence, \(e_t^* \) is a submartingale on \([0; 1]\) and converges almost surely. On almost each dividend path,

\[
\lim_{t \to \infty} \frac{e_t^*}{e_{t-1}^*} = \lim_{t \to \infty} \frac{e_t^* + \delta_t + (1 + r) (1 - e_t^*)}{e_{t-1}^* + \delta_{t-1} + (1 + r) (1 - e_{t-1}^*)} = 1.
\]

must hold. Let \(e_t^* = e_{t-1}^* = e_{t-2}^* \), then it follows that:

\[
\lim_{t \to \infty} \frac{e_t^* + \delta_t}{e_t^* + \delta_{t-1} + (1 + r) (1 - e_t^*)} = \lim_{t \to \infty} \frac{e_{t-1}^* + \delta_{t-1} + (1 + r) (1 - e_{t-1}^*)}{e_t^* + \delta_t + (1 + r) (1 - e_t^*)}.
\]

Since \(\delta_t \) is a stochastic process, this can only hold, if \(e_t^* \to 1 \) almost surely.

Use lemma 11 to show that \(q < \frac{(1 + \delta) r}{(1 + r) \delta} \) is consistent with \(p_{\beta}^{eu} = 1 \) only for \(\beta (0; 1) \), but not for \(\beta = 0 \).

\section*{Proof of proposition 8:}

Rewrite conditions (12) and (17) as:

\[
-(1 + r)^2 c_t^2 - (1 + r) c_t^* (1 + \delta - r) + (1 + \delta) r - q \delta (1 + r)
\]

and

\[
-r^2 c_t^2 - (1 + r) c_t^* (1 + \delta - r) + (1 + \delta) r - q \delta (1 + r),
\]

respectively. One easily sees that

\[
-(1 + r)^2 c_t^2 - (1 + r) c_t^* (1 + \delta - r) + (1 + \delta) r - q \delta (1 + r)
\]

\[
< -r^2 c_t^2 - (1 + r) c_t^* (1 + \delta - r) + (1 + \delta) r - q \delta (1 + r)
\]

always holds. Hence, the sole positive root of (12) \(\hat{c} \) is always greater than the sole positive root
of (17), \(\bar{e}\).

Proof of proposition 9:

Let first \(\beta = 1\). For each \(p^e_t\) one can choose \(e^*_t\) to be sufficiently high so that \(p_{t+1} = p^e_t\). The restrictions on \(\bar{u}\) implies \(\gamma^cb_t = 0\) for all \(t\). Hence, \(\bar{v}^cb_t = (1 + r)\), whereas \(\bar{v}_t = 1 + \delta_t + r - rp^eu_t\).

Hence,

\[
E \left[c^*_{t+1} \mid c^*_t \right] = \left[q \frac{(1 + r)}{1 + r - rp^eu_t + \delta} + (1 - q) \frac{(1 + r)}{1 + r - rp_t^eu} \right] c^*_t \overset{>}{\sim} c^*_t
\]

is equivalent to:

\[
- q (1 + r) \delta \overset{>}{\sim} -rp^eu_t (1 + r - rp^eu_t + \delta)
\]

and using \(p^eu_1 = \frac{2q}{r}^\delta\) one obtains that \(c^*_t\) is a submartingale, if

\[
q\delta^2 (1 - q) > 0,
\]

which is obviously true for \(q, \delta > 0\).

Hence, \(e^*_t\) is a supermartingale on \(\left[\max \left\{ p^eu_t, \frac{p^eu_t (1 + r - rp^eu)}{1 + r} \right\} ; 1 \right] \).

Now consider \(\beta \in (0; 1]\). In the limit, when \(c^*_t \to 0\), the condition for \(c^*_t\) to be a submartingale is determined by equation (18) and is equivalent to:

\[
p^eu_\beta \in \left((1 + r + \delta) - \sqrt{(1 + r + \delta) - 4q\delta (1 + r)}; (1 + r + \delta) + \sqrt{(1 + r + \delta) - 4q\delta (1 + r)} \right).
\]

Since \(p^eu_\beta\) is increasing in \(\beta\) and since \(p^eu_1\) satisfies this condition, it follows that

\[
p^eu_\beta < (1 + r + \delta) + \sqrt{(1 + r + \delta) - 4q\delta (1 + r)}
\]

for all \(\beta \in [0; 1]\). Moreover, for \(\beta = 0\),

\[
p^eu_0 = (1 + r + \delta) - \sqrt{(1 + r + \delta) - 4q\delta (1 + r)},
\]

hence, for all \(\beta \in (0; 1]\), the condition is satisfied and \(c^*_t\) is a submartingale in some surrounding of \(c_t = 0\), implying that there exists an \(\bar{e} (\beta) \in (0; 1)\) such that \(e^*_t\) is a supermartingale on \([\bar{e} (\beta) ; 1]\).

