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1. Connected Sets
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3. Continuity for Correspondences



Connected Sets

Definition 1. Two sets A, B in a metric space are separated if

——

ANB=ANB=10

A set in a metric space is connected if it cannot be written as
the union of two nonempty separated sets.




Connected Sets
M Wl < ST Wl SN W

Example: [0,1) and [1,2] are disjoint but not separated:
[0,1)N[1,2] =[0,1]N[1,2] = {1} # 0
[0,1) and (1, 2] are separated: = Lo ) vl o] <

[O,—l)ﬂ(l,Q] = [O,l]ﬂ(l)Q]:@ s Coﬂm@/@‘té’cé

[0,1) N (1,2] [0,1)N[1,2] =10
Note that d([0,1), (1,2]) = 0 even though the sets are separated.



Connected Sets

e Note that separation does not require that An B = 0.
For example,

[0,1) U (1,2]

IS not connected.

e A common equivalent definition: A set Y in a metric space
X is connected if there do not exist open sets A and B such
that ANB=0,Y CAUB and ANY %0 and BNY # 0.
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Connected Sets

Theorem 1 (Thm. 9.2). A set S C El js connected if and only
if it is an interval, i.e. ifx,y € S and z € (x,y), then z € S.
M

Proof. First, we show that if S is connected then S is an interval.
We do this by proving the contrapositive: if S is not an interval,
then it is not connected. If S is not an interval, find

x,ye S, r<z<y, z& S
Let

A=8N(—00,2), B=5nN(z,00)



T hen

ANB C (—o00,2)N(2z,00) = (—00,2z]N(z,00) =0
ANB C (—00,2)N(z2,00) = (—00,2) N [z,00) =0
AUB = (SN(—00,2))U(SN(z,00))

= S\ {z}

— S 2¢ S

r € A, so A%
y € B, so B#*(
So S is not connected. We have shown that if S is not an

interval, then S is not connected; therefore, if S is connected,
then S is an interval.

Now, we need to show that if S is an interval, it is connected.
This is much like the proof of the Intermediate Value Theorem.
See de la Fuente for the details. [ ]



Continuity and Connectedness

In a general metric space, continuity will preserve connectedness.

Theorem 2 (Thm. 9.3). Let X be a metric spaceand f : X —-Y

be continuous. If C is a connected subset of X, then f(C) is
connected.

Proof. We prove the contrapositive: if f(C) is not connected,
then C is not connected. Suppose f(C) is not connected. Then
there exist P,Q such that P A0 # @, f(C) =P UQ, and

PNQ=PNnQR=1
Let
A=Y P)nCcand B= Q) nC



A=fP)nC " f(C)
B=fQ)nC



T hen

AUB (f—l(P)mC)u<f_1(Q)mC)

(rFHPYurH@)ne
fFHPu)Inc

e nce
C

Also, A= f~1(P)NC #0 and B= f~1(Q)NnC # 0. Then note

PJQ@’JP C;‘E(C\

A=fHP)yncc (P C (P
Since f is continuous, f~1(P) is closed, so
AcC (P
Similarly,

B=fY@nccr i@ crt@



and f~1(Q) is closed, so

T hen

and similarly

ANB
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So C is not connected. We have shown that f(C) not connected
implies C not connected; therefore, C connected implies f(C)
connected. [ ]

You can view this result as a generalization of the Intermediate
Value Theorem.



Intermediate VValue Theorem, Yet Again

This lets us give a third, and slickest, proof of the Intermediate
Value Theorem.

Corollary 1 (Intermediate Value Theorem). If f : [a,b] — R is
continuous, and f(a) < d < f(b), then there exists c € (a,b) such
that f(c) = d.

Proof. Since [a,b] is an interval, it is connected. So f([a,b]) is
connected, hence f([a,b]) is an interval. f(a) € f([a,b]), and
f(b) € f(la,b]), and d € [f(a), f(b)]; since f([a,b]) is an interval,
d € f([a,b]), i.e. there exists c € [a,b] such that f(c) = d. Since

fla) <d< f(b), c£Ea, c£Db, S0 ¢ € (a,,b)./ [ ]




Correspondences

Definition 2. A correspondence V : X — 2Y from X toY is a
function from X to 2Y, that is, W(z) CY for every z € X.

Qofresps ndence



Correspondences

Examples:

PO

o

1. Let v : R”_’IJ_ — R be a continuous utility function, y > 0 and
p E P@_ S that is, p; > O for each 7.

>t argume(s)
Define WV ; R”_’IJ__I_ X R—I——I— — 2 + by

ok woxs wiZe

W(p,y) = \arg maxu(z) Concteonnt cat

WV is the demand correspondence associated with the utility
function u; typically W(p,vy) is multi-valued.



