Section 2.1. Metric Spaces and Normed Spaces

Here we seek to generalize notions of distance and length in \mathbb{R}^n to abstract settings.

Definition 1 A **metric space** is a pair (X, d), where X is a set and $d : X \times X \to \mathbb{R}_+$ a function satisfying

1. $d(x, y) \geq 0$, $d(x, y) = 0 \Leftrightarrow x = y \ \forall x, y \in X$
2. $d(x, y) = d(y, x) \ \forall x, y \in X$
3. triangle inequality: $d(x, z) \leq d(x, y) + d(y, z) \ \forall x, y, z \in X$

A function $d : X \times X \to \mathbb{R}_+$ satisfying 1-3 is called a **metric** on X.

A metric gives a notion of distance between elements of X.

Definition 2 Let V be a vector space over \mathbb{R}. A **norm** on V is a function $\| \cdot \| : V \to \mathbb{R}_+$ satisfying

1. $\|x\| \geq 0 \ \forall x \in V$
2. $\|x\| = 0 \Leftrightarrow x = 0 \ \forall x \in V$
3. triangle inequality: $\|x + y\| \leq \|x\| + \|y\| \ \forall x, y \in V$
4. $\|\alpha x\| = |\alpha|\|x\| \ \forall \alpha \in \mathbb{R}, x \in V$

A **normed vector space** is a vector space over \mathbb{R} equipped with a norm.
A norm gives a notion of length of a vector in V.

Example: In \mathbb{R}^n, the standard notion of distance between two vectors x and y measures the length of the difference $x - y$, i.e., $d(x,y) = \|x - y\| = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$.

In an abstract normed vector space, the norm can be used analogously to define a notion of distance.

Theorem 3 Let $(V, \| \cdot \|)$ be a normed vector space. Let $d : V \times V \rightarrow \mathbb{R}_+$ be defined by

$$d(v, w) = \|v - w\|$$

Then (V, d) is a metric space.

Proof: We must verify that d satisfies all the properties of a metric.

1. Let $v, w \in V$. Then by definition, $d(v, w) = \|v - w\| \geq 0$ (why?), and

$$d(v, w) = 0 \iff \|v - w\| = 0$$
$$\iff v - w = 0$$
$$\iff (v + (-w)) + w = w$$
$$\iff v + ((-w) + w) = w$$
$$\iff v + 0 = w$$
$$\iff v = w$$

2. First, note that for any $x \in V$, $0 \cdot x = (0 + 0) \cdot x = 0 \cdot x + 0 \cdot x$, so $0 \cdot x = 0$. Then

$$0 = 0 \cdot x = (1 - 1) \cdot x = 1 \cdot x + (-1) \cdot x = x + (-1) \cdot x,$$ so we have $(-1) \cdot x = (-x)$. Then let $v, w \in V$.

$$d(v, w) = \|v - w\|$$
$$= \| -1 \|v - w\|$$
$$= \|(1)(v + (-w))\|$$
$$= \|(1)v + (-1)(-w)\|$$
$$= \| -v + w\|$$
$$= \| w + (-v)\|$$
$$= \|w - v\|$$
$$= d(w, v)$$

3. Let $u, w, v \in V$.

$$d(u, w) = \|u - w\|$$
$$= \|u + (-v + v) - w\|$$
$$= \|u - v + v - w\|$$
$$\leq \|u - v\| + \|v - w\|$$
$$= d(u, v) + d(v, w)$$
Thus \(d \) is a metric on \(V \). □

Examples of Normed Vector Spaces

- **\(\mathbb{E}^n \):** \(n \)-dimensional Euclidean space.

\[
V = \mathbb{R}^n, \quad \| x \|_2 = |x| = \sqrt{\sum_{i=1}^{n} (x_i)^2}
\]

- **\(V = \mathbb{R}^n \), \(\| x \|_1 = \sum_{i=1}^{n} |x_i| \) (the “taxi cab” norm or \(L^1 \) norm)**

- **\(V = \mathbb{R}^n \), \(\| x \|_\infty = \max\{|x_1|, \ldots, |x_n|\} \) (the maximum norm, or sup norm, or \(L^\infty \) norm)**

- **\(C([0, 1]), \| f \|_\infty = \sup\{|f(t)| : t \in [0, 1]\} \)**

- **\(C([0, 1]), \| f \|_2 = \sqrt{\int_0^1 (f(t))^2 \, dt} \)**

- **\(C([0, 1]), \| f \|_1 = \int_0^1 |f(t)| \, dt \)**

Theorem 4 (Cauchy-Schwarz Inequality)