Appendix B

(not for publication) In this appendix, I show that the definition of a temporary equilibrium with replicator dynamic as defined in section 3.2.2 is meaningful, in the sense that starting from an equilibrium state of the economy, an equilibrium exists in each period of time \(t \geq 1\).

Proposition 12 Suppose that \((e_{t-1}; \gamma^eu_{t-1}; \gamma^cb_{t-1}; p_{t-1})\) is such that

\[
p_{t-1} = e_{t-1} \gamma^eu_{t-1} (p_{t-1}) + (1 - e_{t-1}) \gamma^cb_{t-1} (p_{t-1})
\]

\footnote{For \(q\delta = 0\), \(\gamma^eu_t = \gamma^cb_t = 0\) and \(v^cb_t = v^eu_t\) for all \(t\). Hence, \(c_t = \text{const.}\)}
Given such \((e_{t-1}; \gamma_{t-1}^{eu}; \gamma_{t-1}^{cb}; p_{t-1})\), at time \(t\), a temporary equilibrium with replicator dynamic exists.

Proof of proposition 12:

In order to show the existence of an equilibrium, it is sufficient to demonstrate that the system of equations formulated in conditions (i), (ii), (iii) and (iv) of definition 1 has a solution:

\[
e_t^* = \frac{\tilde{e}_t^{eu}}{\tilde{v}_t^*} e_{t-1} \\
\gamma_t^{eu} = \gamma_{t-1}^{eu} (p_t^*) \\
\gamma_t^{cb} = \gamma_{t-1}^{cb} (p_t^*) \\
\gamma_t^{eu} e_t^* + \gamma_t^{cb} (1 - e_t^*) = p_t^* \tag{21}
\]

First note that since

\[
p_{t-1} = \gamma_{t-1}^{eu} e_{t-1} + \gamma_{t-1}^{cb} (1 - e_{t-1}),
\]

(19) can be written as:

\[
e_t^* = \frac{\tilde{e}_t^{eu}}{\tilde{v}_t^*} e_{t-1} + \frac{P_t^{eu} - \gamma_{t-1}^{eu} e_{t-1} + (1 + r) \left(1 - \gamma_{t-1}^{eu} e_{t-1} - \gamma_{t-1}^{cb} (1 - e_{t-1})\right)}{p_t^* + \delta_t + (1 + r) \left(1 - \gamma_{t-1}^{eu} e_{t-1} - \gamma_{t-1}^{cb} (1 - e_{t-1})\right)} =: f (p_t^*), \tag{22}
\]

where \(p_t^*\) is determined from (20) and (21), taking \(e_t^*\) as given. It follows that \(f (p_t^*)\) depends on \(e_t^*\) through \(p_t^*\). Moreover, \(f (p_t^*)\) is continuous in \(p_t^*\) and can only take values between 0 and 1 for all possible values of \(e_t^*\) and, thus, of \(p_t^*\) between 0 and 1. Therefore, it suffices to show that \(f (p_t^* (e_t^*))\) has a fixed point in order to prove the existence of an equilibrium. Since for a given \(e_t^*\), multiple equilibria can emerge, it will be shown that in each possible case, equilibria can be selected in such a way that a fixed point argument applies.

Consider the function \(\gamma_t^{eu} (p_t)\) determining the share of the income of the EUM invested in asset \(a\). It is easy to show that \(\gamma_t^{eu} (p_t)\) is a decreasing function of the price such that there are values \(\tilde{p}_t^{eu}\) and \(\hat{p}_t^{eu}\) and

\[
p_t \leq \tilde{p}_t^{eu}
\]

implies \(\gamma_t^{eu} (p_t) = 1\), whereas

\[
p_t \geq \hat{p}_t^{eu}
\]

implies \(\gamma_t^{eu} (p_t) = 0\).