2. Let f: X —» Y be a function. Define W : X — 2¥ by

W(x) ={f(x)} for each x € X

That is, we can consider a function to be the special case of
a correspondence that is single-valued for each x.

B %esz_&( J--eg,\':)o NS C 9 r‘eﬁgwor\ de N ce \% o F\QLKQ,(
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Continuity for Correspondences

We want to talk about continuity of correspondences analogous
to continuity of functions. What should continuity mean?

We will discuss three main notions of continuity for correspon-
dences, each of which can be motivated by thinking about what
continuity means for a function f : R"™ — R.

10



Continuity for Correspondences

One way a function f: R®™ — R may be discontinuous at a point
ro is that it “jumps downward at the limit:”

Jxn — 20 S.T. f(zg) < liminf f(xn)

It could also “jump upward at the limit:”

Jxn — xg S.T. f(zg) > limsup f(xn)

In either case, it doesn't matter whether the sequence x,, ap-
proaches xg from the left or the right (or both).

11
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f(x)
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Continuity for Correspondences

What should it mean for a set to “jump down’ at the limit xg?

It should mean the set suddenly gets smaller — it “implodes in
the limit" — that is, there is a sequence x, — xg and points
yn € W(xyn) that are far from every point of W(zg) as n — oo.

14
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Continuity for Correspondences

Similarly, what should it mean for a set to “jump up” at the
limit?

This should mean that that the set suddenly gets bigger — it
“explodes in the limit” — that is, there is a point y in W(xg) and
a sequence x, — xg such that y is far from every point of W(xy)

dS n — o0.

16
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Continuity for Correspondences
Definition 3. Let X CE", Y CE™, and W : X — 2Y.

e W js upper hemicontinuous (uhc) at xzg € X if, for every open
set V D W(xq), there is an open set U with xqg € U such that

W(x) CV foreveryx e UNX

e W js lower hemicontinuous (Ihc) at xg € X if, for every open
set V such that W(xzg) NV # 0, there is an open set U with
xg € U such that

W(x)NV #£=0 forevery e UNX

18



e WV js continuous at zg € X if it is both uhc and Ihc at xg.

e W js upper hemicontinuous (respectively lower hemicontinu-
ous, continuous) if it is uhc (respectively Ihc, continuous) at
every x € X.



Continuity for Correspondences

Upper hemicontinuity reflects the requirement that W doesn't
“implode in the limit" at xzg; lower hemicontinuity reflects the
requirement that W doesn’'t “explode in the limit" at xg.

Notice that upper and lower hemicontinuity are not nested: a cor-
respondence can be upper hemicontinuous but not lower hemi-
continuous, or lower hemicontinuous but not upper hemicontin-
uous.

19






graph W
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Continuity for Correspondences

An alternative notion of continuity looks instead at properties of
the graph of the correspondence.

The graph of a correspondence W : X — 2Y is the set

graph W ={(z,y) e X XY 1y € V(x)}

21



Continuity for Correspondences

Recall that a function f : R™ — R is continuous if and only if
whenever x, — =, f(xzn) — f(x). We can translate this into a

statement about its graph.

Suppose {(zn,yn)} € graph f and (zn,yn) — (x,y). Since f is a
function, (zn,yn) € graph f <— yn = f(zn).

So f is continuous = y=Ilimy, =I|im f(zn) = f(x)
= (w,y) € graph f
So if f is continuous then each convergent sequence {(xn,yn)} in

graph f converges to a point (x,y) in graph f, thatis, graph f
Is closed.

22



Closed Graph

Definition 4. Let X C E", Y C E™. A correspondence V : X —
2Y has closed graph if its graph is a closed subset of X XY,
that is, if for any sequences {zn} C X and {yn} C Y such that
xn — x € X, yp — y €Y and y, € V(xn) for each n, then

y e W(x).

(¥ai ) € %ffelfkﬂ% A

23
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Closed Graph

&
Example: Consider the correspondence ’\&3: Loy D 2

| | _ [l if 2 e (0,1]
Y sk e o O W(x)_{{{o% if 2 =0

Let V =(-0.1,0.1). Then W (0) = {0} C V, but no matter how
close x is to O,

vior= (2 av

so W is not uhc at 0. However, note that W has closed graph.

24
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Continuity for Correspondences

B
Example: Consider the correspondence q‘\f" Yﬁﬂ} -1

\U(ac)—{{%} if 2 € (0,1]
| Ry ifz=0

W(0) = [0,00), and W (x) C W(0) for every x € [0,1]. So if
V DO W(0) then V D W(x) for all x. Thus, W is uhc, and has
closed graph.

26
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Upper Hemicontinuity and Closed Graph

For a function, upper hemi-continuity and continuity coincide.

