
Econ 204
Corrections to de la Fuente

1. On page 23, de la Fuente presents two definitions of correspondence.
In the second definition, de la Fuente requires that for all x ∈ X,
Ψ(x) 6= ∅. The first definition simply says that Ψ is a function from X
to 2Y , the collection of all subsets of Y , and appears to suggest that
this implies that Ψ(x) 6= ∅; since ∅ ∈ 2Y , this is not correct. The first
definition should have said “a correspondence is a function from X to
2Y such that for all x ∈ X, Ψ(x) 6= ∅.”

2. Theorem 5.2, page 64, should read as follows:

Theorem 1 (5.2’) Let (X, d) and (Y, ρ) be two metric spaces, A ⊆ X,
f : A → Y , and x0 a limit point of A. Then f has limit y0 as x → x0 if
and only if for every sequence {xn} that converges to x0 in (X, d) with
xn ∈ A for every n and xn 6= x0, the sequence {f(xn)} converges to y0

in (Y, ρ).

Comment: As stated in de la Fuente, the metric space (X, d) is the
ambient space, so every limit point of X must be an element of X;
there is nothing outside of X to which a sequence in X can converge.
Thus, as stated in de la Fuente, we must have x0 ∈ X and thus, x0

must be in the domain of f . The revised statement just given allows
x0 to lie outside the domain of f .

3. De la Fuente uses a weaker definition of homeomorphism (Definition
6.20, page 74) than most texts; usually, a homeomorphism is required to
be a surjection. For example, the injection map I : [0, 1] → R defined
by I(x) = x would not be called a homeomorphism in most texts
because it is not onto, but it is a homeomorphism under de la Fuente’s
weaker definition. This creates trouble in Theorem 6.21(ii). [0, 1] is an
open set in the metric space [0, 1], but its image I([0, 1]) = [0, 1] is not
an open set in R, so Theorem 6.21 is false as stated. Theorem 6.21 is
true if we assume that f : (X, d) → (Y, ρ) is one-to-one and onto, or if
we replace the phrase “its image f(AX) is open in (Y, ρ)” in part (ii)

with “its image f(AX) is open in
(

f(X), ρ|f(X)

)

.”
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4. The proof of Theorem 7.12 is a bit disorganized and hard to follow. In
the second bullet on page 84, de la Fuente assumes that {fn} converges
to f in the sup norm, but this is not proven until the third bullet. Since
the third bullet does not use the continuity of the limit function f , we
could simply switch the second and third bullets to get a correct (but
awkward) proof. Here is a better alternative to the second and third
bullets:

• Fix ε > 0. Since the sequence {fn} is Cauchy in the sup norm,
there exists N such n, m > N ⇒ ‖fn − fm‖s < ε/3. Fix m > N .
Then n > N ⇒ ‖fn − fm‖s < ε/3, so for each x ∈ X, |f(x) −
fm(x)| = limn→∞ |fn(x) − fm(x)| ≤ ε/3. Since x is arbitrary,
m > N ⇒ ‖f − fm‖s ≤ ε/3 < ε, so ‖f − fm‖s → 0, i.e. {fm}
converges to f in the sup norm.

• To see that f is continuous, fix x0 ∈ X; let N be as in the previous
bullet and take m = N +1. Since fN+1 is continuous, there exists
δ > 0 such that |x − x0| < δ ⇒ |fN+1(x) − fN+1(x0)| < ε/3.
Therefore, if |x − x0| < δ,

|f(x) − f(x0)|

≤ |f(x) − fN+1(x)| + |fN+1(x)− fN+1(x0)| + |fN+1(x0) − f(x0)|

<
ε

3
+

ε

3
+

ε

3
= ε

Therefore, f is continuous, which completes the proof.

5. Some of the wording on page 85 is imprecise. Just before the formal
definition of a contraction, de la Fuente says “We say that an operator
is a contraction if its application to any two points brings them closer
to each other;” this suggests that the definition should be either “for
all x, y ∈ X with x 6= y, d(T (x), T (y)) < d(x, y)” or “for all x, y ∈
X, d(T (x), T (y)) ≤ d(x, y).” De la Fuente’s formal definition of a
contraction is correct, and stronger than the informal statement. Here
is an equivalent rephrasing of the formal definition of a contraction:

Definition 2 Let (X, d) be a metric space and T : X → X. We say
that T is a contraction if there exists β < 1 such that for all x, y ∈ X,
d(T (x), T (y)) ≤ βd(x, y).
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In the definition, it is very important that there exist a single β < 1
that works for all x, y ∈ X.

Example 7.15 is imprecisely stated. Replace the first sentence by “Let
f : [a, b] → [a, b] be a continuously differentiable function such that
0 ≤ f ′(x) < 1 for all x ∈ [a, b].” With that change, f is indeed a
contraction, although the argument uses results that have not been
covered at this point in the book. Since f ′(x) is a continuous function
on a closed bounded interval, it attains its maximum at some point x0.
Let β = f ′(x0); β < 1. Given any x 6= y ∈ [a, b], by the Mean Value

Theorem, there exists c ∈ (x, y) such that f(y)−f(x)
y−x

= f ′(c) ∈ [0, β], so

|f(y) − f(x)| ≤ β|y − x|, so f is a contraction.

