Aunouncements

· PS 4 due tomorro w

Econ 204 2011

Lecture 11

Outline

. 2010 lxam posted

> (Solrs Oaning end of week)

· Comments doout exam Weds or Thurs

- 1. Derivatives
- 2. Chain Rule
- 3. Mean Value Theorem
- 4. Taylor's Theorem

1

Derivatives

Definition 1. Let $f: I \to \mathbf{R}$, where $I \subseteq \mathbf{R}$ is an open interval. f is differentiable at $x \in I$ if

$$
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = a
$$

for some $a \in \mathbf{R}$.

This is equivalent to : $\frac{1}{3}$ a ϵ \Re such that lim $h\rightarrow 0$ $f(x+h) - (f(x) + ah)$ h $= 0$ \Leftrightarrow $\forall \varepsilon > 0$ $\exists \delta > 0$ s.t. $0 < |h| < \delta \Rightarrow$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{\mathsf{I}}$ $f(x+h) - (f(x) + ah)$ h $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\frac{1}{2}$ $< \varepsilon$ \Leftrightarrow $\forall \varepsilon > 0$ $\exists \delta > 0$ s.t. $0 < |h| < \delta \Rightarrow$ $|f(x+h) - (f(x) + ah)|$ $|h|$ $< \varepsilon$ ⇔ lim $h\rightarrow 0$ $|f(x+h) - (f(x) + ah)|$ $|h|$ $= 0$

notice $T: \mathbb{R} \ni \mathbb{R}$ is a linear transformation

Derivatives

Definition 2. If $X \subseteq \mathbb{R}^n$ is open, $f : X \to \mathbb{R}^m$ is differentiable at $x \in X$ if $\exists T_x \in L(\mathbf{R}^n, \mathbf{R}^m)$ such that

$$
\lim_{h \to 0, h \in \mathbf{R}^n} \frac{\left| |f(x+h) - (f(x) + T_x(h))| \right|}{\|h\|} = 0 \tag{1}
$$

f is differentiable if it is differentiable at all $x \in X$.

Note that T_x is uniquely determined by Equation (1).

The definition requires that one linear operator T_x works no matter how h approaches zero.

In this case, $f(x) + T_x(h)$ is the best linear approximation to $f(x+h)$ for sufficiently small h.

Big-Oh and little-oh

Notation:

•
$$
y = O(|h|^n)
$$
 as $h \to 0$ – read "y is big-Oh of $|h|^{n}$ " – means

$$
\exists K, \delta > 0 \text{ s.t. } |h| < \delta \Rightarrow |y| \le K|h|^n
$$

\n- $$
y = o(|h|^n)
$$
 as $h \to 0$ – read "*y* is little-oh of $|h|^{n}$ " – means $\lim_{h \to 0} \frac{|y|}{|h|^n} = 0$
\n

Note that $y = O(|h|^{n+1})$ as $h \to 0$ implies $y = o(|h|^n)$ as $h \to 0$. Also $y = O(lnt^*)$ or $y = o(lnt^*) \Rightarrow y \neq 0$

Using this notation: f is differentiable at $x \Leftrightarrow \exists T_x \in L(\mathbf{R}^n, \mathbf{R}^m)$ such that

$$
f(x+h) = f(x) + T_x(h) + o(h)
$$
 as $h \to 0$

$$
f(x+h) - f(x) = T_x(h) + o(h)
$$

More Notation

Notation:

- df_x is the linear transformation T_x
- $Df(x)$ is the matrix of df_x with respect to the standard basis. This is called the Jacobian or Jacobian matrix of f at x
- $E_f(h) = f(x+h) (f(x) + df_x(h))$ is the error term

Using this notation,

f is differentiable at
$$
x \Leftrightarrow E_f(h) = o(h)
$$
 as $h \to 0$

What's
$$
Df(x)
$$
? $\int_{x \to abx \to y} df_x$
\nNow compute $Df(x) = (a_{ij})$. Let $\{e_1, ..., e_n\}$ be the standard
\nbasis of \mathbb{R}^n . Look in direction e_j (note that $|\gamma e_j| = |\gamma|$). $\delta e_j \to \int_{\delta \to \infty}^{\infty} f(x) dx$
\n
$$
o(\gamma) = f(x + \gamma e_j) - \begin{pmatrix} f(x) + \begin{pmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \end{pmatrix} \\ = f(x + \gamma e_j) - \begin{pmatrix} f(x) + \begin{pmatrix} \gamma a_{1j} \\ \vdots \\ \gamma a_{mj} \end{pmatrix} \end{pmatrix}
$$

