Econ 204 2011

Lecture 13

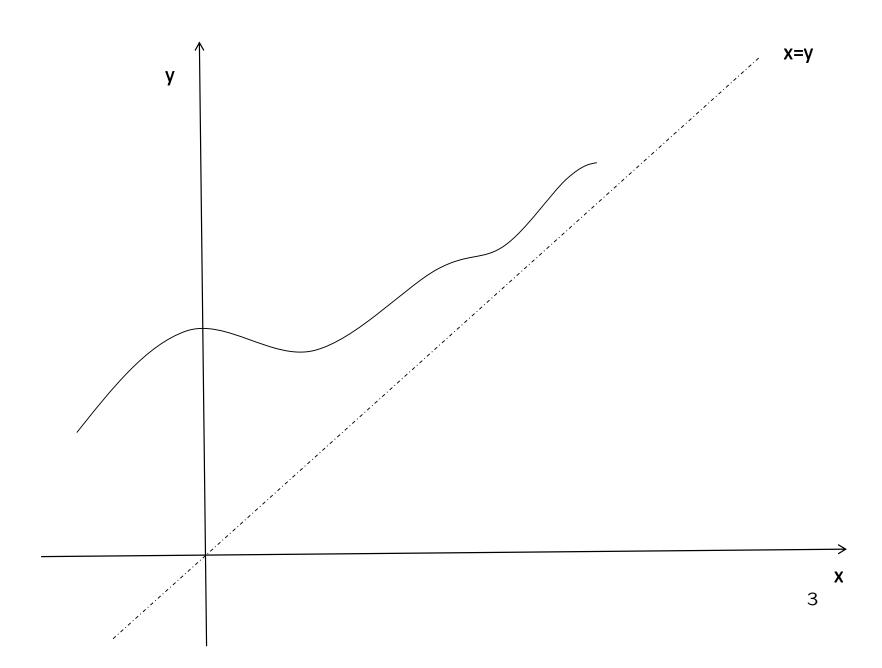
Outline

- 1. Fixed Points for Functions
- 2. Brouwer's Fixed Point Theorem
- 3. Fixed Points for Correspondences
- 4. Kakutani's Fixed Point Theorem
- 5. Separating Hyperplane Theorems

Fixed Points for Functions

Definition 1. Let X be a nonempty set and $f : X \to X$. A point $x^* \in X$ is a fixed point of f if $f(x^*) = x^*$.

 x^* is a fixed point of f if it is "fixed" by the map f.



Fixed Points for Functions

Examples:

- 1. Let $X = \mathbf{R}$ and $f : \mathbf{R} \to \mathbf{R}$ be given by f(x) = 2x. Then x = 0 is a fixed point of f (and is the unique fixed point of f).
- 2. Let $X = \mathbf{R}$ and $f : \mathbf{R} \to \mathbf{R}$ be given by f(x) = x. Then every point in \mathbf{R} is a fixed point of f (in particular, fixed points need not be unique).
- 3. Let $X = \mathbf{R}$ and $f : \mathbf{R} \to \mathbf{R}$ be given by f(x) = x + 1. Then f has no fixed points.

4. Let X = [0,2] and $f : X \to X$ be given by $f(x) = \frac{1}{2}(x+1)$. Then

$$f(x) = \frac{1}{2}(x+1) = x$$

$$\iff x+1 = 2x$$

$$\iff x = 1$$

So x = 1 is the unique fixed point of f. Notice that f is a contraction (why?), so we already knew that f must have a unique fixed point on \mathbf{R} from the Contraction Mapping Theorem.

5. Let $X = [0, \frac{1}{4}] \cup [\frac{3}{4}, 1]$ and $f : X \to X$ be given by f(x) = 1 - x. Then f has no fixed points.

- 6. Let X = [-2,2] and $f : X \to X$ be given by $f(x) = \frac{1}{2}x^2$. Then f has two fixed points, x = 0 and x = 2. If instead X' = (0,2), then $f : X' \to X'$ but f has no fixed points on X'.
- 7. Let $X = \{1, 2, 3\}$ and $f : X \to X$ be given by f(1) = 2, f(2) = 3, f(3) = 1 (so f is a permutation of X). Then f has no fixed points.
- 8. Let X = [0, 2] and $f : X \to X$ be given by

$$f(x) = \begin{cases} x+1 & \text{if } x \le 1\\ x-1 & \text{if } x > 1 \end{cases}$$

Then f has no fixed points.

