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Lecture 9

Outline

1. Quotient Vector Spaces

2. Matrix Representations of Linear Transformations

3. Change of Basis and Similarity

4. Eigenvalues and Eigenvectors

5. Diagonalization
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Quotient Vector Spaces

Given a vector space X and a vector subspace W of X, define

an equivalence relation by

x ∼ y ⇐⇒ x − y ∈ W

Form a new vector space X/W : the set of vectors is

{[x] : x ∈ X}

where [x] denotes the equivalence class of x with respect to ∼.

X/W is read “X mod W”.

Note that the vectors in X/W are sets of vectors in X: for x ∈ X,

[x] = {x + w : w ∈ W}
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Quotient Vector Spaces

We claim that X/W can be viewed as a vector space over F .

Define the vector space operations +, · in X/W as follows:

Define

[x] + [y] = [x + y]

α[x] = [αx]

Exercise: Verify that ∼ is an equivalence relation and that vector

addition and scalar multiplication are well-defined.

Then X/W is a vector space over F with these definitions for +

and ·
3



Quotient Vector Spaces

Example: Let X = R
3 and let W = {x ∈ R3 : x1 = x2 = 0}.

Then for x, y ∈ R3,

x ∼ y ⇐⇒ x − y ∈ W

⇐⇒ x1 − y1 = 0, x2 − y2 = 0

⇐⇒ x1 = y1, x2 = y2

and

[x] = {x + w : w ∈ W} = {(x1, x2, z) : z ∈ R}

So the equivalence class corresponding to x is the line in R3

through x parallel to the axis of the third coordinate.
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Example, cont.

What is X/W? Intuitively this equivalence relation ignores the

third coordinate, and we can identify the equivalence class [x]

with the vector (x1, x2) ∈ R2.

The next two results show how to formalize this connection.
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Quotient Vector Spaces

Theorem 1. If X is a vector space with dimX = n for some

n ∈ N and W is a vector subspace of X, then

dim(X/W ) = dimX − dimW

Proof. (Sketch) Begin with a basis {w1, . . . , wc} for W , and a

basis {[x1], . . . , [xk]} for X/W . Show that

{w1, . . . , wc} ∪ {x1, . . . , xk}

is a basis for X.

Here is the proof we did in class, showing that {w1, . . . , wc} ∪

{x1, . . . , xk} is a linearly independent set in X. First, notice

7



that W = [0], that is, x ∼ 0 ⇐⇒ x − 0 = x ∈ W by defini-

tion. Thus [x] = [0] ⇐⇒ x ∈ W . Then suppose there exist

α1, . . . , αk, β1, . . . , βc ∈ F such that

c
∑

i=1

βiwi +
k
∑

j=1

αjxj = 0



Then

c
∑

i=1

βiwi +
k
∑

j=1

αjxj = 0

⇒
k
∑

j=1

αjxj = −
c
∑

i=1

βiwi ∈ W

⇒ [
k
∑

j=1

αjxj] = [0]

⇒ [
k
∑

j=1

αjxj] =
k
∑

j=1

αj[xj] = [0]

Thus αj = 0 ∀j since {[x1], . . . , [xk]} is linearly independent. Then

c
∑

i=1

βiwi +
k
∑

j=1

αjxj =
c
∑

i=1

βiwi = 0



so βi = 0 ∀i, since {w1, . . . , wc} is linearly independent. From this

we conclude that {w1, . . . , wc} ∪ {x1, . . . , xk} is a linearly indepen-

dent set in X.

To see that this set spans X, let x ∈ X and consider [x]. Since

{[x1], . . . , [xk]} spans X/W , there exist α1, . . . , αk such that

[x] =
k
∑

j=1

αj[xj]

= [
k
∑

j=1

αjxj]

Thus x ∼
∑k

j=1 αjxj, so x −
∑k

j=1 αjxj ∈ W . Since {w1, . . . , wc}



spans W , there exist β1, . . . , βc such that

x −
k
∑

j=1

αjxj =
c
∑

i=1

βiwi

⇒ x =
k
∑

j=1

αjxj +
c
∑

i=1

βiwi

Thus {w1, . . . , wc} ∪ {x1, . . . , xk} spans X



Quotient Vector Spaces

Theorem 2. Let X and Y be vector spaces over the same field

F and T ∈ L(X, Y ). Then ImT is isomorphic to X/ker T .

Proof. Notice that if X is finite-dimensional, then

dim(X/ ker T) = dimX − dimker T (by the previous theorem)

= RankT (by the Rank-Nullity Theorem)

= dim Im T

so X/ker T is isomorphic to Im T . (why??)

We prove that this is true in general, and that the isomorphism

is natural.
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Define T̃ : X/ker T → ImT by

T̃ ([x]) = T(x)

We first need to check that this is well-defined, that is, that if

[x] = [x′] then T̃([x]) = T̃([x′]).

[x] = [x′] ⇒ x ∼ x′

⇒ x − x′ ∈ ker T

⇒ T(x − x′) = 0

⇒ T(x) = T(x′)

so T̃ is well-defined.

