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1. Open and Closed Sets
2. Continuity in Metric Spaces



Open and Closed Sets

Definition 1. Let (X,d) be a metric space. A set A C X is open
if

Vee AJe>0s.t B(z)CA
|G ) B

A set C C X is closed if X \ C is open.






Open and Closed Sets

Example: (a,b) is open in the metric space E! (R with the usual
Euclidean metric). Given x € (a,b), a< x <b. Let

5:min{a;—a,,b—a;}>0 & 1{ N )_ —
Then — € 2 —(Cx—a) Q XW\Q
€ = L - x N— >
N g2 omin

y€ Be(x) = ye(x—e,x+¢)
C (z—(x—a),x+(b—2x))

= (a,b)
so B:(xz) C (a,b), so (a,bdb) is open.
Notice that ¢ depends on x; in particular, € gets smaller as «
nears the boundary of the set.
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Open and Closed Sets

Example: In E!, [a,b] is closed. R\ [a,b] = (—o00,a) U (b,0) is a
union of two open sets, which must be open.

X - - L | ;_L-ord.o'lfd_ WV
Example: In the metric space [0, 1], [0, 1] is open. With [0,1]= X

as the underlying metric space,

£ e o WV
B:(0)={zc[0,1]:|z— 0] <e}=[0,e) ¢ Lo}

i&ée\}\: OL(%‘O\ ais
Thus, openness and closedness depend on the underlying metric
space as well as on the set.



Open and Closed Sets L (a0 T34

_e2 0)

Example: Most sets are neither open norgclosed. For example,
in £1, [0,1] U (2,3) is neither open nor closed. )
(ot —
I
Example: An open set may consist of a single point. For ex-
ample, if X =N and d(m,n) = |m — n|, then

By p(1) = {meN:|m— 1| <1/2} = {1}

Since 1 is the only element of the set {1} and By ,5(1) = {1} C
{1}, the set {1} is open.



Open and Closed Sets

Example: In any metric space (X,d) both ) and X are open,
and both @ and X are closed.

To see that 0 is open, note that the statement

Vz € 0 3e > 0 Be(z) C 0

is vacuously true since there aren't any z € ). To see that X is
open, note that since B:(z) is by definition {z € X : d(z,z) < e}, = X
it is trivially contained in X.

Since @ is open, X is closed; since X is open, 0 is closed.
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Open and Closed Sets

Example: Open balls are open sets. C * 3@)
Fix we X , ©7 O

Suppose y € Be(x). Then d(x,y) <e. Let § = e —d(x,y) > 0. If
d(z,y) <6, then ze B%L»)\

d(z,z) < d(zy)+d(y,z) g
< 0+ dz,y) (
= e d(z;y) +d(z,y)

& |

e
—_— —

so Bs(y) € Be(x), sO Be(x) is open. N
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Open and Closed Sets
Theorem 1 (Thm. 4.2). Let (X,d) be a metric space. Then

1.  and X are both open, and both closed.

2. The union of an arbitrary (finite, countable, or uncountable)
collection of open sets is open.

3. The intersection of a finite collection of open sets is open.

Proof. 1. We have already shown this.



. Suppose {A)},ren is a collection of open sets.

zre |J Ay = IeAst el < °F
AEN
= Je>0s.t. Be(z) C Ay, C [J Ay
AEN

SO UyepA) is open.

. Suppose Aj,...,Ap € X are open sets. If z € NI, A;, then

x €A, x € Ap,...,x € Ap,
T 2 R
SO OpE P OB

361 > O,...,gn > O s.t. Bgl(x) g Al,,Bgn(x) g An



Let*

e =min{eq,...,en} >0

Then
Be(x) € Bey(z) € Az,..., Be(x) C Be,(x) C Ap

SO
n

Be(z) C ﬂ A;
i=1
which proves that N'_; A; is open.

L]

*Note this is where we need the fact that we are taking a finite intersection.
The infimum of an infinite set of positive numbers could be zero. And the
intersection of an infinite collection of open sets need not be open.