It is necessary to consider several cases depending on the values of the parameters \(\tilde{p}_t^{eu}, \hat{p}_t^{eu}\) and

\(^5\) The proof is given for \(\beta \in [0; 1)\) and uses the fact that \(\gamma_t^{eu} (p_t)\) is a continuous function. The proof for \(\beta = 1\) follows the same lines, taking into account that \(\gamma_t^{eu} (p_t)\) is an upper-hemi continuous correspondence.
I will use the notation $\varpi := u^{-1}(\bar{u})$ to denote the amount of the consumption good necessary to render utility exactly equal to the aspiration level.

Case 1

Let first $p_{\beta}^{\text{eu}} \geq 1$ and let $\gamma_{t-1}^{cb} = 1$. It follows that $p_{t-1}^* = 1$. Now, if $1 + \delta_t \geq \varpi$ holds, then $p_t^*(e_t) = 1$ for all e_t and is, thus, continuous in e_t, which guarantees the existence of an equilibrium according to the Brouwer’s fixed point theorem, Mas-Collel, Whinston and Green (1995, p. 952).

If $1 + \delta_t < \varpi$, then $\gamma_{t}^{cb} = 0$ and $p_t^*(e_t) = e_t$, which is again a continuous function.

Now let $\gamma_{t-1}^{cb} \in \left[\frac{1}{2}; 1\right]$. The decision of the CBDM depends on the comparison

$$
\gamma_{t-1}^{cb} \left(\frac{p_t^* + \delta_t}{p_{t-1}}\right) + (1 - \gamma_{t-1}^{cb}) (1 + r) \leq \varpi.
$$

Note that

$$
\gamma_t^{cb} = \begin{cases}
\gamma_{t-1}^{cb} & \text{if } \gamma_{t-1}^{cb} \left(\frac{\gamma_{t-1}^{cb}(1-e_{t-1})+e_{t-1}+\delta_{t-1}}{p_{t-1}}\right) + (1 - \gamma_{t-1}^{cb}) (1 + r) \leq \varpi \\
0 & \text{if } \gamma_{t-1}^{cb} \left(\frac{\gamma_{t-1}^{cb}(1-e_{t-1})+e_{t-1}+\delta_{t-1}}{p_{t-1}}\right) + (1 - \gamma_{t-1}^{cb}) (1 + r) < \varpi
\end{cases}
$$

since

$$
p_t^* = (1 - e_t) \gamma_t^{cb} + e_t.
$$

Hence, there exists a constant n such that

$$
\gamma_t^{cb} = \begin{cases}
\gamma_{t-1}^{cb} & \text{if } e_t \geq n \\
0 & \text{if } e_t < n
\end{cases}
$$

and, therefore

$$
p_t^*(e_t) = \begin{cases}
(1 - e_t) \gamma_{t-1}^{cb} + e_t & \text{if } e_t \geq n \\
e_t & \text{if } e_t < n
\end{cases}.
$$

$p_t^*(e_t)$ is continuous but for upward jumps and this property is preserved if $p_t^*(e_t)$ is subjected to a monotone transformation, see Milgrom and Roberts (1994, p. 445). Since $p_{\beta}^{\text{eu}} \geq 1$, $\gamma_t^{\text{eu}} = 1$ holds for each t and therefore, $\gamma_t^{\text{eu}} \geq \gamma_t^{cb}$ for all t. This implies that e_t^* is increasing in the price of the risky asset p_t, $\frac{\partial f}{\partial p_t} \geq 0$ and hence, $f(\cdot)$ is also continuous but for upward jumps. Moreover, f transfers $[0; 1]$ into $[0; 1]$. Theorem 1 of Milgrom and Roberts (1994, p. 446) ascertains that such functions have a fixed point. Therefore, an equilibrium share e_t^* of EUM exists in this case.