7

For
$$
i = 1, ..., m
$$
, let f^i denote the i^{th} component of the function
\n $f: f^{(\star)} \in (f^{(\star)}, ..., f^{(\star)})$, $f^{(\star)} : \mathbb{R} \to \mathbb{R}$
\n \Rightarrow $\forall \dot{\theta}$ $f^{i}(x + \gamma e_j) - (f^{i}(x) + \gamma a_{ij}) = o(\gamma)$
\nso $a_{ij} = \frac{\partial f^i}{\partial x_j}(x)$

Derivatives and Partial Derivatives **Theorem 1** (Thm. 3.3). Suppose $X \subseteq \mathbb{R}^n$ is open and $f : X \rightarrow Y$ ${\bold R}^m$ is differentiable at $x\in X.$ Then $\frac{\partial f^i}{\partial x^i}$ $\overline{\partial x_j}$ (x) exists for $1\leq i\leq m$, $1 \leq j \leq n$, and

$$
Df(x) = \begin{pmatrix} \frac{\partial f^{1}}{\partial x_{1}}(x) & \cdots & \frac{\partial f^{1}}{\partial x_{n}}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f^{m}}{\partial x_{1}}(x) & \cdots & \frac{\partial f^{m}}{\partial x_{n}}(x) \end{pmatrix}
$$

i.e. the Jacobian at x is the matrix of partial derivatives at x .

Derivatives and Partial Derivatives

Remark: If f is differentiable at x , then all first-order partial derivatives $\frac{\partial f^i}{\partial x_i}$ ∂x_j exist at x . However, the converse is false: existence of all the first-order partial derivatives does not imply that f is differentiable.

The missing piece is continuity of the partial derivatives:

Theorem 2 (Thm. 3.4). If all the first-order partial derivatives ∂f^i ∂x_j $(1 \leq i \leq m, 1 \leq j \leq n)$ exist and are continuous at x, then f is differentiable at x .

Directional Derivatives

Suppose $X \subseteq \mathbb{R}^n$ open, $f : X \to \mathbb{R}^m$ is differentiable at x , and $||u|| = 1$. $u \in \mathbb{R}^n$ - $x \sim e^{ax}$ $x \to 0$: $||x \sim ||x|| = |x|$ $||u|| = 1.$ $f(x + \gamma u) - (f(x) + T_x(\gamma u)) = o(\gamma)$ as $\gamma \to 0$ $(\tau_{x}$ linear) $\Rightarrow f(x + \gamma u) - (f(x) + \gamma T_x(u)) = o(\gamma)$ as $\gamma \to 0$ $f(x + \gamma u) - f(x)$ \Rightarrow lim $=T_x(u) = Df(x)u$ γ $\gamma\rightarrow 0$

i.e. the directional derivative in the direction u (with $|u|=1$) is

$$
Df(x)u \in \mathbf{R}^m
$$

Chain Rule

Theorem 3 (Thm. 3.5, Chain Rule). Let $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$ be open, $f: X \to Y$, $g: Y \to \mathbf{R}^p$. Let $x_0 \in X$ and $F = g \circ f$. If f is differentiable at x_0 and g is differentiable at $f(x_0)$, then $F = g \circ f$ is differentiable at x_0 and

$$
dF_{x_0} = dg_{f(x_0)} \circ df_{x_0}
$$

(composition of linear transformations)

$$
DF(x_0) = Dg(f(x_0))Df(x_0)
$$

(matrix multiplication)

Remark: The statement is exactly the same as in the univariate case, except we replace the univariate derivative by a linear transformation. The proof is more or less the same, with a bit of linear algebra added.

Mean Value Theorem

Theorem 4 (Thm. 1.7, Mean Value Theorem, Univariate Case). Let $a, b \in \mathbf{R}$. Suppose $f : [a, b] \to \mathbf{R}$ is continuous on $[a, b]$ and differentiable on (a, b) . Then there exists $c \in (a, b)$ such that

$$
\frac{f(b) - f(a)}{b - a} = f'(c)
$$

that is, such that

$$
f(b) - f(a) = f'(c)(b - a)
$$

 $g: La, b] \rightarrow R$ Proof. Consider the function

$$
g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)
$$

$$
Wste g(a) = g(b) = 0
$$
 12

Then $g(a) = 0 = g(b)$. Note that for $x \in (a, b)$,

$$
g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}
$$

so it suffices to find $c \in (a, b)$ such that $g'(c) = 0$.

Case I: If $g(x) = 0$ for all $x \in [a, b]$, choose an arbitrary $c \in (a, b)$, and note that $g'(c) = 0$, so we are done.

Case II: Suppose $g(x) > 0$ for some $x \in [a, b]$. Since g is continuous on $[a, b]$, it attains its maximum at some point $c \in (a, b)$. Since g is differentiable at c and c is an interior point of the domain of g, we have $g'(c) = 0$, and we are done.

Case III: If $g(x) < 0$ for some $x \in [a, b]$, the argument is similar to that in Case II.