In Figure 2.11 on page 86, the function that is graphed is not a con-
traction: as pictured, its slope is greater than one near the point a.

6. In Theorem 7.16 (page 86), you need to add the assumption that X 6=
∅.1 Alternatively, de la Fuente could have required X 6= ∅ as part of
the definition of a metric space.

7. I’m not sure whether Theorem 7.18 (page 88) is correct as stated, but
the proof given proves only the following weaker theorem:

Theorem 3 (7.18’) Let (X, d) and (Ω, ρ) be two metric spaces, and
T (x, α) a function X×Ω → X. If (X, d) is complete, if T is continuous
in α, and there is β < 1 such that, for each α ∈ Ω, the function
Tα defined by Tα(x) = T (x, α) for each x ∈ X is a contraction with
modulus β, then the solution function z : Ω → X, with x∗ = z(α), which
gives the fixed point as a function of the parameters, is continuous.

To understand the difference, note that de la Fuente’s statement re-
quires that Tα be a contraction, but implicitly allows βα, the modulus
of the contraction Tα, to vary with α; we might have βα < 1 for each
α, but sup{βα : α ∈ Ω} = 1. The revised statement and de la Fuente’s
proof require that there be a single β ∈ (0, 1) such that Tα is a con-
traction with modulus β for all α.

1There is exactly one function from ∅ to itself, it is a contraction, but it has no fixed

point.
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8. De la Fuente’s definition of totally bounded (page 92) is not the usual
definition. Here are de la Fuente’s definition (in a slightly condensed
form) and the standard definition:

(a) Definition (de la Fuente): A ⊂ (X, d) is totally bounded if, for
every ε > 0, there exists x1, . . . , xn ∈ X such that

A ⊂ B(x1, ε) ∪ · · · ∪ B(xn, ε)

(b) Definition (standard): A ⊂ (X, d) is totally bounded if, for every
ε > 0, there exists x1, . . . , xn ∈ A such that

A ⊂ B(x1, ε) ∪ · · · ∪ B(xn, ε)

The only difference between the two is that de la Fuente allows the
points x1, . . . , xn to come from the ambient metric space X, while the
standard definition requires that they come from the set in question,
A. This gets him into trouble in the proof of Theorem 8.11. With
his definition of totally bounded, the points x1, . . . , xn lie in X but not
necessarily in A; since the open cover is a cover of A but not necessarily
of X, it does not follow that Bε(xi) ⊆ Ui as claimed. Another reason
to prefer the standard definition is that it is intrinsic to A. A set A can
be a subspace of many metric spaces; under the standard definition,
whether or not a set A is totally bounded depends only on the set A
and the metric restricted to A. In de la Fuente’s definition, it appears
that a set A might be totally bounded when viewed as a subspace of a
metric space (X, d), but not as a subspace of (X ′, d′), even if d and d′

induce the same metric on A. In fact, the two definitions are equivalent:

Proposition 4 Suppose A is a set in a metric space (X, d). Then A
is totally bounded in de la Fuente’s sense if and only if it is totally
bounded in the standard sense.

Proof: If A is totally bounded in the standard sense, it is trivially
totally bounded in de la Fuente’s sense. To prove the converse, suppose
that A is totally bounded in de la Fuente’s sense. Fix ε > 0. There
exist x1, . . . , xn ∈ X such that

A ⊆ ∪n
i=1Bε/2(xi)

4



Without loss of generality, we may assume that for each i, A∩Bε/2(xi) 6=
∅. For each i, choose ai ∈ A ∩ Bε/2(xi). Then

a ∈ A ⇒ a ∈ Bε/2(xi) for some i ∈ {1, . . . , n}

⇒ d(a, xi) <
ε

2
, d(ai, xi) <

ε

2
⇒ d(a, ai) < ε

Therefore,
A ⊆ ∪n

i=1Bε(ai)

so A is totally bounded in the standard sense.

9. De la Fuente’s definition of arcwise-connectedness (Definition 9.4 on
page 103) is stronger than the usual one. The usual definition is as
follows:

Definition 5 (9.4’) A set B in a metric space (X, d) is said to be
arcwise-connected if, for every pair of points x, y ∈ B, there is an
interval [a, b] ⊂ R and a continuous function f : [a, b] → B such that
f(a) = x and f(b) = y.