If \(v, w \in \mathbb{R}^n \), then

\[
\left(\sum_{i=1}^{n} v_i w_i \right)^2 \leq \left(\sum_{i=1}^{n} v_i^2 \right) \left(\sum_{i=1}^{n} w_i^2 \right)
\]

\[
|v \cdot w|^2 \leq |v|^2 |w|^2
\]

\[
|v \cdot w| \leq |v| |w|
\]

Proof: Read the proof in de La Fuente. □

The Cauchy-Schwarz Inequality is essential in proving the triangle inequality in \(\mathbb{E}^n \). Deriving the triangle inequality in \(\mathbb{E}^n \) from the Cauchy-Schwarz inequality is a good exercise. The Cauchy-Schwarz inequality can also be viewed as a consequence of geometry in \(\mathbb{R}^2 \), in particular the law of cosines. Note that for \(v, w \in \mathbb{R}^2 \), \(v \cdot w = |v||w| \cos \theta \) where \(\theta \) is the angle between \(v \) and \(w \); see Figure 1.\(^1\)

Notice that a given vector space may have many different norms. As a trivial example, if \(\| \cdot \| \) is a norm on a vector space \(V \), so are \(2\| \cdot \| \) and \(3\| \cdot \| \) and \(k\| \cdot \| \) for any \(k > 0 \). Less trivially, \(\mathbb{R}^n \) supports many different norms as in the examples above. Different norms on a given vector space yield different geometric properties; for example, see Figure 2 for different norms on \(\mathbb{R}^2 \).

\(^1\)From the law of cosines, \((v-w) \cdot (v-w) = v \cdot v + w \cdot w - 2|v||w| \cos \theta\). On the other hand, \((v-w) \cdot (v-w) = v \cdot v - 2v \cdot w + w \cdot w\), so \(v \cdot w = |v||w| \cos \theta \).
Definition 5 Two norms $\| \cdot \|$ and $\| \cdot \|^{*}$ on the same vector space V are said to be Lipschitz-equivalent (or equivalent) if $\exists m, M > 0$ s.t. $\forall x \in V$,

$$m \| x \| \leq \| x \|^{*} \leq M \| x \|$$

Equivalently, $\exists m, M > 0$ s.t. $\forall x \in V, x \neq 0$,

$$m \leq \frac{\| x \|^{*}}{\| x \|} \leq M$$

If two norms are equivalent, then they define the same notions of convergence and continuity. For topological purposes, equivalent norms are indistinguishable. For example, suppose two norms $\| \cdot \|$ and $\| \cdot \|^{*}$ on the vector space V are equivalent, and fix $x \in V$. Let $B_{\varepsilon}(x, \| \cdot \|)$ denote the $\| \cdot \|$-ball of radius ε about x; similarly, let $B_{\varepsilon}(x, \| \cdot \|^{*})$ denote the $\| \cdot \|^{*}$-ball of radius ε about x. That is,

$$B_{\varepsilon}(x, \| \cdot \|) = \{ y \in V : \| x - y \| < \varepsilon \}$$

$$B_{\varepsilon}(x, \| \cdot \|^{*}) = \{ y \in V : \| x - y \|^{*} < \varepsilon \}$$

Then for any $\varepsilon > 0$,

$$B_{\frac{m}{M}}(x, \| \cdot \|) \subseteq B_{\varepsilon}(x, \| \cdot \|^{*}) \subseteq B_{\frac{M}{m}}(x, \| \cdot \|)$$

See Figure 3.

In \mathbb{R}^{n} (or any finite-dimensional normed vector space), all norms are equivalent. This says roughly that, up to a difference in scaling, for topological purposes there is a unique norm in \mathbb{R}^{n}.

Theorem 6 All norms on \mathbb{R}^{n} are equivalent.\footnote{The statement of the theorem in de la Fuente (Theorem 10.8, p. 107) is correct, but the proof has a problem.}
However, infinite-dimensional spaces support norms that are not equivalent. For example, on $C([0, 1])$, let f_n be the function

$$f_n(t) = \begin{cases} 1 - nt & \text{if } t \in [0, \frac{1}{n}] \\ 0 & \text{if } t \in \left(\frac{1}{n}, 1\right] \end{cases}$$

Then

$$\frac{\|f_n\|_1}{\|f_n\|_\infty} = \frac{1}{n} \rightarrow 0$$

Definition 7 In a metric space (X, d), a subset $S \subseteq X$ is **bounded** if $\exists x \in X, \beta \in \mathbb{R}$ such that $\forall s \in S, d(s, x) \leq \beta$.