(X, &) A< X

Interior, Closure, Exterior and Boundary

Definition 2. e The interior of A, denoted int A, is the largest
open set contained in A (the union of all open sets contained

n A Ansh spen E1 WA A S A

e [ he closure of A, denoted 5 iIs the smallest closed set con-
taining A (the intersection of all closed sets containing A)

/lg \/\éﬁ C_/\,D\ﬁ& <-—,__—_,j P( i JB\

e T he exterior of A, denoted ext A, is the largest open set
—_— -
contained in X \ A. c{ = X (OOVA)N 3

e The boundary of A, denoted 0A = (X \ A) N A
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D =

Interior, Closure, Exterior and Boundary

Example: Let A=1[0,1]U(2,3). Then

intA = (o, ) vt

A = (JD‘\,X U [,ll)b—‘l \
extA = |nt(X\A)‘_,_:_N\’S¢ ((—w]a\ucl‘llu 3:3)-&:)
:L-wio\uu\;\ u(:’% o\
A = (X\A)NA
_ L(=:;«= o\ o Ly, 3\ v LR ey~

(Lo v [%3,])

gb\\LI\BS
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Sequences and Closed Sets

Theorem 2 (Thm. 4.13). A set A in a metric space (X,d) is
closed if and only if

{zn} CAjzp mz€X =€ A

Proof. Suppose A is closed. Then X \ A is open. Consider a
convergent sequence x, — x € X, with x, € A for alln. If x € A,
x € X\ A, so there is some € > 0 such that Bs(z) C X\ A (why?).
Since xz, — x, there exists N(e¢) such that

n> N(e) = xp € Be(z)
= xpn € A
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contradiction. Therefore,

{zn} C Az w2z € X =2 €A






Conversely, suppose

{zn} CAjzp mz€X =€ A

We need to show that A is closed, i.e. X \ A is open. Suppose
not, so X \ A is not open. Then there exists ¢ € X \ A such that

for every € > 0,
Be(x) Z X \ A
so there exists y € B:(x) such that y € X\ A. Then y € A, hence

Be(x) ﬂA = 0






N
Construct a sequence {zp} as follows: for each n, choose U o &

anBl(a:)ﬂA 2\ "Lh C?)‘u

)

Given € > 0, we can find N(e) such that N(/ l by the

Archimedean Property, so n > N(¢) = = = L - N%g) < g, SO Ty — T.
Then {z,} C A, z, — x, SO x € A, contradiction. Therefore,
X \ A is open, so A is closed. [ ]



Continuity in Metric Spaces

Definition 3. Let (X,d) and (Y, p) be metric spaces. A function
f X — Y is continuous at a point xg € X if

Ve >0 35(3:@,//_8’7> 0 s.t. d(z,zg) < 5/(/16,8) = p(f(x), f(zp)) < ¢

f is continuous if it is continuous at every element of its domain.

Note that é can depend on xg and e.
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Continuity in Metric Spaces

Continuity at zg requires:
e f(xzg) is defined; and

e cither

— zg is an isolated point of X, i.e. 3e > 0 s.t. B:(zq) = {z¢};
or

— limgz—zo f(z) exists and equals f(zq)
Ve
14



Continuity in Metric Spaces

Suppose f: X —Y and ACY. Define
FHA) ={zeX: f(z) € A}

Theorem 3 (Theorem 6.14). Let (X,d) and (Y,p) be metric
spaces, and f : X — Y. Then f is continuous if and only if

f_l(A) is open in X YVACY s.t. AisopeninyY

Alternatively, f is continuous <= f_l(C) is closed in X for
every closed C C Y.

15



Proof. Suppose f is continuous. Given A CY, A open, we must
show that f~1(A) is open in X. Suppose zg € f1(A). Let
yo = f(xg) € A. Since A is open, we can find € > 0 such that
B:(yg) C A. Since f is continuous, there exists § > 0 such that

d(z,z0) <6 = p(f(=), f(z0)) <e

= f(z) € Be(yO()f;’ /‘QS} ©<s )
= f(z)e A

= z e f 1A

so Bs(zg) C f~1(A), so f~1(A) is open.

16






Conversely, suppose

if_l(A) is open in X VACY s.t. A is open in Y}

We need to show that f is continuous. Let zg € X, € > 0. Let

A= B:(f(zg)). Ais an open baIIWSO ~1A)

is open in X. zg € f71(A), so[there exists § > 0O\ such that
Bs(zg) C f71(A). SPe A

d(x,z9) <6 =
=
—

—

x € Bs(xg) ‘”:_? CA)
z € f1(A)

f(z) € A(= B:(f(x0)))
p(f(z), f(zg)) < ¢







Thus, we have shown that f is continuous at zg; since xg is an
arbitrary point in X, f is continuous. [ ]



Continuity in Metric Spaces

The composition of continuous functions is continuous:

Theorem 4 (Slightly weaker version of Thm. 6.10). Let (X,dx),
(Y,dy) and (Z,dy) be metric spaces. If f : X - Y andg:Y — Z
are continuous, then go f : X — Z is continuous.

