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Linear Combinations and Spans

Definition 1. Let X be a vector space over a field F. A linear
combination of xz1,...,xzn € X IS a vector of the form

n
y= > oz; Wwhere ay,...,an € F
i=1
a; IS the coefficient of x; in the linear combination.

If' V C X, the span of V, denoted spanV, is the set of all linear
combinations of elements of V.

A set V C X spans X if spanV = X.



Linear Dependence and Independence

Definition 2. A set V C X is linearly dependent if there exist
/,.————'_'_'_'_'—_'_'_""‘-—-—._._._.--—
v1,...,op €V and ay,...,an € F not all zero such that

n
Z OV, — 0
1=1

A setV C X jslinearly independent if it is not linearly dependent.

Thus V C X is linearly independent if and only if

n
Zaivizo, v, €V Vi=0a; =0 W1
=1



Bases

Definition 3. A Hamel basis (often just called a basis) of a vector
space X is a linearly independent set of vectors in X that spans
X.

PN Yg @,}

Example: {(1,0),(0,1)} is a basis for R? (this is the standard
basis). A\



Example, cont: {(1,1),(—1,1)} is another basis for R?:

Suppose (x,y) a(l,1)+ 38(—1,1) for some o, 3 € R

r = a—0
y = a+p
r+y = 2«
= o = Tty
2
y—x = 20
_ y—=
=0 = _2|_
_ Ty y=*._

Since (z,y) is an arbitrary element of R?, {(1,1),(—1,1)} spans
R2. If (z,y) = (0,0),



so the coefficients are all zero, so {(1,1),(—1,1)} is linearly in-

dependent. Since it is linearly independent and spans RQ, it is a
basis.

Example: {(1,0,0),(0,1,0)} is not a basis of R3, because it
does not span RS3. “‘t“& Y where %O =7 {5‘»0\%3 nst

o~ Spen
Example: {(1,0),(0,1),(1,1)} is not a basis for R2.

SO the set is not linearly independent.
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Bases

Theorem 1 (Thm. 1.2"). Let V be a Hamel basis for X. Then
every vector x € X has a unique representation as a linear combi-

nation of a finite number of elements of V (with all coefficients
nonzero).*

Proof. Let x € X. Since V spans X, we can write

where S1 is finite, as € F', as # 0, and vs € V for each s € 57.
Now, suppose

L — Z AsVs — Z Bsvs

s€ES sESH B

*The unique representation of 0 is 0 =}, a;b;.



where S5 is finite, Bs € F', Bs # 0, and vs € V for each s € S5.
Let S = 57 USo, and define

as =0 for se& Sy\ Sy
Bs =0 for se&S1\ 5

Then
O = x—=x

= Z AsVs — Z Bsvs
SES]_ L SGSQ //

= Z QsVs — Z Bsvs
seS seS

— Z (as — Bs)vs
seS

Since V is linearly independent, we must have as — 8s = 0, sO
as = O, for all s € S.

seES1asFF0&5 080 s€ 55



SO S1 = 55 and as = (s for s € S = S5, so the representation is
unique. [ ]



Bases

Theorem 2. Every vector space has a Hamel basis.

Proof. The proof uses the Axiom of Choice. Indeed, the theorem
is equivalent to the Axiom of Choice. [ ]



Bases

A closely related result, from which you can derive the previous

result, shows that any linearly independent set V in a vector
space X can be extended to a basis of X.

Theorem 3. If X is a vector space andV C X is linearly indepen-

dent, then there exists a linearly independent set W C X such
that

VCCWCspanW =X



L lvi V= Wy

Bases

Theorem 4. Any two Hamel bases of a vector space X have the
same cardinality (are numerically equivalent).

Proof. The proof depends on the so-called Exchange Lemma,
whose idea we sketch. Suppose that V = {v), : A € A} and
W = {wy : v € '} are Hamel bases of X. Remove one vector
Vg from V, so that it no longer spans (if it did still span, then
vy, Would be a linear combination of other elements of V', and
V' would not be linearly independent). If wy € span(V \ {vy,})
for every v € I', then since W spans, V \ {v,,} would also span,
contradiction. Thus, we can choose g € I' such that

W~y € SPan <V \ {”/\o})



123
Because w,, € spanV, we can write

mn
Wrg = Y 0Gvy,
1=0

where aq, the coefficient of Vg is not zero (if it were, then we
would have wy, € span <V \ {v,\o})). Since ag #= 0, we can solve

for vy, as a linear combination of wy, and vy,,...,vy,, SO
span <<V \ {v/\o}) U {w’m}) S \/%b
D spanV
= X
SO
((V\ {ag}) U{wro})

spans X. From the fact that w,, € span <V\{v,\o}) one can



show that

((V\ {vag}) U{wyo})
is linearly independent, so it is a basis of X. Repeat this process
to exchange every element of V with an element of W (when V
is infinite, this is done by a process called transfinite induction).
At the end, we obtain a bijection from V to W, so that V and
W are numerically equivalent. [ ]



Dimension

Definition 4. T he c_j_imension of a vector space X, denoted dim X,
is the cardinality of any basis of X.