In a metric space (X, d), define

- $B_\varepsilon(x) = \{ y \in X : d(y, x) < \varepsilon \} = \text{open ball with center } x \text{ and radius } \varepsilon$
- $B_\varepsilon[x] = \{ y \in X : d(y, x) \leq \varepsilon \} = \text{closed ball with center } x \text{ and radius } \varepsilon$

We can use the metric d to define a generalization of “radius”. In a metric space (X, d), define the **diameter** of a subset $S \subseteq X$ by

$$\text{diam}(S) = \sup\{d(s, s') : s, s' \in S\}$$

Similarly, we can define the distance from a point to a set, and distance between sets, as follows:

$$d(A, x) = \inf_{a \in A} d(a, x)$$
$$d(A, B) = \inf_{a \in A} d(B, a)$$

Note that $d(A, x)$ cannot be a metric (since a metric is a function on $X \times X$, the first and second arguments must be objects of the same type); in addition, $d(A, B)$ does not define a metric on the space of subsets of X (why?).

Section 2.2. Convergence of Sequences in Metric Spaces

Definition 8 Let (X, d) be a metric space. A sequence $\{x_n\}$ **converges** to x (written $x_n \rightarrow x$ or $\lim_{n \rightarrow \infty} x_n = x$) if

$$\forall \varepsilon > 0 \exists N(\varepsilon) \in \mathbb{N} \text{ s.t. } n > N(\varepsilon) \Rightarrow d(x_n, x) < \varepsilon$$

Another, more useful notion of the distance between sets is the Hausdorff distance, given by $d(A, B) = \max\{\sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b)\}$.

3
Notice that this is exactly the same as the definition of convergence of a sequence of real numbers, except we replace the standard measure of distance $|·|$ in \mathbb{R} by the general metric d.

Theorem 9 (Uniqueness of Limits) In a metric space (X, d), if $x_n \to x$ and $x_n \to x'$, then $x = x'$.

![Diagram showing convergence of a sequence](image)

Proof: Suppose $\{x_n\}$ is a sequence in X, $x_n \to x$, $x_n \to x'$, $x \neq x'$. Since $x \neq x'$, $d(x, x') > 0$. Let

$$\varepsilon = \frac{d(x, x')}{2}$$

Then there exist $N(\varepsilon)$ and $N'(\varepsilon)$ such that

$$n > N(\varepsilon) \implies d(x_n, x) < \varepsilon$$
$$n > N'(\varepsilon) \implies d(x_n, x') < \varepsilon$$

Choose

$$n > \max\{N(\varepsilon), N'(\varepsilon)\}$$

Then

$$d(x, x') \leq d(x, x_n) + d(x_n, x')$$
$$< \varepsilon + \varepsilon$$
$$= 2\varepsilon$$
$$= d(x, x')$$
$$d(x, x') < d(x, x')$$

a contradiction.\blacksquare

Definition 10 An element c is a cluster point of a sequence $\{x_n\}$ in a metric space (X, d) if $\forall \varepsilon > 0$, $\{n : x_n \in B_\varepsilon(c)\}$ is an infinite set. Equivalently,

$$\forall \varepsilon > 0, N \in \mathbb{N} \exists n > N \text{ s.t. } x_n \in B_\varepsilon(c)$$
Example:
\[x_n = \begin{cases} 1 - \frac{1}{n} & \text{if } n \text{ even} \\ \frac{1}{n} & \text{if } n \text{ odd} \end{cases} \]

For \(n \) large and odd, \(x_n \) is close to zero; for \(n \) large and even, \(x_n \) is close to one. The sequence does not converge; the set of cluster points is \(\{0, 1\} \).

If \(\{x_n\} \) is a sequence and \(n_1 < n_2 < n_3 < \cdots \) then \(\{x_{n_k}\} \) is called a subsequence.

Note that a subsequence is formed by taking some of the elements of the parent sequence, in the same order.

Example: \(x_n = \frac{1}{n} \), so \(\{x_n\} = \left(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots\right) \). If \(n_k = 2k \), then \(\{x_{n_k}\} = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots\right) \).