A Simple Fixed Point Theorem

Theorem 1. Let X = [a, b] for $a, b \in \mathbb{R}$ with a < b and let $f : X \rightarrow X$ be continuous. Then f has a fixed point.

Proof. Let $g:[a,b] \to \mathbf{R}$ be given by

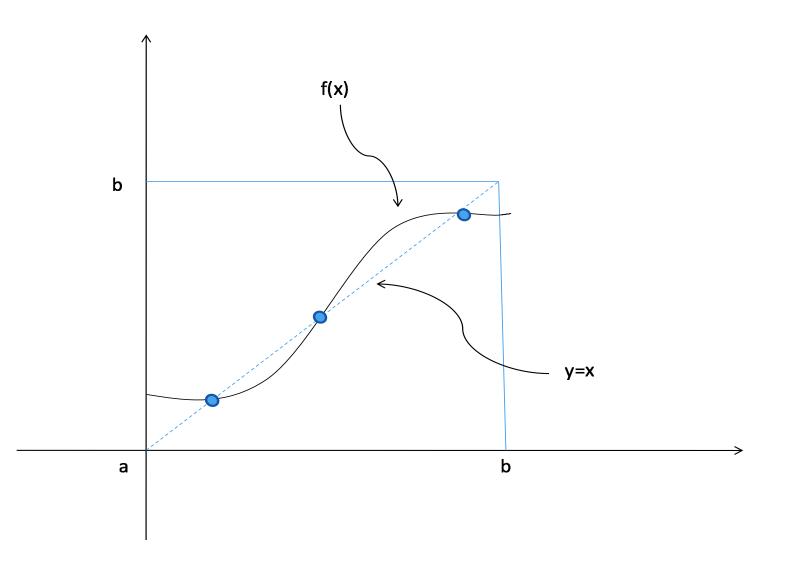
$$g(x) = f(x) - x$$

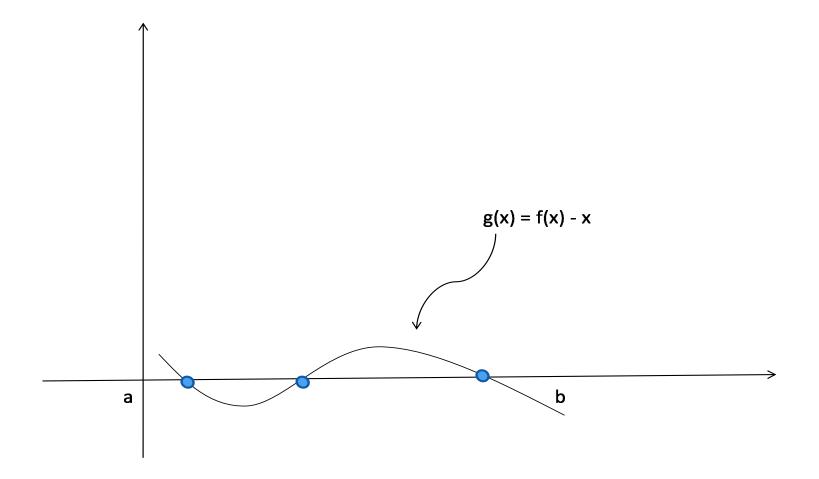
If either f(a) = a or f(b) = b, we're done. So assume f(a) > aand f(b) < b. Then

