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Lecture 11
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1. Derivatives

2. Chain Rule

3. Mean Value Theorem

4. Taylor’s Theorem
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Derivatives

Definition 1. Let f : I → R, where I ⊆ R is an open interval. f

is differentiable at x ∈ I if

lim
h→0

f(x + h)− f(x)

h
= a

for some a ∈ R.
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This is equivalent to

lim
h→0

f(x + h)− (f(x) + ah)

h
= 0

⇔ ∀ε > 0 ∃δ > 0 s.t. 0 < |h| < δ ⇒

∣

∣

∣

∣

∣

f(x + h)− (f(x) + ah)

h

∣

∣

∣

∣

∣

< ε

⇔ ∀ε > 0 ∃δ > 0 s.t. 0 < |h| < δ ⇒
|f(x + h) − (f(x) + ah)|

|h|
< ε

⇔ lim
h→0

|f(x + h)− (f(x) + ah)|

|h|
= 0



Derivatives

Definition 2. If X ⊆ Rn is open, f : X → Rm is differentiable at

x ∈ X if ∃Tx ∈ L(Rn,Rm) such that

lim
h→0,h∈Rn

|f(x + h) − (f(x) + Tx(h))|

|h|
= 0 (1)

f is differentiable if it is differentiable at all x ∈ X.

Note that Tx is uniquely determined by Equation (1).

The definition requires that one linear operator Tx works no

matter how h approaches zero.

In this case, f(x) + Tx(h) is the best linear approximation to

f(x + h) for sufficiently small h.
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Big-Oh and little-oh

Notation:

• y = O(|h|n) as h → 0 – read “y is big-Oh of |h|n” – means

∃K, δ > 0 s.t. |h| < δ ⇒ |y| ≤ K|h|n

• y = o(|h|n) as h → 0 – read “y is little-oh of |h|n” – means

lim
h→0

|y|

|h|n
= 0

Note that y = O(|h|n+1) as h → 0 implies y = o(|h|n) as h → 0.
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Using this notation: f is differentiable at x ⇔ ∃Tx ∈ L(Rn,Rm)

such that

f(x + h) = f(x) + Tx(h) + o(h) as h → 0
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More Notation

Notation:

• dfx is the linear transformation Tx

• Df(x) is the matrix of dfx with respect to the standard basis.

This is called the Jacobian or Jacobian matrix of f at x

• Ef(h) = f(x + h)− (f(x) + dfx(h)) is the error term

Using this notation,

f is differentiable at x ⇔ Ef(h) = o(h) as h → 0
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What’s Df(x)?

Now compute Df(x) = (aij). Let {e1, . . . , en} be the standard

basis of Rn. Look in direction ej (note that |γej| = |γ|).

o(γ) = f(x + γej)−
(

f(x) + Tx(γej)
)

= f(x + γej)−

























f(x) +







a11 · · · a1j · · · a1n
... . . . ... . . . ...

am1 · · · amj · · · amn































0
...
0
γ

0
...
0

















































= f(x + γej)−





f(x) +







γa1j
...

γamj
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For i = 1, . . . , m, let f i denote the ith component of the function

f :

f i(x + γej) −
(

f i(x) + γaij

)

= o(γ)

so aij =
∂f i

∂xj
(x)



Derivatives and Partial Derivatives

Theorem 1 (Thm. 3.3). Suppose X ⊆ Rn is open and f : X →

Rm is differentiable at x ∈ X. Then ∂f i

∂xj
(x) exists for 1 ≤ i ≤ m,

1 ≤ j ≤ n, and

Df(x) =











∂f1

∂x1
(x) · · · ∂f1

∂xn
(x)

... . . . ...
∂fm

∂x1
(x) · · · ∂fm

∂xn
(x)











i.e. the Jacobian at x is the matrix of partial derivatives at x .
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Derivatives and Partial Derivatives

Remark: If f is differentiable at x, then all first-order partial

derivatives ∂f i

∂xj
exist at x. However, the converse is false: exis-

tence of all the first-order partial derivatives does not imply that

f is differentiable.

The missing piece is continuity of the partial derivatives:

Theorem 2 (Thm. 3.4). If all the first-order partial derivatives
∂f i

∂xj
(1 ≤ i ≤ m, 1 ≤ j ≤ n) exist and are continuous at x, then f

is differentiable at x.
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Directional Derivatives

Suppose X ⊆ Rn open, f : X → Rm is differentiable at x, and

|u| = 1.

f(x + γu)− (f(x) + Tx(γu)) = o(γ) as γ → 0

⇒ f(x + γu) − (f(x) + γTx(u)) = o(γ) as γ → 0

⇒ lim
γ→0

f(x + γu)− f(x)

γ
= Tx(u) = Df(x)u

i.e. the directional derivative in the direction u (with |u| = 1) is

Df(x)u ∈ R
m
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Chain Rule

Theorem 3 (Thm. 3.5, Chain Rule). Let X ⊆ Rn, Y ⊆ Rm be

open, f : X → Y , g : Y → Rp. Let x0 ∈ X and F = g ◦ f . If f is

differentiable at x0 and g is differentiable at f(x0), then F = g ◦f

is differentiable at x0 and

dFx0 = dgf(x0)
◦ dfx0

(composition of linear transformations)

DF (x0) = Dg(f(x0))Df(x0)

(matrix multiplication)

Remark: The statement is exactly the same as in the univari-

ate case, except we replace the univariate derivative by a linear

transformation. The proof is more or less the same, with a bit

of linear algebra added.
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Mean Value Theorem

Theorem 4 (Thm. 1.7, Mean Value Theorem, Univariate Case).