6. If $\bar{c} > 1$, then $\gamma_t^{cb} = 0$ for all e_t.

7. A function $g : [0; 1] \rightarrow [0; 1]$ is continuous but for upward jumps, if for all $x' \in [0; 1]$

$$
\lim_{x \uparrow x'} \sup_{x \in [0; 1]} g(x') \leq \lim_{x \downarrow x'} \inf_{x \in [0; 1]} g(x')
$$

holds, see Milgrom and Roberts (1994, p. 445).
If $\gamma_{cb}^{t-1} \in [0; \frac{1}{2}]$, then two cases must be considered: if

$$\gamma_{cb}^{t-1} \left(\frac{1 + \delta_t}{p_{t-1}} \right) + (1 - \gamma_{cb}^{t-1}) (1 + r) \leq \varpi,$$

then

$$\gamma_{cb}^{t-1} \left(\gamma_{cb}^{t-1} (1 - e_t) + e_t + \delta_t \right) \left(\frac{1 + \delta_t}{p_{t-1}} \right) + (1 - \gamma_{cb}^{t-1}) (1 + r) < \varpi$$

and therefore

$$\gamma^*_{cb} = 1.$$

Hence,

$$p_t^* (e_t) = 1$$

and a fixed point of $f (\cdot)$ exists.

If, in contrast

$$\gamma_{cb}^{t-1} \left(\frac{1 + \delta_t}{p_{t-1}} \right) + (1 - \gamma_{cb}^{t-1}) (1 + r) > \varpi$$

and

$$\gamma_{cb}^{t-1} \left(\gamma_{cb}^{t-1} (1 - e_t) + e_t + \delta_t \right) \left(\frac{1 + \delta_t}{p_{t-1}} \right) + (1 - \gamma_{cb}^{t-1}) (1 + r) \geq \varpi,$$

then

$$p_t (e_t) = \gamma_{cb}^{t-1} (1 - e_t) + e_t.$$

Condition (23) is satisfied if $e_t \geq \bar{n}$, where \bar{n} is some constant determined by the parameters. Otherwise, if $e_t < \bar{n}$,

$$p_t (e_t) = \gamma^*_{cb} (e_t) (1 - e_t) + e_t,$$

where $\gamma^*_{cb} (e_t)$ is chosen such that condition (23) is satisfied with equality. Furthermore, at $e_t = \bar{n}$, all values of $\gamma^*_{cb} (e_t) \in [\gamma_{cb}^{t-1}; \gamma^*_{cb} (\bar{n})]$ are optimal and therefore, $p_t (e_t)$ becomes:

$$p_t (e_t) = \begin{cases}
\gamma_{cb}^{t-1} (1 - e_t) + e_t & \text{if } e_t \geq \bar{n} \\
\gamma_{cb}^{t-1} (1 - e_t) + e_t + \gamma^*_{cb} (\bar{n}) (1 - e_t) + e_t & \text{if } e_t = \bar{n} \\
\gamma^*_{cb} (\bar{n}) (1 - e_t) + e_t & \text{if } e_t < \bar{n}
\end{cases}.$$

Obviously, $p_t (e_t)$ is an upper hemi-continuous, non-empty and convex valued correspondence which maps $[0; 1]$ into $[0; 1]$. Replacing the values of $p_t (e_t)$ into the continuous $f (\cdot)$ preserves these properties. Hence, $f (\cdot)$ has a fixed point.

Case 2

Now consider the case of $\hat{p}_{\beta}^{c_u} < 1$ and $0 < \hat{p}_{\beta}^{p_u} < 1$.

Denote by \tilde{k} the critical value of the price p_t such that:

$$\gamma_{cb}^{t-1} \left(\frac{\tilde{k} + \delta_t}{p_{t-1}} \right) + (1 - \gamma_{cb}^{t-1}) (1 + r) = \varpi,$$
hence if \(p_t \geq \tilde{k}, \gamma^\ast_{cb} = \gamma^cb_{t-1} \) will hold. In this case, the equilibrium price is determined according to:

\[
p_t^* = e_t \gamma^eu_t (p_t^*) + (1 - e_t) \gamma^cb_t.
\]

Since \(\gamma^eu_t (p_t^*) \) is continuous and differentiable on the intervals \([0; \hat{p}_\beta], (\hat{p}_\beta; \bar{p}_\beta)\) and \((\bar{p}_\beta; 1]\), one can apply the implicit function theorem and the fact that \(\frac{\partial \gamma^eu_t (p_t)}{\partial p_t} \leq 0 \), whenever \(\gamma^eu_t (p_t) \) is differentiable to show that \(p_t^* (e_t) \) is continuous. Moreover, \(p_t^* \) is increasing in \(e_t \). Hence, there is a critical value of \(e_t, \tilde{n} \) such that

\[
p_t (e_t) \geq \tilde{k} \iff e_t \geq \tilde{n}
\]

and \(p_t (e_t) \) is continuous for \(e_t \geq \tilde{n} \). Now suppose that \(e_t < \tilde{n} \) and let first \(\gamma^cb_t \geq \frac{1}{2} \). Then

\[
p_t^* = e_t \gamma^eu_t (p_t^*) \text{ if } e_t < \tilde{n},
\]

which also implies a continuous solution \(p_t (e_t) \). However, a discontinuity arises at \(e_t = \tilde{n} \).