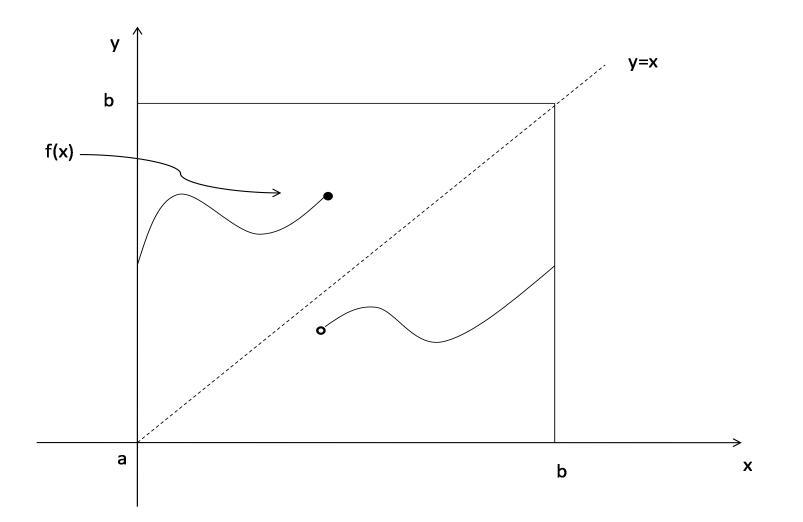
$$g(a) = f(a) - a > 0$$

 $g(b) = f(b) - b < 0$

g is continuous, so by the Intermediate Value Theorem, $\exists x^* \in (a,b)$ such that $g(x^*) = 0$, that is, such that $f(x^*) = x^*$.







Brouwer's Fixed Point Theorem

Theorem 2 (Thm. 3.2. Brouwer's Fixed Point Theorem). Let $X \subseteq \mathbb{R}^n$ be nonempty, compact, and convex, and let $f : X \to X$ be continuous. Then f has a fixed point.

Sketch of Proof of Brouwer

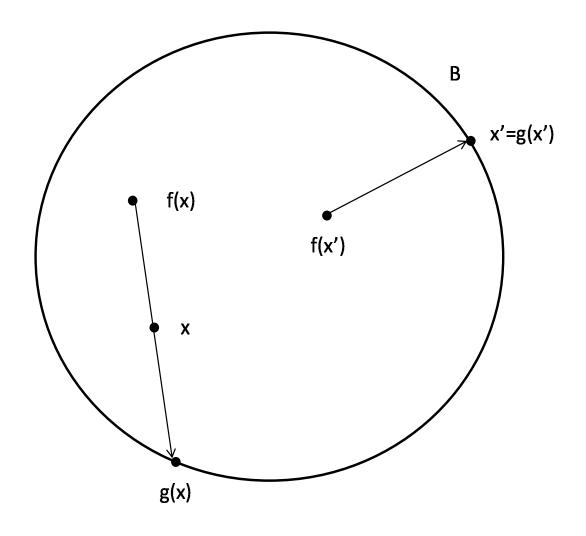
Consider the case when the set X is the unit ball in \mathbb{R}^n , i.e. $X = B_1[0] = B = \{x \in \mathbb{R}^n : ||x|| \le 1\}$. Let $f : B \to B$ be a continuous function. Recall that ∂B denotes the boundary of B, so $\partial B = \{x \in \mathbb{R}^n : ||x|| = 1\}$.

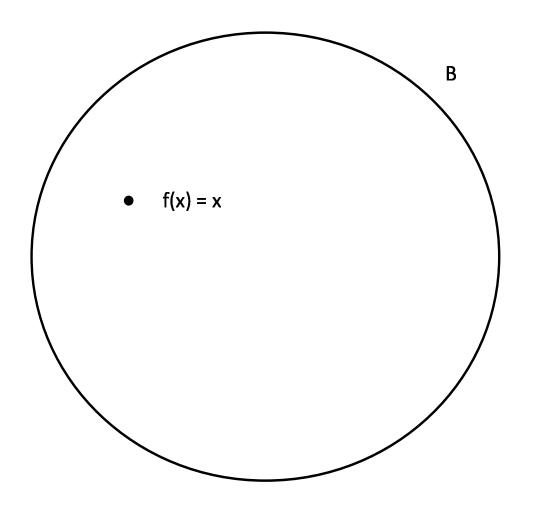
Fact: Let *B* be the unit ball in \mathbb{R}^n . Then there is no continuous function $h: B \to \partial B$ such that h(x') = x' for every $x' \in \partial B$.

Now to establish Brouwer's theorem, suppose, by way of contradiction, that f has no fixed points in B. Thus for every $x \in B$, $x \neq f(x)$.

Since $x \neq f(x)$ for every x, we can carry out the following construction. For each $x \in B$, construct the line segment originating at f(x) and going through x. Let g(x) denote the intersection of this line segment with ∂B .

This construction is well-defined, and gives a continuous function $g: B \to \partial B$. Furthermore, if $x' \in \partial B$, then x' = g(x'). That is, $g|_{\partial B} = \operatorname{id}_{\partial B}$. Since there are no such functions by the fact above, we have a contradiction. Therefore there exists $x^* \in B$ such that $f(x^*) = x^*$, that is, f has a fixed point in B.