Theorem 11 (2.4 in De La Fuente, plus ...)
Let \((X, d)\) be a metric space, \(c \in X \), and \(\{x_n\} \) a sequence in \(X \). Then \(c \) is a cluster point of \(\{x_n\} \) if and only if there is a subsequence \(\{x_{n_k}\} \) such that \(\lim_{k \to \infty} x_{n_k} = c \).

Proof: Suppose \(c \) is a cluster point of \(\{x_n\} \). We inductively construct a subsequence that converges to \(c \). For \(k = 1 \), \(\{n : x_n \in B_1(c)\} \) is infinite, so nonempty; let

\[n_1 = \min\{n : x_n \in B_1(c)\} \]

Now, suppose we have chosen \(n_1 < n_2 < \cdots < n_k \) such that

\[x_{n_j} \in B_{\frac{1}{k}}(c) \text{ for } j = 1, \ldots, k \]

\(\{n : x_n \in B_{\frac{1}{k+1}}(c)\} \) is infinite, so it contains at least one element bigger than \(n_k \), so let

\[n_{k+1} = \min\left\{n : n > n_k, x_n \in B_{\frac{1}{k+1}}(c)\right\} \]

Thus, we have chosen \(n_1 < n_2 < \cdots < n_k < n_{k+1} \) such that

\[x_{n_j} \in B_{\frac{1}{k}}(c) \text{ for } j = 1, \ldots, k, k + 1 \]

Thus, by induction, we obtain a subsequence \(\{x_{n_k}\} \) such that

\[x_{n_k} \in B_{\frac{1}{k}}(c) \]

Given any \(\varepsilon > 0 \), by the Archimedean property, there exists \(N(\varepsilon) > 1/\varepsilon \).

\[k > N(\varepsilon) \Rightarrow x_{n_k} \in B_{\frac{1}{k}}(c) \]

\[\Rightarrow x_{n_k} \in B_\varepsilon(c) \]

so

\[x_{n_k} \to c \text{ as } k \to \infty \]
Conversely, suppose that there is a subsequence \(\{x_{n_k}\} \) converging to \(c \). Given any \(\varepsilon > 0 \), there exists \(K \in \mathbb{N} \) such that

\[
k > K \Rightarrow d(x_{n_k}, c) < \varepsilon \Rightarrow x_{n_k} \in B_\varepsilon(c)
\]

Therefore,

\[
\{n : x_n \in B_\varepsilon(c)\} \supseteq \{n_{K+1}, n_{K+2}, n_{K+3}, \ldots\}
\]

Since \(n_{K+1} < n_{K+2} < n_{K+3} < \cdots \), this set is infinite, so \(c \) is a cluster point of \(\{x_n\} \).

Section 2.3. Sequences in \(\mathbb{R} \) and \(\mathbb{R}^m \)

Definition 12 A sequence of real number \(\{x_n\} \) is increasing (decreasing) if \(x_{n+1} \geq x_n \) \((x_{n+1} \leq x_n) \) for all \(n \).

Definition 13 If \(\{x_n\} \) is a sequence of real numbers, \(\{x_n\} \) tends to infinity (written \(x_n \to \infty \) or \(\lim x_n = \infty \)) if

\[
\forall K \in \mathbb{R} \ \exists N(K) \text{ s.t. } n > N(K) \Rightarrow x_n > K
\]

Similarly define \(x_n \to -\infty \) or \(\lim x_n = -\infty \).

Notice we don’t say the sequence converges to infinity; the term “converge” is limited to the case of finite limits.

Theorem 14 (Theorem 3.1’) Let \(\{x_n\} \) be an increasing (decreasing) sequence of real numbers. Then \(\lim_{n \to \infty} x_n = \sup \{x_n : n \in \mathbb{N}\} \) \((\lim_{n \to \infty} x_n = \inf \{x_n : n \in \mathbb{N}\}) \). In particular, the limit exists.

Proof: Read the proof in the book, and figure out how to handle the unbounded case.