Let a, b ∈ R. Suppose f : [a, b] → R is continuous on [a, b] and

differentiable on (a, b). Then there exists c ∈ (a, b) such that

f(b) − f(a)

b − a
= f ′(c)

that is, such that

f(b) − f(a) = f ′(c)(b − a)

Proof. Consider the function

g(x) = f(x) − f(a) −
f(b)− f(a)

b − a
(x − a)
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Then g(a) = 0 = g(b). Note that for x ∈ (a, b),

g′(x) = f ′(x) −
f(b)− f(a)

b − a

so it suffices to find c ∈ (a, b) such that g′(c) = 0.

Case I: If g(x) = 0 for all x ∈ [a, b], choose an arbitrary c ∈ (a, b),

and note that g′(c) = 0, so we are done.

Case II: Suppose g(x) > 0 for some x ∈ [a, b]. Since g is contin-

uous on [a, b], it attains its maximum at some point c ∈ (a, b).

Since g is differentiable at c and c is an interior point of the

domain of g, we have g′(c) = 0, and we are done.

Case III: If g(x) < 0 for some x ∈ [a, b], the argument is similar

to that in Case II.
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Mean Value Theorem

Notation:

`(x, y) = {αx + (1 − α)y : α ∈ [0,1]}

is the line segment from x to y.

Theorem 5 (Mean Value Theorem). Suppose f : Rn → R is

differentiable on an open set X ⊆ Rn, x, y ∈ X and `(x, y) ⊆ X.

Then there exists z ∈ `(x, y) such that

f(y) − f(x) = Df(z)(y − x)
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Notice that the statement is exactly the same as in the univariate

case. For f : Rn → Rm, we can apply the Mean Value Theorem

to each component, to obtain z1, . . . , zm ∈ `(x, y) such that

f i(y) − f i(x) = Df i(zi)(y − x)

However, we cannot find a single z which works for every com-

ponent.

Note that each zi ∈ `(x, y) ⊂ Rn; there are m of them, one for

each component in the range.
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Mean Value Theorem

Theorem 6. Suppose X ⊂ Rn is open and f : X → Rm is differ-

entiable. If x, y ∈ X and `(x, y) ⊆ X, then there exists z ∈ `(x, y)

such that

|f(y) − f(x)| ≤ |dfz(y − x)|

≤ ‖dfz‖|y − x|
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Mean Value Theorem

Remark: To understand why we don’t get equality, consider

f : [0,1] → R2 defined by

f(t) = (cos2πt, sin 2πt)

f maps [0,1] to the unit circle in R2. Note that f(0) = f(1) =

(1,0), so |f(1) − f(0)| = 0. However, for any z ∈ [0,1],

|dfz(1 − 0)| = |2π(− sin 2πz, cos 2πz)|

= 2π

√

sin2 2πz + cos2 2πz

= 2π
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Taylor’s Theorem – R

Theorem 7 (Thm. 1.9, Taylor’s Theorem in R). Let f : I → R

be n-times differentiable, where I ⊆ R is an open interval. If

x, x + h ∈ I, then

f(x + h) = f(x) +
n−1
∑

k=1

f(k)(x)hk

k!
+ En

where f(k) is the kth derivative of f and

En =
f(n)(x + λh)hn

n!
for some λ ∈ (0,1)
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Motivation: Let

Tn(h) = f(x) +
n

∑

k=1

f(k)(x)hk

k!

= f(x) + f ′(x)h +
f ′′(x)h2

2
+ · · · +

f(n)(x)hn

n!
Tn(0) = f(x)

T ′
n(h) = f ′(x) + f ′′(x)h + · · · +

f(n)(x)hn−1

(n − 1)!

T ′
n(0) = f ′(x)

T ′′
n(h) = f ′′(x) + · · · +

f(n)(x)hn−2

(n − 2)!

T ′′
n(0) = f ′′(x)

...

T
(n)
n (0) = f(n)(x)
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so Tn(h) is the unique nth degree polynomial such that

Tn(0) = f(x)

T ′
n(0) = f ′(x)

...