Fixed Points for Correspondences

Definition 2. Let X be nonempty and $\Psi : X \to 2^X$ be a correspondence. A point $x^* \in X$ is a fixed point of Ψ if $x^* \in \Psi(x^*)$.

Note here that we do *not* require $\Psi(x^*) = \{x^*\}$, that is Ψ need not be single-valued at x^* . So x^* can be a fixed point of Ψ but there may be other elements of $\Psi(x^*)$ different from x^* .

Examples:

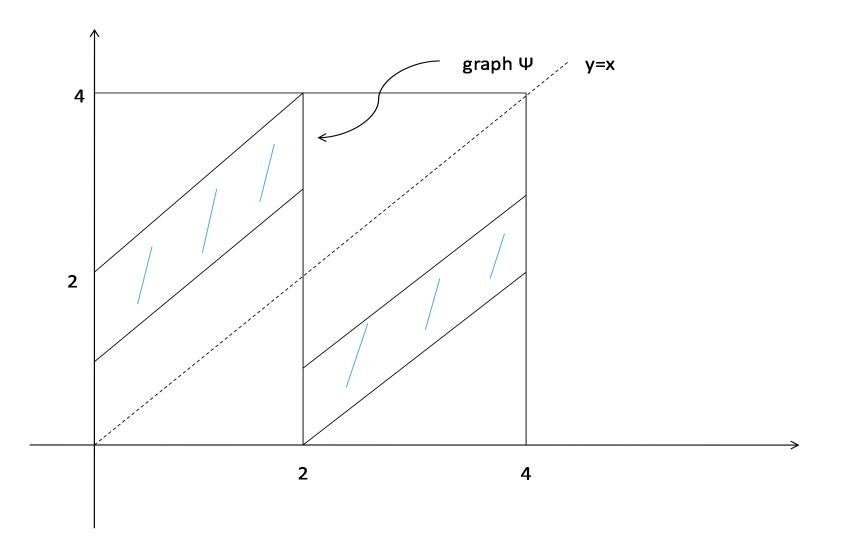
1. Let X = [0,4] and $\Psi : X \to 2^X$ be given by $\Psi(x) = \begin{cases} [x+1,x+2] & \text{if } x < 2 \\ [0,4] & \text{if } x = 2 \\ [x-2,x-1] & \text{if } x > 2 \end{cases}$

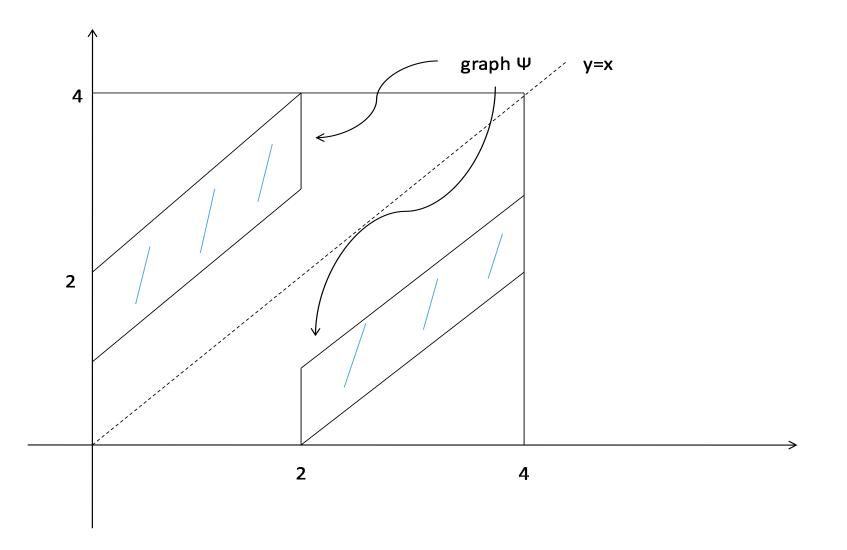
Then x = 2 is the unique fixed point of Ψ .

2. Let X = [0, 4] and $\Psi : X \to 2^X$ be given by

$$\Psi(x) = \begin{cases} [x+1, x+2] & \text{if } x < 2\\ [0,1] \cup [3,4] & \text{if } x = 2\\ [x-2, x-1] & \text{if } x > 2 \end{cases}$$

Then Ψ has no fixed points.