For V C X, |V| denotes the cardinality of the set V.

© —_ESE O&V”\ X':” ™ %f <o ~n & \,\\\) X LS

Loank=— du Mezf\i\ﬂc’“&&

QX\,-LFH.: CEI VL RS calle w\—’i“ ANAR ﬁ,__é’iﬂ\e’u_\_%_‘g ‘\of.\
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Dimension

Example: The set of all m X n real-valued matrices is a vector
space over R. A basis is given by

{Eij :1<i<m,1<j<n} Eué AN SN

rw\o::‘rf VY
where
'\ . . .
KQ ™ onk N _J 1 ifk=iand =
JQL <EZ=7 0O otherwise.

The dimension of the vector space of m X n matrices is mn.

o{ !

11



Dimension and Dependence

Theorem 5 (Thm. 1.4). SupposedimX =n e N. IfV C X and
V| >n, then V is linearly dependent.

o _\‘:J\: X \/ \JQ./\JLG—TK\D MQ/’PQN\CSQN\J( , So

)

ke~ N = oo W st K

v

"N < \\/\‘i?k\/\)\

Q,S.w\}v/\a S N
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Dimension and Dependence

Theorem 6 (Thm. 1.5"). Suppose dimX =ne N, V C X, and
V| =n.

e ITV is linearly independent, then V spans X, soV is a Hamel
basis.

e ITV spans X, then V is linearly independent, soV is a Hamel
basis.

(5 Parwise, ockend N do o pesis W wi

VoS W, se \wil 2 IV =N
QMW&&C“Q‘\FU\

- 13
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Linear Transformations

Definition 5. Let X and Y be two vector spaces over the field
F. WesayT : X — Y is a linear transformation if

T(a1x1 + asxo) = T (x1) + axT(z2) Vi, z0 € X,a1,0p € F

Y. e % O{\VQ\ X “@‘/Aa \Jd\:_T.Cm\B e
Jda_ - TC Xda) & \Z/
Let| L(X,Y) [denote the set of all linear transformations from X
to Y.

TL_@\»C\ I WAV ¢ xe T e X

— _)dK_‘)X_«Q)Q
© \ (‘{\‘1— yg_\ = \C)L“*\ a T-Lsza-) ?
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Linear Transformations

Theorem 7. L(X,Y) is a vector space over F'.

Proof. First, define linear combinations in L(X,Y) as follows.
For T1,1T> € L(X,Y) and «, 3 € F| define oTy + 815 [by

(a1 + BT%)(z) = oT1(z) + BT>(x)
We need to show that o7y 4+ 87> € L(X,Y).

(aTy + BT%)(yx1 + dx2)
aTy(yzy + dz2) + BT2(vz1 + dx2) C o Q'sz B
= a(yTy(z1) + 0Ty (22)) + B (7Ta(x1) + 6Tn(x2)) (- tiwy
= 7y (aT1(x1) + BT2(x1)) + 6 (aT1(z2) + BT2(x2)) |
v (aT7 + BT3) (1) + 6 (o171 + BT2) (x2) ( deln R

o[(\ k 15&3 e )

>



so o1y + B1» € L(X,Y).

The rest of the proof involves straightforward checking of the
vector space axioms. [ ]



Compositions of Linear Transformations

Given R € L(X,Y) and S € L(Y,Z), SoR : X — Z. We will
show that SoR € L(X,Z), that is, the composition of two linear
transformations is linear.

(S o R)(axry + Bxo)

( dhel~ S SHR)

( U\a\a@f:‘\"\'_) < L{\

S(R(ax1 4 Bxy))
= S(aR(z1) + BR(x2)) Y
= aS(R(x1)) + BS(R(x2)) ( L ~ror )ﬂj

a(S o R)(xz1) + B(So R)(x5) (deln &
SeR )

so SoRe L(X,Z).

16



Kernel and Rank
Definition 6. Let T € L(X,Y).

e Theimage of T isImT =T(X)

e The kernel of T iskerT ={x € X : T(xz) = 0}

e Therank of T is RankT = dim(ImT)

17



Rank-Nullity Theorem

Theorem 8 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem).
Let X be a finite-dimensional vector space, T € L(X,Y ). Then
Im T and ker ' are vector subspaces of Y and X respectively, and

dimX =dimkerT 4+ RankT

. W\”/
NN vy £
SEekdnr o s Wow Ta1 Eer | Qv vecxsC suL%qsqaLs
N\ Ay
~ X o
* Ken |
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G
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~ (G NN
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Kernel and Rank

Theorem 9 (Thm. 2.13).T € L(X,Y) is one-to-one if and only
if kerT = {0}.

Proof. Suppose T is one-to-one. Suppose = € kerT'. Then

T(x) = 0. But since T is linear, T(0) =T(0-0) =0-T7T(0) = 0.

Since T is one-to-one, £ = 0, so kerT = {0}. ( lireeocn 55 OF sV
T T )

Conversely, suppose that kerT = {0}. Suppose T(x1) = T(z2).