13

Notation:

$$
\ell(x,y) = \{\alpha x + (1-\alpha)y : \alpha \in [0,1]\}
$$

Mean Value Theorem

is the line segment from x to y .

Theorem 5 (Mean Value Theorem). Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable on an open set $X \subseteq \mathbb{R}^n$, $x, y \in X$ and $\ell(x, y) \subseteq X$. Then there exists $z \in \ell(x, y)$ such that

$$
f(y) - f(x) = Df(z)(y - x)
$$

Notice that the statement is exactly the same as in the univariate case. For $f: \mathbf{R}^n \to \mathbf{R}^m$, we can apply the Mean Value Theorem to each component, to obtain $z_1, \ldots, z_m \in \ell(x, y)$ such that

$$
f^i(y) - f^i(x) = Df^i(z_i)(y - x)
$$

However, we cannot find a single z which works for every component.

Note that each $z_i \in \ell(x, y) \subset \mathbb{R}^n$; there are m of them, one for each component in the range.

Mean Value Theorem

Theorem 6. Suppose $X \subset \mathbb{R}^n$ is open and $f : X \to \mathbb{R}^m$ is differentiable. If $x, y \in X$ and $\ell(x, y) \subseteq X$, then there exists $z \in \ell(x, y)$ such that

$$
|f(y) - f(x)| \le |df_z(y - x)|
$$

\n
$$
\le ||df_z|| |y - x|
$$

\n
$$
\int_C \frac{d^2z}{|dz|^{2}} \, dz \, dx
$$

Mean Value Theorem

Remark: To understand why we don't get equality, consider $f:[0,1]\rightarrow \mathbb{R}^2$ defined by

$$
f(t) = (\cos 2\pi t, \sin 2\pi t)
$$

f maps [0, 1] to the unit circle in \mathbb{R}^2 . Note that $f(0) = f(1) =$ (1,0), so $|f(1) - f(0)| = 0$. However, for any $z \in [0, 1]$,

$$
|df_z(1-0)| = |2\pi(-\sin 2\pi z, \cos 2\pi z)|
$$

= $2\pi \sqrt{\sin^2 2\pi z + \cos^2 2\pi z}$
= $2\pi \pm |\int (\cos 2\pi z - \sin 2\pi z)|^2 d\pi$

Taylor's Theorem $-R$

Theorem 7 (Thm. 1.9, Taylor's Theorem in R). Let $f: I \to \mathbf{R}$ be n-times differentiable, where $I \subseteq R$ is an open interval. If $x, x + h \in I$, then

$$
f(x+h) = f(x) + \sum_{k=1}^{n-1} \frac{f^{(k)}(x)h^k}{k!} + E_n
$$

where $f^{(k)}$ is the k^{th} derivative of f and

$$
E_n = \frac{f^{(n)}(x + \lambda h)h^n}{n!}
$$
 for some $\lambda \in (0, 1)$

Motivation: Let

$$
T_n(h) = f(x) + \sum_{k=1}^n \frac{f^{(k)}(x)h^k}{k!}
$$

\n
$$
= f(x) + f'(x)h + \frac{f''(x)h^2}{2} + \dots + \frac{f^{(n)}(x)h^n}{n!}
$$

\n
$$
T_n(0) = f(x)
$$

\n
$$
T'_n(h) = f'(x) + f''(x)h + \dots + \frac{f^{(n)}(x)h^{n-1}}{(n-1)!}
$$

\n
$$
T'_n(0) = f'(x)
$$

\n
$$
T''_n(h) = f''(x) + \dots + \frac{f^{(n)}(x)h^{n-2}}{(n-2)!}
$$

\n
$$
T''_n(0) = f''(x)
$$

\n
$$
T_n^{(n)}(0) = f^{(n)}(x)
$$

19

so $T_n(h)$ is the unique n^{th} degree polynomial such that

$$
T_n(0) = f(x)
$$

\n
$$
T'_n(0) = f'(x)
$$

\n
$$
\vdots
$$

\n
$$
T_n^{(n)}(0) = f^{(n)}(x)
$$

Taylor's Theorem $-R$

Theorem 8 (Alternate Taylor's Theorem in R). Let $f: I \to \mathbf{R}$ be n times differentiable, where $I \subseteq R$ is an open interval and $x \in I$. Then

$$
f(x+h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^k}{k!} + o(h^n) \text{ as } h \to 0
$$

If f is $(n+1)$ times continuously differentiable, then

$$
f(x+h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^{k}}{k!} + O\left(h^{n+1}\right) \text{ as } h \to 0
$$

Remark: The first equation in the statement of the theorem is essentially a restatement of the definition of the n^{th} derivative. The second statement is proven from Theorem 1.9, and the continuity of the derivative.