10. Theorem 10.8 (all norms on Rn are Lipschitz equivalent) is correct, but
the proof is incorrect. Problem 6.8 showed that if (X, ‖ · ‖) is a normed
space, then ‖ · ‖ is a continuous function on (X, ‖ · ‖); note that this
is true for any normed space, including infinite-dimensional normed
spaces, which support inequivalent norms. C = {x ∈ X : ‖x‖E} is
compact in the topology generated by ‖x‖E, but it does not follow that
‖x‖ achieves its min or max on C , since we don’t know that ‖ · ‖ is
continuous with respect to ‖ ·‖E. Indeed, continuity of ‖ ·‖ with respect
to ‖ · ‖E is equivalent to the statement that there exists M such that
‖x‖ ≤ M‖x‖E , which is part of what we are trying to prove. Nor does
it follow that C is compact in the topology generated by ‖ · ‖. The
correct proof makes greater use of the finite-dimensionality of Rn.

11. In the statement of Theorem 1.2 on page 118, “coefficients not all zero”
should read “all coefficients nonzero;” notice that this is what the proof
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proves.2

12. In the statement of Theorem 11.11 on page 113,
∑n

i=1 Ψi(x) has not
been defined. Given sets A1, . . . , An,

n
∑

i=1

Ai = {a1 + · · · + an : a1 ∈ A1, . . . , an ∈ An}

is the collection of all sums of elements, with one element taken from
each set. Thus,

n
∑

i=1

Ψ(x) = {a1 + · · · + an : a1 ∈ Ψ1(x), . . . , an ∈ Ψn(x)}

defines a correspondence.

13. On page 119, de la Fuente says every nontrivial vector space (V 6= {0})
has a Hamel basis. This is correct, but the trivial vector space V = {0}
also has a Hamel basis; indeed, the empty set ∅ is a Hamel basis for
V = {0}. In the same sentence of de la Fuente, “have the same cardinal
number,” which was not previously defined, means “are numerically
equivalent.”

14. On page 146, the notation |A−λI | means the determinant of the matrix
A − λI ; I don’t think determinants are defined in the book.

15. The discussion at the bottom of page 150 and the top of page 151 is
garbled. In the fourth line of page 151, de La Fuente establishes that
MaPy = λPy and Max = λx, and concludes that x = Py. To see this
need not be true, suppose that Ma is the 2 × 2 identity matrix. Then
take

x =

(

1
0

)

, Py =

(

0
1

)

Note that Max = 1 · x and MaPy = 1 · Py, but it is definitely not the
case that x = Py; indeed, x is not even a scalar multiple of Py. In fact,

2Also, to be really fussy, the word “nonzero” in the second sentence can be dropped.

The zero vector has a unique representation as a linear combination with all coefficients

nonzero of a finite subset of b; ∅ is a finite subset of b,
∑

v∈∅ 1 · v = 0, and since there are

no coefficients, all of them are nonzero.
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the claim in the second last line of page 150, that the eigenvectors of
Ma and Mb represent the same elements of V in the two bases, is not
correct. The following is correct:

Proposition 6 Suppose that V is an n-dimensional vector space, and
T : V → V is a linear map, with matrices MA and MB with respect to
two bases A = {a1, . . . , an} and B = {b1, . . . , bn}.

(a) λ is an eigenvalue of MA if and only if it is an eigenvalue of MB.

(b) If MA has n distinct eigenvalues, the eigenvectors of MA represent
the same elements of V , up to scalar multiplication, as do the
eigenvectors of MB.

(c) If λ ∈ C, let XAλ = {x ∈ Rn : MAx = λx} and XBλ = {x ∈ Rn :
MBx = λx}. Then

{x1a1 + · · · + xnan : x ∈ XAλ}

= {x1b1 + · · · + xnbn : x ∈ XBλ}

= {v ∈ V : Tv = λv}

The proof follows from the arguments given in de la Fuente.

16. Here is a list of typos and other minor errors:

(a) Page 62, proof of Theorem 4.11: ⇒ and ⇐ switched.

(b) Page 78, statement of Theorem 6.27: (2) should read f(x+) ≤
f(y−).

(c) Page 84, proof of Theorem 7.12: The second section of the proof,
establishing continuity of f , states “Because {fn} → f in the sup
norm” but this is not established until later in the third section
of the proof.

(d) Page 104, proof of Theorem 9.5: “We will now show that D is not
connected” at the end of the first paragraph should read “We will
now show that C is not connected”.

(e) Page 111, proof of Theorem 11.3: Near end of first section, phrase
“for each n with nk < nk+1” should read “for each n with n > nk.”
The following sentence is a little unclear, and would be better
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rephrased as follows: “Given ε > 0, find k such that 1
k

< ε; for
n > nk, |yn − y| < 1

k
< ε, so {yn} converges to y.”

(f) Page 122, text following Problem 2.2: misprint in equation for
T (x). Last = should be a +.

(g) Page 123, last line, αy1 + βx2 should read αy1 + βy2.

(h) Page 129, proof of Theorem 3.3: Last equation T (x′) = T (x′)
should read T (x′) = T (x′′).

(i) Page 150, discussion at bottom of page. Last item in last equation,
| MaλI | should read | Ma − λI |.

(j) Page 676, solution to Problem 8.18: An ⊆ An+1 in first paragraph
should read An+1 ⊆ An
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