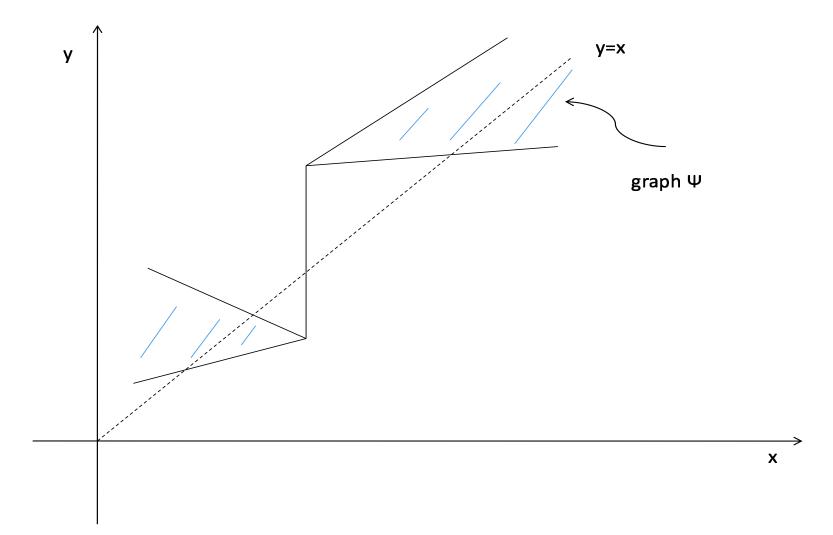




Kakutani's Fixed Point Theorem

Theorem 3. (Thm. 3.4'. Kakutani's Fixed Point Theorem) Let $X \subseteq \mathbb{R}^n$ be a non-empty, compact, convex set and Ψ : $X \to 2^X$ be an upper hemi-continuous correspondence with nonempty, convex, compact values. Then Ψ has a fixed point in X.

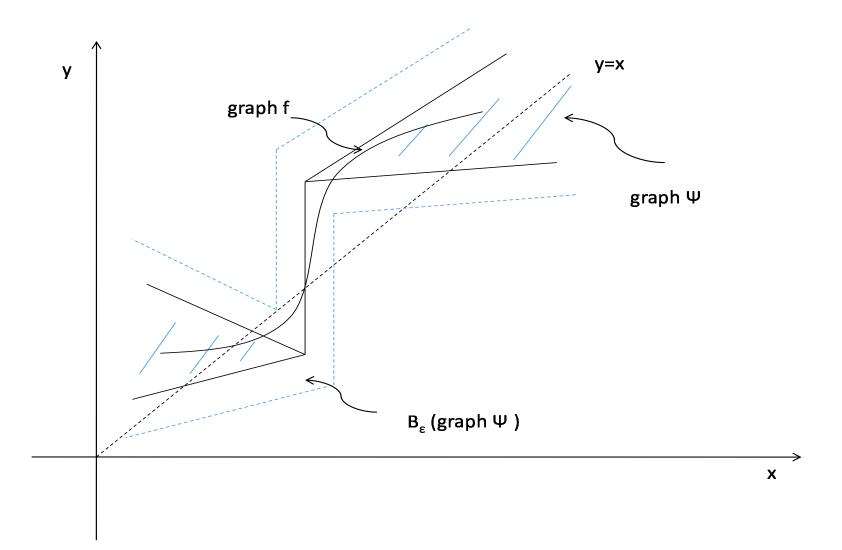
Proof. (sketch) Here, the idea is to use Brouwer's theorem after appropriately approximating the correspondence with a function. The catch is that there won't necessarily exist a continuous selection from Ψ , that is, a continuous function $f: X \to X$ such that $f(x) \in \Psi(x)$ for every $x \in X$. If such a function existed, then by applying Brouwer to f we would have a fixed point of Ψ (because if $\exists x^* \in X$ such that $x^* = f(x^*)$, then $x^* = f(x^*) \in \Psi(x^*)$).



Instead, we look for a weaker type of approximation. Let $X \subset \mathbb{R}^n$ be a non-empty, compact, convex set, and let $\Psi : X \to 2^X$ be an uhc correspondence with non-empty, compact, convex values. For every $\varepsilon > 0$, define the ε ball about graph Ψ to be

$$B_{\varepsilon}(\operatorname{graph} \Psi) = \left\{ z \in X \times X : d(z, \operatorname{graph} \Psi) = \inf_{(x,y) \in \operatorname{graph} \Psi} d(z, (x, y)) < \varepsilon \right\}$$

Here d denotes the ordinary Euclidean distance in \mathbb{R}^n . If Ψ is an uhc correspondence, then for every $\varepsilon > 0$ there exists a continuous function $f_{\varepsilon} : X \to X$ such that graph $f_{\varepsilon} \subseteq B_{\varepsilon}($ graph $\Psi)$.