C^k Functions

Definition 3. Let $X \subseteq \mathbb{R}^n$ be open. A function $f : X \to \mathbb{R}^m$ is continuously differentiable on X if

- f is differentiable on X and
- \bullet df $_x$ is a continuous function of x from X to $L(\mathbf{R}^n,\mathbf{R}^m)$, with respect to the operator norm $||df_x||$

 f is C^k if all partial derivatives of order $\leq k$ exist and are contin u ous in X .

C^k Functions

Theorem 9 (Thm. 4.3). Suppose $X \subseteq \mathbb{R}^n$ is open and $f : X \rightarrow Y$ \mathbf{R}^m . Then f is continuously differentiable on X if and only if f is C^1 .

Taylor's Theorem – Linear Terms

Theorem 10. Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}^m$ is differentiable, then

$$
f(x+h) = f(x) + Df(x)h + o(h)
$$
 as $h \to 0$

This is essentially a restatement of the definition of differentiability.

Taylor's Theorem – Linear Terms

Theorem 11 (Corollary of 4.4). Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbf{R}^m$ is C^2 , then

 $f(x+h) = f(x) + Df(x)h + O(|h|^2)$ as $h \to 0$

Taylor's Theorem – Quadratic Terms

We treat each component of the function separately, so consider $f: X \to \mathbf{R}, X \subseteq \mathbf{R}^n$ an open set. Let

Taylor's Theorem – Quadratic Terms

Theorem 12 (Stronger Version of Thm. 4.4). Let $X \subseteq \mathbb{R}^n$ be open, $f: X \to \mathbf{R}$, $f \in C^2(X)$, and $x \in X$. Then

$$
f(x+h) = f(x) + Df(x)h + \frac{1}{2}h^{\top}(D^{2}f(x))h + o(|h|^{2}) \text{ as } h \to 0
$$

If $f \in C^{3}$,

$$
f(x+h) = f(x) + Df(x)h + \frac{1}{2}h^{\top}(D^{2}f(x))h + O(|h|^{3}) \text{ as } h \to 0
$$

Characterizing Critical Points

Definition 4. We say f has a saddle at x if $Df(x) = 0$ but $\stackrel{\cdot}{\mathcal{A}}$ has neither a local maximum nor a local minimum at x .

Characterizing Critical Points

Corollary 1. Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}$ is C^2 , there is an orthonormal basis $\{v_1, \ldots, v_n\}$ and corresponding eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ of $D^2f(x)$ such that $\hat{\zeta}_{X \in \mathcal{Y}^*}$

$$
f(x+h) = f(x + \gamma_1 v_1 + \dots + \gamma_n v_n) \qquad \qquad h^2 \underset{i=1}{\overset{\sim}{\subset} \mathcal{S} \underset{i=1}{\overset{\sim}{\sim}}} \mathcal{S} \underset{i=1}{\overset{\sim}{\sim}} \mathcal{S
$$

where $\gamma_i = h \cdot v_i$.

1. If
$$
f \in C^3
$$
, we may strengthen $o(|\gamma|^2)$ to $O(|\gamma|^3)$.

2. If f has a local maximum or local minimum at x , then $Df(x) = 0$

3. If
$$
Df(x) = 0
$$
, then

$$
\supset \bigg(\bullet \ \lambda_1,\ldots,\lambda_n > 0 \Rightarrow f \text{ has a local minimum at } x
$$

 $\bullet \ \lambda_1, \ldots, \lambda_n < 0 \Rightarrow f$ has a local maximum at x

 \bullet λ_i $<$ 0 for some $i,~\lambda_j$ $>$ 0 for some j \Rightarrow f has a saddle at \overline{x}

 $\bullet\;\lambda_1,\ldots,\lambda_n\geq 0,\;\lambda_i>0\;\text{for some }i\Rightarrow f\;\text{has a local minimum}$ or a saddle at x

 $\bullet \ \ \lambda_1, \ldots, \lambda_n \leq 0, \ \lambda_i < 0 \ \textit{for some} \ i \Rightarrow f \ \textit{has a local maximum}$ or a saddle at x

• $\lambda_1 = \cdots = \lambda_n = 0$ gives no information.

Proof. (Sketch) From our study of quadratic forms, we know the behavior of the quadratic terms is determined by the signs of the eigenvalues. If $\lambda_i = 0$ for some i, then we know that the quadratic form arising from the second partial derivatives is identically zero in the direction v_i , and the higher derivatives will determine the behavior of the function f in the direction v_i . For example, if $f(x) = x^3$, then $f'(0) = 0$, $f''(0) = 0$, but we know that f has a saddle at $x=0$; however, if $f(x)=x^4$, then again $f'(0) = 0$ and $f''(0) = 0$ but f has a local (and global) minimum at $x=0$.