Econ 204 2011

Lecture 11

Outline

- 1. Derivatives
- 2. Chain Rule
- 3. Mean Value Theorem
- 4. Taylor's Theorem

Derivatives

Definition 1. Let $f : I \to \mathbf{R}$, where $I \subseteq \mathbf{R}$ is an open interval. f is differentiable at $x \in I$ if

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = a$$

for some $a \in \mathbf{R}$.

This is equivalent to

$$\begin{split} \lim_{h \to 0} \frac{f(x+h) - (f(x) + ah)}{h} &= 0 \\ \Leftrightarrow \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ 0 < |h| < \delta \Rightarrow \left| \frac{f(x+h) - (f(x) + ah)}{h} \right| < \varepsilon \\ \Leftrightarrow \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ 0 < |h| < \delta \Rightarrow \frac{|f(x+h) - (f(x) + ah)|}{|h|} < \varepsilon \\ \Leftrightarrow \ \lim_{h \to 0} \frac{|f(x+h) - (f(x) + ah)|}{|h|} = 0 \end{split}$$

Derivatives

Definition 2. If $X \subseteq \mathbb{R}^n$ is open, $f : X \to \mathbb{R}^m$ is differentiable at $x \in X$ if $\exists T_x \in L(\mathbb{R}^n, \mathbb{R}^m)$ such that

$$\lim_{h \to 0, h \in \mathbf{R}^n} \frac{|f(x+h) - (f(x) + T_x(h))|}{|h|} = 0$$
(1)

f is differentiable if it is differentiable at all $x \in X$.

Note that T_x is uniquely determined by Equation (1).

The definition requires that **one** linear operator T_x works no matter how h approaches zero.

In this case, $f(x) + T_x(h)$ is the best linear approximation to f(x+h) for sufficiently small h.

Big-Oh and little-oh

Notation:

•
$$y = O(|h|^n)$$
 as $h \to 0$ - read "y is big-Oh of $|h|^n$ " - means
 $\exists K, \delta > 0$ s.t. $|h| < \delta \Rightarrow |y| \le K|h|^n$

• $y = o(|h|^n)$ as $h \to 0$ - read "y is little-oh of $|h|^n$ " - means

$$\lim_{h \to 0} \frac{|y|}{|h|^n} = 0$$

Note that $y = O(|h|^{n+1})$ as $h \to 0$ implies $y = o(|h|^n)$ as $h \to 0$.

Using this notation: f is differentiable at $x \Leftrightarrow \exists T_x \in L(\mathbb{R}^n, \mathbb{R}^m)$ such that

$$f(x+h) = f(x) + T_x(h) + o(h) \text{ as } h \to 0$$

More Notation

Notation:

- df_x is the linear transformation T_x
- Df(x) is the matrix of df_x with respect to the standard basis.
 This is called the Jacobian or Jacobian matrix of f at x
- $E_f(h) = f(x+h) (f(x) + df_x(h))$ is the error term

Using this notation,

f is differentiable at
$$x \Leftrightarrow E_f(h) = o(h)$$
 as $h \to 0$

What's
$$Df(x)$$
?

Now compute $Df(x) = (a_{ij})$. Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{R}^n . Look in direction e_j (note that $|\gamma e_j| = |\gamma|$).

$$o(\gamma) = f(x + \gamma e_j) - \left(f(x) + T_x(\gamma e_j)\right)$$

= $f(x + \gamma e_j) - \left(f(x) + \begin{pmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \gamma \\ 0 \\ \vdots \\ 0 \end{pmatrix} \right)$
= $f(x + \gamma e_j) - \left(f(x) + \begin{pmatrix} \gamma a_{1j} \\ \vdots \\ \gamma a_{mj} \end{pmatrix}\right)$