Now by letting $\varepsilon \to 0$, this means that we can find a sequence of continuous functions $\{f_n\}$ such that graph $f_n \subseteq B_{\frac{1}{n}}($ graph $\Psi)$ for each n. By Brouwer's Fixed Point Theorem, each function f_n has a fixed point $\hat{x}_n \in X$, and

 $(\hat{x}_n, \hat{x}_n) = (\hat{x}_n, f_n(\hat{x}_n)) \in \text{graph } f_n \subseteq B_{\frac{1}{n}}(\text{ graph } \Psi) \text{ for each } n$

So for each n there exists $(x_n, y_n) \in$ graph Ψ such that

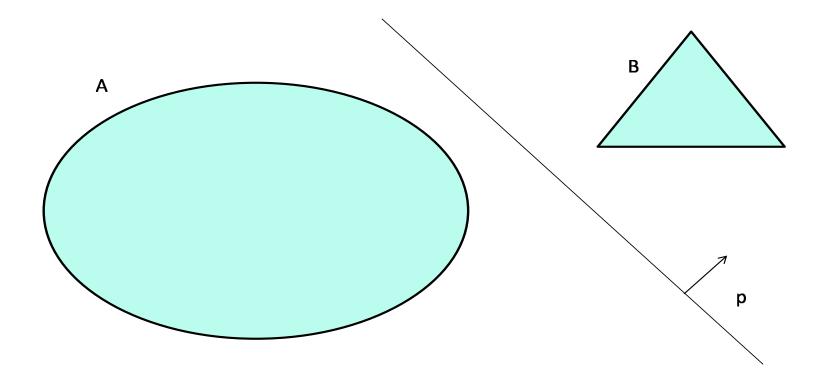
$$d(\widehat{x}_n, x_n) < rac{1}{n} ext{ and } d(\widehat{x}_n, y_n) < rac{1}{n}$$

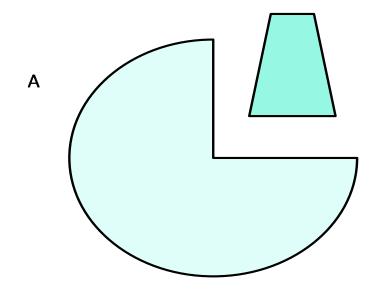
Since X is compact, $\{\hat{x}_n\}$ has a convergent subsequence $\{\hat{x}_{n_k}\}$, with $\hat{x}_{n_k} \to \hat{x} \in X$. Then $x_{n_k} \to \hat{x}$ and $y_{n_k} \to \hat{x}$. Since Ψ is uhc and closed-valued, it has closed graph, so $(\hat{x}, \hat{x}) \in$ graph Ψ . Thus $\hat{x} \in \Psi(\hat{x})$, that is, \hat{x} is a fixed point of Ψ .

Separating Hyperplane Theorems

Theorem 4 (1.26, Separating Hyperplane Theorem). Let $A, B \subseteq \mathbb{R}^n$ be nonempty, disjoint convex sets. Then there exists a nonzero vector $p \in \mathbb{R}^n$ such that

 $p \cdot a \le p \cdot b \quad \forall a \in A, b \in B$





В

Separating a Point from a Set

Theorem 5. Let $Y \subseteq \mathbb{R}^n$ be a nonempty convex set and $x \notin Y$. Then there exists a nonzero vector $p \in \mathbb{R}^n$ such that

$$p \cdot x \le p \cdot y \quad \forall y \in Y$$

Proof. We sketch the proof in the special case that Y is compact. We will see that in this case we actually get a stronger conclusion:

$$\exists p \in \mathbf{R}^n, p \neq 0 \text{ s.t. } p \cdot x$$

Choose $y_0 \in Y$ such that $|y_0 - x| = \inf\{|y - x| : y \in Y\}$; such a point exists because Y is compact, so the distance function g(y) = |y - x| assumes its minimum on Y. Since $x \notin Y$, $x \neq y_0$, so $y_0 - x \neq 0$. Let $p = y_0 - x$. The set

$$H = \{z \in \mathbf{R}^n : p \cdot z = p \cdot y_0\}$$

is the hyperplane perpendicular to p through y_0 . See Figure 12. Then

$$p \cdot y_0 = (y_0 - x) \cdot y_0$$

= $(y_0 - x) \cdot (y_0 - x + x)$
= $(y_0 - x) \cdot (y_0 - x) + (y_0 - x) \cdot x$
= $|y_0 - x|^2 + p \cdot x$
> $p \cdot x$