Lim Sups and Lim Infs:

Consider a sequence \(\{x_n\} \) of real numbers. Let

\[
\alpha_n = \sup \{x_k : k \geq n\} = \sup \{x_n, x_{n+1}, x_{n+2}, \ldots\} \\
\beta_n = \inf \{x_k : k \geq n\}
\]

Either \(\alpha_n = +\infty \) for all \(n \), or \(\alpha_n \in \mathbb{R} \) and \(\alpha_1 \geq \alpha_2 \geq \alpha_3 \geq \cdots \). Either \(\beta_n = -\infty \) for all \(n \), or \(\beta_n \in \mathbb{R} \) and \(\beta_1 \leq \beta_2 \leq \beta_3 \leq \cdots \).

\[4\text{See the handout for this material.}\]
Definition 15

\[
\limsup_{n \to \infty} x_n = \begin{cases}
+\infty & \text{if } \alpha_n = +\infty \text{ for all } n \\
\lim \alpha_n & \text{otherwise.}
\end{cases}
\]

\[
\liminf_{n \to \infty} x_n = \begin{cases}
-\infty & \text{if } \beta_n = -\infty \text{ for all } n \\
\lim \beta_n & \text{otherwise.}
\end{cases}
\]

Theorem 16 Let \(\{x_n\} \) be a sequence of real numbers. Then

\[
\lim_{n \to \infty} x_n = \gamma \in \mathbb{R} \cup \{-\infty, \infty\} \iff \limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = \gamma.
\]

Theorem 17 (Theorem 3.2, Rising Sun Lemma) Every sequence of real numbers contains an increasing subsequence or a decreasing subsequence or both.

Proof: Let

\[
S = \{ s \in \mathbb{N} : x_s > x_n \ \forall n > s \}
\]

Either \(S \) is infinite, or \(S \) is finite.

If \(S \) is infinite, let

\[
\begin{align*}
n_1 &= \min S \\
n_2 &= \min (S \setminus \{n_1\}) \\
n_3 &= \min (S \setminus \{n_1, n_2\}) \\
&\vdots \\
n_{k+1} &= \min (S \setminus \{n_1, n_2, \ldots, n_k\})
\end{align*}
\]

Then \(n_1 < n_2 < n_3 < \cdots \).

\[
\begin{align*}
x_{n_1} > x_{n_2} & \quad \text{since } n_1 \in S \text{ and } n_2 > n_1 \\
x_{n_2} > x_{n_3} & \quad \text{since } n_2 \in S \text{ and } n_3 > n_2 \\
&\vdots \\
x_{n_k} > x_{n_{k+1}} & \quad \text{since } n_k \in S \text{ and } n_{k+1} > n_k \\
&\vdots
\end{align*}
\]
so \(\{x_{n_k}\} \) is a strictly decreasing subsequence of \(\{x_n\} \).

If \(S \) is finite and nonempty, let \(n_1 = (\max S) + 1 \); if \(S = \emptyset \), let \(n_1 = 1 \). Then

\[
\begin{align*}
n_1 \notin S & \quad \text{so} \quad \exists n_2 > n_1 \text{ s.t. } x_{n_2} \geq x_{n_1} \\
n_2 \notin S & \quad \text{so} \quad \exists n_3 > n_2 \text{ s.t. } x_{n_3} \geq x_{n_2} \\
 & \vdots \\
n_k \notin S & \quad \text{so} \quad \exists n_{k+1} > n_k \text{ s.t. } x_{n_{k+1}} \geq x_{n_k} \\
 & \vdots
\end{align*}
\]

so \(\{x_{n_k}\} \) is a (weakly) increasing subsequence of \(\{x_n\} \). □

Theorem 18 (Thm. 3.3, Bolzano-Weierstrass) Every bounded sequence of real numbers contains a convergent subsequence.

Proof: Let \(\{x_n\} \) be a bounded sequence of real numbers. By the Rising Sun Lemma, find an increasing or decreasing subsequence \(\{x_{n_k}\} \). If \(\{x_{n_k}\} \) is increasing, then by Theorem 3.1', \(\lim x_{n_k} = \sup \{x_{n_k} : k \in \mathbb{N}\} \leq \sup \{x_n : n \in \mathbb{N}\} < \infty \), since the sequence is bounded; since the limit is finite, the subsequence converges. Similarly, if the subsequence is decreasing, it converges. □
Figure 2: The unit ball around 0 in different norms on \mathbb{R}^2: standard $\| \cdot \|_2$, $\| \cdot \|_1$ (L^1 or taxi cab norm) and $\| \cdot \|_\infty$ (sup norm or L^∞ norm).
Figure 3: All norms on \mathbb{R}^n are equivalent.