For i = 1, ..., m, let f^i denote the i^{th} component of the function f:

$$f^{i}(x + \gamma e_{j}) - (f^{i}(x) + \gamma a_{ij}) = o(\gamma)$$

so $a_{ij} = \frac{\partial f^{i}}{\partial x_{j}}(x)$

Derivatives and Partial Derivatives **Theorem 1** (Thm. 3.3). Suppose $X \subseteq \mathbb{R}^n$ is open and $f: X \to \mathbb{R}^m$ is differentiable at $x \in X$. Then $\frac{\partial f^i}{\partial x_j}(x)$ exists for $1 \le i \le m$, $1 \le j \le n$, and

$$Df(x) = \begin{pmatrix} \frac{\partial f^1}{\partial x_1}(x) & \cdots & \frac{\partial f^1}{\partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f^m}{\partial x_1}(x) & \cdots & \frac{\partial f^m}{\partial x_n}(x) \end{pmatrix}$$

i.e. the Jacobian at x is the matrix of partial derivatives at x .

Derivatives and Partial Derivatives

Remark: If f is differentiable at x, then all first-order partial derivatives $\frac{\partial f^i}{\partial x_j}$ exist at x. However, the converse is false: existence of all the first-order partial derivatives does not imply that f is differentiable.

The missing piece is continuity of the partial derivatives:

Theorem 2 (Thm. 3.4). If all the first-order partial derivatives $\frac{\partial f^i}{\partial x_j}$ ($1 \le i \le m$, $1 \le j \le n$) exist and are continuous at x, then f is differentiable at x.

Directional Derivatives

Suppose $X \subseteq \mathbf{R}^n$ open, $f : X \to \mathbf{R}^m$ is differentiable at x, and |u| = 1.

$$f(x + \gamma u) - (f(x) + T_x(\gamma u)) = o(\gamma) \text{ as } \gamma \to 0$$

$$\Rightarrow f(x + \gamma u) - (f(x) + \gamma T_x(u)) = o(\gamma) \text{ as } \gamma \to 0$$

$$\Rightarrow \lim_{\gamma \to 0} \frac{f(x + \gamma u) - f(x)}{\gamma} = T_x(u) = Df(x)u$$

i.e. the directional derivative in the direction u (with |u| = 1) is

$$Df(x)u \in \mathbf{R}^m$$

Chain Rule

Theorem 3 (Thm. 3.5, Chain Rule). Let $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$ be open, $f : X \to Y$, $g : Y \to \mathbb{R}^p$. Let $x_0 \in X$ and $F = g \circ f$. If f is differentiable at x_0 and g is differentiable at $f(x_0)$, then $F = g \circ f$ is differentiable at x_0 and

$$dF_{x_0} = dg_{f(x_0)} \circ df_{x_0}$$
(composition of linear transformations)

$$DF(x_0) = Dg(f(x_0))Df(x_0)$$
(matrix multiplication)

Remark: The statement is exactly the same as in the univariate case, except we replace the univariate derivative by a linear transformation. The proof is more or less the same, with a bit of linear algebra added.

Mean Value Theorem

Theorem 4 (Thm. 1.7, Mean Value Theorem, Univariate Case). Let $a, b \in \mathbf{R}$. Suppose $f : [a, b] \to \mathbf{R}$ is continuous on [a, b] and differentiable on (a, b). Then there exists $c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