We claim that

$$y \in Y \Rightarrow p \cdot y \ge p \cdot y_0$$

If not, suppose there exists $y \in Y$ such that $p \cdot y . Given <math>\alpha \in (0, 1)$, let

$$w_{\alpha} = \alpha y + (1 - \alpha) y_0$$

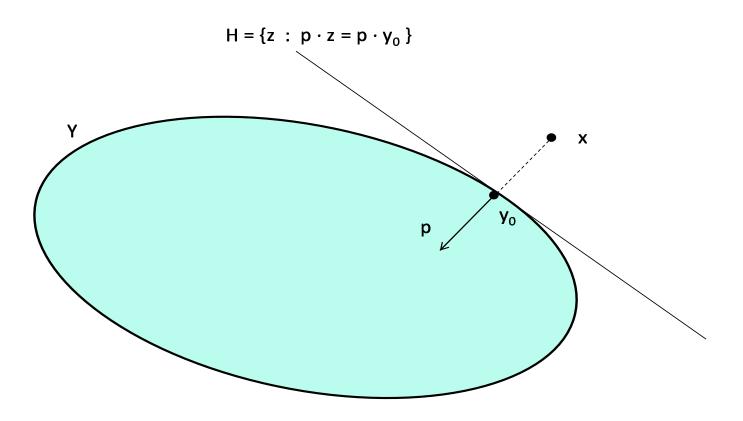
Since Y is convex, $w_{\alpha} \in Y$. Then for α sufficiently close to zero,

$$\begin{aligned} |x - w_{\alpha}|^{2} &= |x - \alpha y - (1 - \alpha)y_{0}|^{2} \\ &= |x - y_{0} + \alpha(y_{0} - y)|^{2} \\ &= |-p + \alpha(y_{0} - y)|^{2} \\ &= |p|^{2} - 2\alpha p \cdot (y_{0} - y) + \alpha^{2}|y_{0} - y|^{2} \\ &= |p|^{2} + \alpha \left(-2p \cdot (y_{0} - y) + \alpha|y_{0} - y|^{2}\right) \\ &< |p|^{2} \quad \text{for } \alpha \text{ close to } 0, \text{ as } p \cdot y_{0} > p \cdot y \\ &= |y_{0} - x|^{2} \end{aligned}$$

Thus for α sufficiently close to zero,

$$|w_{\alpha} - x| < |y_0 - x|$$

which implies y_0 is not the closest point in Y to x, contradiction.



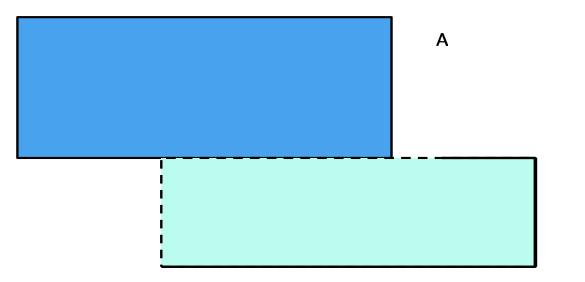
The general version of the Separating Hyperplane Theorem can be derived from this special case by noting that if $A \cap B = \emptyset$, then $0 \notin A - B = \{a - b : a \in A, b \in B\}$.

Strict Separation

For the special case of Y compact and $X = \{x\}$, we actually could *strictly separate* Y and X:

$$\exists p \in \mathbf{R}^n, p \neq 0 \text{ s.t. } p \cdot x$$

When can we do this in general? Will require additional assumptions...



В

Strict Separation

Theorem 6. (Strict Separating Hyperplane Theorem) Let $A, B \subseteq \mathbb{R}^n$ be nonempty, disjoint, closed, convex sets. Then there exists a nonzero vector $p \in \mathbb{R}^n$ such that

 $p \cdot a$