Note, however that if there is a set of values of \(e_t \in (\tilde{n}; \tilde{n} + \xi) \) such that the solution of

\[
p_t = e_t \gamma^eu_t (p_t) + (1 - e_t) \gamma^cb_t
\]

satisfies

\[
p_t > \tilde{k},
\]

whereas the solution of

\[
p_t = e_t \gamma^eu_t (p_t)
\]

satisfies

\[
p_t < \tilde{k}.
\]

Hence, the economy has at least two possible equilibria at \(e_t \in (\tilde{n}; \tilde{n} + \xi) \), in the one of which the CBDM choose \(\gamma^cb_t = \gamma^cb_{t-1} \) \((p_t > \tilde{k})\), whereas in the other \(\gamma^cb_t = 0, \) \((p_t > \tilde{k})\). Moreover, for every \(e_t \in (\tilde{n}; \tilde{n} + \xi) \), it is possible to choose a \(\gamma^cb_t (e_t) \) in such a way that the equilibrium price

\[
p_t = e_t \gamma^eu_t (p_t) + (1 - e_t) \gamma^cb_t (e_t)
\]

satisfies

\[
p_t = \tilde{k}.
\]

It follows that on \(e_t \in (\tilde{n}; \tilde{n} + \xi) \), there is a continuum of equilibria for each possible value of \(e_t \).

Hence, the correspondence \(p_t (e_t) \) has the form depicted in figure 3 and it is easily seen that it possesses a fixed point, since it is upper hemi-continuous, non-empty and convex valued and
transforms $[0; 1]$ into $[0; 1]$. A monotonic transformation of the correspondence by $f(\cdot)$ does not change this property, implying that an equilibrium exists.

Now suppose that $\gamma^{cb}_{t-1} < \frac{1}{2}$. The decision of the CBDM for $e_t < \tilde{n}$ depends on whether

$$e_t \gamma^{eu}_{t} (p^*_t) + (1 - e_t) = p^*_t$$

has a solution $p^*_t (e_t) > \tilde{k}$. Let \hat{n} denote the corresponding critical value of e_t. If $p^*_t (e_t) \leq \tilde{k}$, then

$$\gamma^{cb}_t = 1,$$

if $p^*_t (e_t) > \tilde{k}$, then γ^{cb}_t is chosen in such a way that

$$e_t \gamma^{eu}_{t} \left(\frac{\tilde{k}}{} \right) + (1 - e_t) \gamma^{cb}_t = \tilde{k}.$$

Hence, $p^*_t (e_t) = \begin{cases} e_t \gamma^{eu}_{t} (p^*_t) + (1 - e_t) \gamma^{cb}_t & \text{if } e_t \geq \tilde{n} \\ \frac{\tilde{k}}{} & \text{if } e_t \in [\tilde{n}; \hat{n}] \\ e_t \gamma^{eu}_{t} (p^*_t) + (1 - e_t) & \text{if } e_t > \hat{n}. \end{cases}$

This function is continuous in e_t and so is $f(\cdot)$, hence, an equilibrium exists.

Case 3

Now consider the case in which $\hat{p}^{eu}_{t-1} \leq 0$. In this case, $\gamma^{eu}_{t} = 0$ and the price becomes:

$$p_t (e_t) = \begin{cases} (1 - e_t) \gamma^{cb}_{t-1} & \text{if } \gamma^{cb}_{t-1} (1 - e_t) > \tilde{n} \\ 0 & \text{if } \gamma^{cb}_{t-1} (1 - e_t) \leq \tilde{n}. \end{cases}$$
This function is continuous but for downward jumps. Moreover, since $\gamma_{t-1}^{eu} = 0$ must hold, it follows that

$$\gamma_{t-1}^{cb} \geq \gamma_{t-1}^{eu}$$

and, therefore, $f(\cdot)$ is decreasing in p_t. Hence, $f(e_t)$ is continuous but for upward jumps and possesses a fixed point, which insures the existence of an equilibrium. \blacksquare
References