that is, such that

$$f(b) - f(a) = f'(c)(b - a)$$

Proof. Consider the function

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

12

Then g(a) = 0 = g(b). Note that for $x \in (a, b)$,

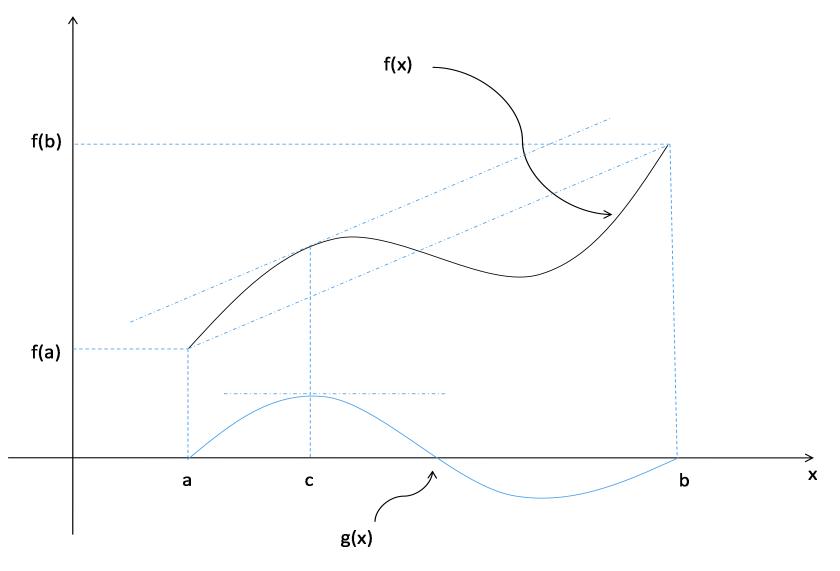
$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

so it suffices to find $c \in (a, b)$ such that g'(c) = 0.

Case I: If g(x) = 0 for all $x \in [a, b]$, choose an arbitrary $c \in (a, b)$, and note that g'(c) = 0, so we are done.

Case II: Suppose g(x) > 0 for some $x \in [a, b]$. Since g is continuous on [a, b], it attains its maximum at some point $c \in (a, b)$. Since g is differentiable at c and c is an interior point of the domain of g, we have g'(c) = 0, and we are done.

Case III: If g(x) < 0 for some $x \in [a, b]$, the argument is similar to that in Case II.



Mean Value Theorem

Notation:

$$\ell(x,y) = \{\alpha x + (1-\alpha)y : \alpha \in [0,1]\}$$

is the line segment from x to y.

Theorem 5 (Mean Value Theorem). Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable on an open set $X \subseteq \mathbb{R}^n$, $x, y \in X$ and $\ell(x, y) \subseteq X$. Then there exists $z \in \ell(x, y)$ such that

$$f(y) - f(x) = Df(z)(y - x)$$

Notice that the statement is exactly the same as in the univariate case. For $f : \mathbb{R}^n \to \mathbb{R}^m$, we can apply the Mean Value Theorem to each component, to obtain $z_1, \ldots, z_m \in \ell(x, y)$ such that

$$f^{i}(y) - f^{i}(x) = Df^{i}(z_{i})(y - x)$$

However, we cannot find a single z which works for every component.

Note that each $z_i \in \ell(x, y) \subset \mathbf{R}^n$; there are *m* of them, one for each component in the range.

Mean Value Theorem

Theorem 6. Suppose $X \subset \mathbb{R}^n$ is open and $f : X \to \mathbb{R}^m$ is differentiable. If $x, y \in X$ and $\ell(x, y) \subseteq X$, then there exists $z \in \ell(x, y)$ such that

$$|f(y) - f(x)| \leq |df_z(y - x)|$$

$$\leq ||df_z|||y - x|$$

Mean Value Theorem

Remark: To understand why we don't get equality, consider $f: [0,1] \rightarrow \mathbf{R}^2$ defined by

$$f(t) = (\cos 2\pi t, \sin 2\pi t)$$

f maps [0,1] to the unit circle in \mathbb{R}^2 . Note that f(0) = f(1) = (1,0), so |f(1) - f(0)| = 0. However, for any $z \in [0,1]$,

$$|df_z(1-0)| = |2\pi(-\sin 2\pi z, \cos 2\pi z)|$$

= $2\pi\sqrt{\sin^2 2\pi z + \cos^2 2\pi z}$
= 2π

Taylor's Theorem -R

Theorem 7 (Thm. 1.9, Taylor's Theorem in **R**). Let $f : I \to \mathbf{R}$ be *n*-times differentiable, where $I \subseteq \mathbf{R}$ is an open interval. If $x, x + h \in I$, then