T
(n)
n (0) = f(n)(x)



Taylor’s Theorem – R

Theorem 8 (Alternate Taylor’s Theorem in R). Let f : I → R

be n times differentiable, where I ⊆ R is an open interval and

x ∈ I. Then

f(x + h) = f(x) +
n

∑

k=1

f(k)(x)hk

k!
+ o (hn) as h → 0

If f is (n + 1) times continuously differentiable, then

f(x + h) = f(x) +
n

∑

k=1

f(k)(x)hk

k!
+ O

(

hn+1
)

as h → 0

Remark: The first equation in the statement of the theorem is

essentially a restatement of the definition of the nth derivative.

The second statement is proven from Theorem 1.9, and the

continuity of the derivative.

20



Ck Functions

Definition 3. Let X ⊆ Rn be open. A function f : X → Rm is

continuously differentiable on X if

• f is differentiable on X and

• dfx is a continuous function of x from X to L(Rn,Rm), with

respect to the operator norm ‖dfx‖

f is Ck if all partial derivatives of order ≤ k exist and are contin-

uous in X.
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Ck Functions

Theorem 9 (Thm. 4.3). Suppose X ⊆ Rn is open and f : X →

Rm. Then f is continuously differentiable on X if and only if f

is C1.
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Taylor’s Theorem – Linear Terms

Theorem 10.Suppose X ⊆ Rn is open and x ∈ X. If f : X → Rm

is differentiable, then

f(x + h) = f(x) + Df(x)h + o(h) as h → 0

This is essentially a restatement of the definition of differentia-

bility.
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Taylor’s Theorem – Linear Terms

Theorem 11 (Corollary of 4.4). Suppose X ⊆ Rn is open and

x ∈ X. If f : X → Rm is C2, then

f(x + h) = f(x) + Df(x)h + O
(

|h|2
)

as h → 0
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Taylor’s Theorem – Quadratic Terms

We treat each component of the function separately, so consider

f : X → R, X ⊆ Rn an open set. Let

D2f(x) =





















∂2f

∂x2
1

(x) ∂2f
∂x2∂x1

(x) · · · ∂2f
∂xn∂x1

(x)

∂2f
∂x1∂x2

(x) ∂2f

∂x2
2

(x) · · · ∂2f
∂xn∂x2

(x)

... ... . . . ...
∂2f

∂x1∂xn
(x) · · · · · · ∂2f

∂x2
n
(x)





















f ∈ C2 ⇒
∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x)

⇒ D2f(x) is symmetric

⇒ D2f(x) has eigenvectors that are an orthonormal basis

and thus can be diagonalized
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Taylor’s Theorem – Quadratic Terms

Theorem 12 (Stronger Version of Thm. 4.4). Let X ⊆ Rn be

open, f : X → R, f ∈ C2(X), and x ∈ X. Then

f(x + h) = f(x) + Df(x)h +
1

2
h>(D2f(x))h + o

(

|h|2
)

as h → 0

If f ∈ C3,

f(x + h) = f(x) + Df(x)h +
1

2
h>(D2f(x))h + O

(

|h|3
)

as h → 0
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Characterizing Critical Points

Definition 4. We say f has a saddle at x if Df(x) = 0 but x has

neither a local maximum nor a local minimum at x.
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Characterizing Critical Points

Corollary 1. Suppose X ⊆ Rn is open and x ∈ X. If f : X → R is

C2, there is an orthonormal basis {v1, . . . , vn} and corresponding

eigenvalues λ1, . . . , λn ∈ R of Df(x) such that

f(x + h) = f(x + γ1v1 + · · · + γnvn)

= f(x) +
n

∑

i=1

(Df(x)vi) γi +
1

2

n
∑

i=1

λiγ
2
i + o

(

|γ|2
)

where γi = h · vi.

1. If f ∈ C3, we may strengthen o
(

|γ|2
)

to O
(

|γ|3
)

.

2. If f has a local maximum or local minimum at x, then

Df(x) = 0
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3. If Df(x) = 0, then

• λ1, . . . , λn > 0 ⇒ f has a local minimum at x

• λ1, . . . , λn < 0 ⇒ f has a local maximum at x

• λi < 0 for some i, λj > 0 for some j ⇒ f has a saddle at

x

• λ1, . . . , λn ≥ 0, λi > 0 for some i ⇒ f has a local minimum

or a saddle at x

• λ1, . . . , λn ≤ 0, λi < 0 for some i ⇒ f has a local maximum

or a saddle at x

• λ1 = · · · = λn = 0 gives no information.



Proof. (Sketch) From our study of quadratic forms, we know

the behavior of the quadratic terms is determined by the signs

of the eigenvalues. If λi = 0 for some i, then we know that

the quadratic form arising from the second partial derivatives is

identically zero in the direction vi, and the higher derivatives will

determine the behavior of the function f in the direction vi. For

example, if f(x) = x3, then f ′(0) = 0, f ′′(0) = 0, but we know

that f has a saddle at x = 0; however, if f(x) = x4, then again

f ′(0) = 0 and f ′′(0) = 0 but f has a local (and global) minimum

at x = 0.