3,(4&»:\3

Proof. Suppose A C Z is open. Since g is continuous, ¢~ 1(A) is

open in Y since f is continuous, f~1(¢g~1(A4)) is open in X.
2o~

We claim that

7 g A) = (go HTHA)

17



Observe

refHgHA) & f@)eg (A

& g(f(@)) e A
& (gofl)(z)ec A
& ze(gof)H(A)

which establishes the claim. This shows that (gof)~1(A) is open

in X, so go f is continuous.

L]



Uniform Continuity

Definition 4 (Uniform Continuity). Let (X,d) and (Y, p) be met-
ric spaces. A function f : X — Y is uniformly continuous if

Ve > 036(c) > 0 s.t. Vg € X, d(x,z0) < 6(e) = p(f(x), f(xg)) < €

Notice the important contrast with continuity: f is continuous
means

Vg € X,e > 0 36(xg,e) > 0 s.t. d(x,xg) < 0(xg,e) = p(f(x), f(xg)) < €

18



Uniform Continuity

‘F;(Qltl -——ﬂ>€P\

Example: Consider

f@) =, ze(0,1]

xr
f is continuous (why?). We will show that f is not uniformly
continuous.

19



s ¢ >0 *s

f(x)




Fix e >0 and zg € (0,1]. If x =
-

1 +exg

|f(x) — f(z0)]

L0 then

1+ezg

> 1

< Io

> 0
1 1
|z 0
1 1
o 0
_ 14exg
— -
__E&XQ

— o
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An easier estimate:

Notice that % is decreasing on (0,1), so

1

1
r<xg=>———2>0

T T

Now look for the point x < xg such that

1

I

1
= ¢
L0
1 1
T 0
1+ exg
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Note for 2’ > 0, 2’ <z = f(2') — f(zg) > ¢

Thus, 6(xzg,e) must be chosen small enough so that

0 /“t;/akﬁﬁﬁiwozéfﬂ\\_
S €T €T
—]\_g/a:() o )

L0
1+ exg
e(z0)?
1 +exg
< 6(%0)2

6(wg,e) < w0 —

> 0
which converges to zero as zg — 0. So there is no §(e) that will
work for all zg € (0, 1]. N




} C/>O s L

| L'\ =G

Uniform Continuity  x¢las\

Example: If f : R — R and f/(z) is defined and uniformly
bounded on an interval [a,b], then f is uniformly continuous on
[a,b]. However, even a function with an unbounded derivative
may be uniformly continuous. Consider

f(z) = vz, = €[0,1]

f is continuous (why?). We will show that f is uniformly con-
tinuous. Given € > 0, let § = 2. Then given any zg € [0, 1],

23



lx — xzg| < & implies by the Fundamental Theorem of Calculus
T 1

LOQ—ﬂdt
[z—z0| 1

/O S

\/lw — x|

V6

=

€

[f(z) — f(zo)| =

IA

A

Thus, fis uniformly continuous on [0, 1], even though f/(z) — oo
as x — 0.



Lipschitz Continuity

Definition 5. Let X,Y be normed vector spaces, E C X. A
function f . X — Y is Lipschitz on E if

JK >0 s.t. [[f(z) = f(A)lly S Kllx —z||x Vz,z€E
f is locally Lipschitz on E if

Veg € E de > 0 s.t. f is Lipschitz on B:(xg) N E

A K20 s X=X =)

L F o - ey JRY

—r

W\~ =\ <
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Notions of Continuity

Lipschitz continuity is stronger than either continuity or uniform
continuity:

locally Lipschitz = continuous
Lipschitz = uniformly continuous

Every Cl function is locally Lipschitz. (Recall that a function
f:R™ — R" is said to be C! if all its first partial derivatives
exist and are continuous.)

25



Homeomorphisms

Definition 6. Let (X,d) and (Y, p) be metric spaces. A function
f: X —Y is called a homeomorphism if it is one-to-one, onto,
continuous, and its inverse function is continuous.

Topological properties are invariant under homeomorphism:

26



Homeomorphisms

Suppose that f is a homeomorphism and U C X. Let g= f1:
Y — X.

yeg 1(U) & g(y) €U
& ye f(U)
U openin X = ¢ 1(U) is open in (f(X), p)
= f(U) is open in (f(X), p)

This says that (X,d) and <f(X),p|f(X)) are identical in terms of
properties that can be characterized solely in terms of open sets;
such properties are called *“topological properties.”
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