$$f(x+h) = f(x) + \sum_{k=1}^{n-1} \frac{f^{(k)}(x)h^k}{k!} + E_n$$

where $f^{(k)}$ is the k^{th} derivative of f and

$$E_n = \frac{f^{(n)}(x+\lambda h)h^n}{n!} \text{ for some } \lambda \in (0,1)$$

Motivation: Let

$$T_{n}(h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^{k}}{k!}$$

$$= f(x) + f'(x)h + \frac{f''(x)h^{2}}{2} + \dots + \frac{f^{(n)}(x)h^{n}}{n!}$$

$$T_{n}(0) = f(x)$$

$$T'_{n}(h) = f'(x) + f''(x)h + \dots + \frac{f^{(n)}(x)h^{n-1}}{(n-1)!}$$

$$T'_{n}(0) = f'(x)$$

$$T''_{n}(h) = f''(x) + \dots + \frac{f^{(n)}(x)h^{n-2}}{(n-2)!}$$

$$T''_{n}(0) = f''(x)$$

:

$$T_{n}^{(n)}(0) = f''(x)$$

19

so $T_n(h)$ is the unique n^{th} degree polynomial such that

$$T_n(0) = f(x)$$
$$T'_n(0) = f'(x)$$
$$\vdots$$
$$T_n^{(n)}(0) = f^{(n)}(x)$$

Taylor's Theorem -R

Theorem 8 (Alternate Taylor's Theorem in **R**). Let $f : I \rightarrow \mathbf{R}$ be *n* times differentiable, where $I \subseteq \mathbf{R}$ is an open interval and $x \in I$. Then

$$f(x+h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^{k}}{k!} + o(h^{n}) \text{ as } h \to 0$$

If f is (n + 1) times continuously differentiable, then

$$f(x+h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^k}{k!} + O\left(h^{n+1}\right) \text{ as } h \to 0$$

Remark: The first equation in the statement of the theorem is essentially a restatement of the definition of the n^{th} derivative. The second statement is proven from Theorem 1.9, and the continuity of the derivative.

C^k Functions

Definition 3. Let $X \subseteq \mathbf{R}^n$ be open. A function $f : X \to \mathbf{R}^m$ is continuously differentiable on X if

- f is differentiable on X and
- df_x is a continuous function of x from X to $L(\mathbf{R}^n, \mathbf{R}^m)$, with respect to the operator norm $||df_x||$

f is C^k if all partial derivatives of order $\leq k$ exist and are continuous in X.

C^k Functions

Theorem 9 (Thm. 4.3). Suppose $X \subseteq \mathbb{R}^n$ is open and $f : X \to \mathbb{R}^m$. Then f is continuously differentiable on X if and only if f is C^1 .

Taylor's Theorem – Linear Terms

Theorem 10. Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}^m$ is differentiable, then

$$f(x+h) = f(x) + Df(x)h + o(h) \text{ as } h \to 0$$

This is essentially a restatement of the definition of differentiability.