Theorem 3. Let X CE", YCE™and f . X —-Y. LetV : X —
2Y be the correspondence given by W(z) = {f(z)} for all z € X.
Then V) is uhc if and only if f is continuous.

Proof. Suppose W is uhc. We consider the metric spaces (X, d)
and (Y,d), where d is the Euclidean metric. Fix V open in Y.

T hen

{x e X : f(x) eV}
{x e X :V(x) CV}

Fiv)

28



Thus, f is continuous if and only if f=1(V) is open in X for each
open V in Y, if and only if {x € X : W(x) C V} is open in X for
each open V in Y, if and only if W is uhc (as an exercise, think
through why this last equivalence holds). [ ]



Continuity for Correspondences

For a general correspondence, these notions are not nested:

e A closed graph correspondence need not be uhc, as the first
example above illustrates.

e Conversely an uhc correspondence need not have closed graph,
or even have closed values.

29



Continuity for Correspondences

Definition 5. A correspondence WV : X — 2Y s called closed-
valued if W(x) is a closed subset ofy for all x; VW is called

compact-valued if W(x) is compact for all .
,——-—_—""-_________"‘-—-—.___

For closed-valued correspondences these concepts can be more
tightly connected.

e A closed-valued and upper hemicontinuous correspondence
must have closed graph.

e For a closed-valued correspondence with a compact range,
upper hemicontinuity is equivalent to closed graph.

30



Upper Hemicontinuity and Closed Graph

Theorem 4 (Not in de la Fuente). Suppose X C E" and Y C E™,
and W : X — 2Y.

(i) If W is closed-valued and uhc, then WV has closed graph.

(ii) If W has closed graph and there is an open set W with xg € W
and a compact set Z such that x e WNX = W(x) C Z, then
WV s uhc at xq.

(iii) If'Y is compact, then W has closed graph <— W js closed-
valued and uhc.

31



Proof. (i) Suppose W is closed-valued and uhc. If W does not
have closed graph, we can find a sequence (xn,yn) — (x0,v0),
where (xn,yn) lies in the graph of W (so y, € W(xn)) but (xg,ygo)
does not lie in the graph of W (so yg € W(xp)). Since W is
closed-valued, W(xzg) is closed. Since yg € W(zp), there is some /

e > 0 such that )y ’ /
( ( %) |
W (xg) N Bo(yg) =0 I 2
SO ey -7

N\
W(zg) C E7\ Be[yg] <— o2~

Let V = E™\ Belyg]. Then V' is open, and W(zg) C V. Since W
IS uhc, there is an open set U with xg € U such that

reUNX=WV(x)CV



Since (xn,yn) — (xo,y0), xn € U for n sufficiently large, so
yn € W(xn) CV = _T‘jm \%at\%;&

Thus for n sufficiently large, |yn — yo| > &, which implies that
yn 4 yo, and (xn,yn) 4 (zo,yp), @ contradiction. Thus W is
closed-graph.

(ii) Now, suppose W has closed graph and there is an open set
W with zg € W and a compact set Z such that

reWnNX=WVx) CZ

Since W has closed graph, it is closed-valued. Let V be any open
set such that V O W(zg). We need to show there exists an open
set U with g € U such that

reUNX=WV(x)CV



If not, we can find a sequence z, — xg and y, € W(x,) such that
yn € V. Since xzn — xg, xn € W N X for all n sufficiently large,
and thus W (x,) C Z for n sufficiently large. Since Z is compact,
we can find a convergent subsequence yn, — y'. Then

(wnka ynk) — (an y/)

Since W has closed graph, v € W(zg), so vy € V. Since V is

open, yn, € V for all k sufficiently large, a contradiction. Thus,
WV is uhc at xg.

(iii) Follows from (i) and (ii). [ ]



Sequential Characterizations

Upper and lower hemicontinuity can be given sequential charac-
terizations that are useful in applications.

Theorem 5 (Thm. 11.2). Suppose X C E" and Y C E™. A
@@Mge_d’_correspondence WV X — 2Y js uhc at xog € X
if and only if, for every sequence {xn} C X with =, — xg, and
every sequence {yn} such that y, € W(xn) for every n, there is a
convergent subsequence {yn,} such that limyy, € W(zg).

Proof. See de la Fuente. [ ]

Note that this characterization of upper hemicontinuity requires
the correspondence to have compact values.
32



Sequential Characterizations

Theorem 6 (Thm. 11.3). A correspondence VW : X — Y is |lhc at
xg € X if and only if, for every sequence {xn} C X with =, — xq,
and every yg € V(xg), there exists a companion sequence {yn}
with y, € V(xy) for every n such that yn, — yg.

Proof. See de la Fuente. [ ]
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W(x,

W(x")

graph W
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