Then

T(x1) — T (x2)
0

which says 1 —xo € ker1', sO x1 — x> =0, SO x1 = xo. Thus, T
is one-to-one. [ ]

T(x1 — x2)

19



Invertible Linear Transformations

Definition 7.7 € L(X,Y) is invertible if there exists a function
S:Y — X such that

S(T(z)) = = Ve X ST = “dx

T(S(y)) = y YyeY e \;GL\t

Denote S by T 1,
Note that T is invertible if and only if it is one-to-one and onto.

This is just the condition for the existence of an inverse function.
The linearity of the inverse follows from the linearity of T'.

20



AN\ TEER R IR

SEHL(_)L%\(\ %’C,X AQL\%Q\‘/ & 3\48%
Invertible Linear Transformations <% _
_F”Cl\au -
Theorem 10 (Thm. 2.11).If T € L(X,Y) is invertible, then 2%
T-1e L(Y,X), i.e. T is linear.

Proof. Suppose o, € FFand v,w € Y. Since T is invertible, there
exist unique v/, w’ € X such that

T = v T 1) = o
T(w) = w T Hw) = o
Then y N
T Yav+pw) = T (aT(') + BT (w)) [ detn)
= 71 (T(a + pu))) (< nsar )
= av + Bu’ [ &eln £17)
= ol 1(v) + BT (w) ( dedn & vow)
‘\‘j/ \*{ 21

W



so 71
e L(Y, X).



Linear Transformations and Bases

Theorem 11 (Thm. 3.2).Let X and Y be two vector spaces
over the same field F, and let V. = {vy : A € A} be a basis

for X. Then a linear transformation T € L(X,Y) is completely
determined by its values on V, that is:

1. Given any set {yy : A€ N} CY,dT € L(X,Y) s.t.

T(UA) =Yy, VAEN

2. IfF S, T € L(X,Y) and S(vy) =T(vy) forallXxe N, then S =T.

22



Proof. 1. If x € X, x has a unique representation of the form

n
L = Zaﬂ))\i 057;#07;:1,...,72,
1=1

(Recall that if £ = 0, then n = 0.) Define

[ <o TOu =y N
Then T'(z) € Y. The verification that T is linear is left as an
exercise.

n
T(z) = ) oy,
i=1

23



2. Suppose S(vy) = T(vy) for all A € A. Given z € X,

S(ZIZ) = S (Z O‘iv)\Z)

, 1=1

= > ;S (vy,) (S Uaneor)
1?1

— Z O‘ZT<U)\Z-) L < o\ asy e

so S="1T.



Isomorphisms

Definition 8. Two vector spaces X and Y over a field F are
isomorphic if there is an invertible T € L(X,Y).

T € L(X,Y) is an isomorphism if it is invertible (one-to-one and

onto). -

Isomorphic vector spaces are essentially indistinguishable as vec-
tor spaces.

24



Isomorphisms

Theorem 12 (Thm. 3.3). Two vector spaces X andY over the
same field are isomorphic if and only if dimX =dimY.

Proof. Suppose X and Y are isomorphic, and let T e L(X,Y) be
an isomorphism. Let

U= {UJ)\ T A E /\}
be a basis of X, and let vy, = T'(u)) for each A € A. Set
V = {U)\ T E /\}

Since T is one-to-one, U and V have the same cardinality. If

Vi

T(w)

25



y €Y, then there exists x € X such that

T = c*’\fh"\
y = T(z) (

T (
n
= ) ay L <u>\z) (T L)
Zjl
Z Q) V), (o fn o \IA'_\
1=1

which shows that V spans Y. To see that V is linearly indepen-



dent, suppose

Since T is one-to-one, kerT = {0}, so

m

> Biuy, =

i=1
Since U is a basis, we have 1 = --- = 85, = 0, so V is lin-
early independent. Thus, V is a basis of Y since U and V are

numerically equivalent, dimX = dimY.
\,\ L\

lwl = W\



Now suppose dimX =dimY. Let
U=A{uy: AXeA}and V ={vy,: A €N}

be bases of X and Y; note we can use the same index set A for
both because dimX = dimY. By Theorem 3.2, there is a unique

T

Efc’,\f\\. oS ('_Q,S.U»k}'(



T € L(X,Y) such that T'(uy) = vy forall A e A. If T'(z) = 0, then

0 = T(x)

|
I M3
£
~N
VRS
e
p
N—

( TCuwy )= V. ¥°)

I
M]=
)
S
3/

= a1 = --=ap =0 since V is a basis
= =20

= kerT = {0}

= T Is one-to-one



IfyeY, write y = 2?7’:1 ﬁﬂ))\i. Let

m
z =) Biuy,

i=1
T hen

T() = T(i @;UAZ-)

m ]
= 2 BiT(wy) (T )

. |
— Z C T('v\z\;\: \/)»: AQ(\“\
p— y:

so T is onto, so T is an isomorphism and X,Y are isomorphic. [