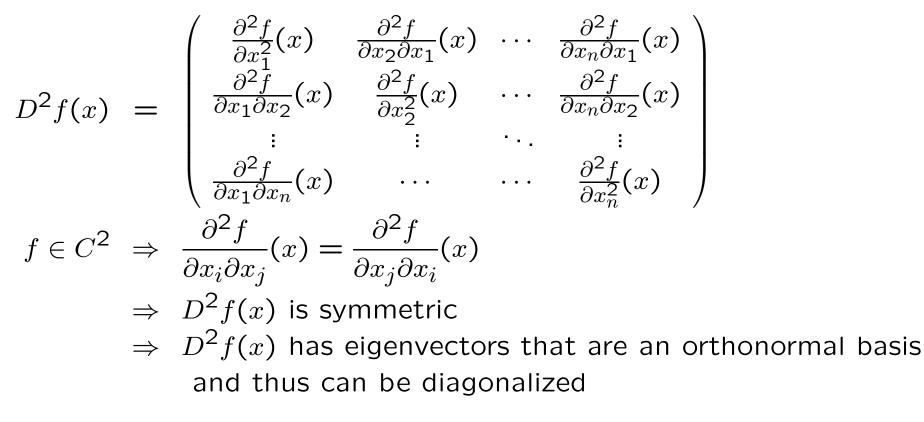
Taylor's Theorem – Linear Terms

Theorem 11 (Corollary of 4.4). Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}^m$ is C^2 , then

 $f(x+h) = f(x) + Df(x)h + O(|h|^2)$ as $h \to 0$

Taylor's Theorem – Quadratic Terms

We treat each component of the function separately, so consider $f: X \to \mathbf{R}, X \subseteq \mathbf{R}^n$ an open set. Let



Taylor's Theorem – Quadratic Terms

Theorem 12 (Stronger Version of Thm. 4.4). Let $X \subseteq \mathbb{R}^n$ be open, $f: X \to \mathbb{R}$, $f \in C^2(X)$, and $x \in X$. Then

$$f(x+h) = f(x) + Df(x)h + \frac{1}{2}h^{\top}(D^2f(x))h + o(|h|^2)$$
 as $h \to 0$
If $f \in C^3$,

$$f(x+h) = f(x) + Df(x)h + \frac{1}{2}h^{\top}(D^2f(x))h + O(|h|^3)$$
 as $h \to 0$

Characterizing Critical Points

Definition 4. We say f has a saddle at x if Df(x) = 0 but f has neither a local maximum nor a local minimum at x.

Characterizing Critical Points

Corollary 1. Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}$ is C^2 , there is an orthonormal basis $\{v_1, \ldots, v_n\}$ and corresponding eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ of $D^2 f(x)$ such that

$$f(x+h) = f(x+\gamma_1v_1+\dots+\gamma_nv_n) = f(x) + \sum_{i=1}^n (Df(x)v_i) \gamma_i + \frac{1}{2} \sum_{i=1}^n \lambda_i \gamma_i^2 + o(|\gamma|^2)$$

where $\gamma_i = h \cdot v_i$.

1. If
$$f \in C^3$$
, we may strengthen $o(|\gamma|^2)$ to $O(|\gamma|^3)$.

2. If f has a local maximum or local minimum at x, then Df(x) = 0 3. If Df(x) = 0, then

- $\lambda_1, \ldots, \lambda_n > 0 \Rightarrow f$ has a local minimum at x
- $\lambda_1, \ldots, \lambda_n < 0 \Rightarrow f$ has a local maximum at x
- $\lambda_i < 0$ for some $i, \ \lambda_j > 0$ for some $j \Rightarrow f$ has a saddle at x
- $\lambda_1, \ldots, \lambda_n \ge 0$, $\lambda_i > 0$ for some $i \Rightarrow f$ has a local minimum or a saddle at x
- $\lambda_1, \ldots, \lambda_n \leq 0, \ \lambda_i < 0$ for some $i \Rightarrow f$ has a local maximum or a saddle at x
- $\lambda_1 = \cdots = \lambda_n = 0$ gives no information.

Proof. (Sketch) From our study of quadratic forms, we know the behavior of the quadratic terms is determined by the signs of the eigenvalues. If $\lambda_i = 0$ for some *i*, then we know that the quadratic form arising from the second partial derivatives is identically zero in the direction v_i , and the higher derivatives will determine the behavior of the function *f* in the direction v_i . For example, if $f(x) = x^3$, then f'(0) = 0, f''(0) = 0, but we know that *f* has a saddle at x = 0; however, if $f(x) = x^4$, then again f'(0) = 0 and f''(0) = 0 but *f* has a local (and global) minimum at x = 0.