Clearly, T̃ : X/ ker T → ImT . It is easy to check that T̃ is linear,



so T̃ ∈ L(X/ker T, Im T). Next we show that T̃ is an isomorphism.

T̃([x]) = T̃([y]) ⇒ T(x) = T(y)

⇒ T(x − y) = 0

⇒ x − y ∈ ker T

⇒ x ∼ y

⇒ [x] = [y]

so T̃ is one-to-one.

y ∈ Im T ⇒ ∃x ∈ X s.t. T(x) = y

⇒ T̃([x]) = y

so T̃ is onto, hence T̃ is an isomorphism.



Example: Consider T ∈ L(R3,R2) defined by

T(x1, x2, x3) = (x1, x2)

Then

ker T = {x ∈ R
3 : x1 = x2 = 0}

is the x3-axis.

Given x, the equivalence class [x] is just the line through x parallel

to the x3-axis.

T̃ ([x]) = T(x1, x2, x3) = (x1, x2)

and

Im T = R
2, X/ ker T ∼= R

2 = ImT

as we suggested intuitively above (here the symbol ∼= denotes

isomorphism, that is, we write Y ∼= Z if Y and Z are isomorphic.)
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Coordinate Representations

Every real vector space X with dimension n is isomorphic to Rn.

What’s the isomorphism?

Let X be a finite-dimensional vector space over R with dimX =

n. Fix any Hamel basis V = {v1, . . . , vn} of X. Any x ∈ X has a

unique representation

x =
n
∑

j=1

βjvj

(here, we allow βj = 0).

crdV (x) =







β1
...

βn





 ∈ R
n
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crdV (x) is the vector of coordinates of x with respect to the basis

V .

crdV (v1) =

















1
0
...
0
0

















crdV (v2) =

















0
1
...
0
0

















crdV (vn) =

















0
0
...
0
1

















crdV is an isomorphism from X to Rn



Matrix Representations of Linear
Transformations

Suppose T ∈ L(X, Y ), dimX = n, dimY = m. Fix bases

V = {v1, . . . , vn} of X

W = {w1, . . . , wm} of Y

T(vj) ∈ Y , so

T(vj) =
m
∑

i=1

αijwi

Define

MtxW,V (T) =







α11 · · · α1n
... . . . ...

αm1 · · · αmn
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Matrix Representations of Linear
Transformations

Notice that the columns are the coordinates (expressed with

respect to W ) of T(v1), . . . , T(vn).

Observe







α11 · · · α1n
... . . . ...

αm1 · · · αmn

















1
0
...
0











=







α11
...

αm1







so

MtxW,V (T) · crdV (vj) = crdW (T(vj))

MtxW,V (T) · crdV (x) = crdW (T(x)) ∀x ∈ X
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Matrix Representations

Multiplying a vector by a matrix does two things:

• Computes the action of T

• Accounts for the change in basis
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Example: X = Y = R2, V = {(1,0), (0,1)}, W = {(1,1), (−1,1)},

T = id, that is, T(x) = x for each x.

MtxW,V (T) 6=

(

1 0
0 1

)

MtxW,V (T) is the matrix that changes basis from V to W .
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How do we compute it?

v1 = (1,0) = α11(1,1) + α21(−1,1)

α11 − α21 = 1

α11 + α21 = 0

2α11 = 1, α11 =
1

2

α21 = −
1

2
v2 = (0,1) = α12(1,1) + α22(−1,1)

α12 − α22 = 0

α12 + α22 = 1

2α12 = 1, α12 =
1

2

α22 =
1

2



So

MtxW,V (id) =

(

1/2 1/2
−1/2 1/2

)



Matrix Representations

Theorem 3 (Thm. 3.5’). Let X and Y be vector spaces over

the same field F , with dimX = n, dimY = m. Then L(X, Y ),

the space of linear transformations from X to Y , is isomorphic

to Fm×n, the vector space of m × n matrices over F . If V =

{v1, . . . , vn} is a basis for X and W = {w1, . . . , wm} is a basis for

Y , then

MtxW,V ∈ L(L(X,Y ), Fm×n)

and MtxW,V is an isomorphism from L(X, Y ) to Fm×n.
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Matrix Representations

Theorem 4 (From Handout). Let X, Y, Z be finite-dimensional

vector spaces over the same field F with bases U, V, W respec-

tively. Let S ∈ L(X, Y ) and T ∈ L(Y, Z). Then

MtxW,V (T) · MtxV,U(S) = MtxW,U(T ◦ S)

i.e. matrix multiplication corresponds via the matrix representa-

tion isomorphism to composition of linear transformations.

Proof. See handout.

Note that MtxW,V is a function from L(X, Y ) to the space Fm×n

of m × n matrices, while MtxW,V (T) is an m × n matrix.
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Matrix Representations

The theorem can be summarized by the following “Commutative

Diagram:”

S T
X → Y → Z

crdU l l crdV l crdW
Rn → Rm → Rr

MtxV,U(S) MtxW,V (T)

We say the diagram commutes because you get the same answer

any way you go around the diagram (in directions allowed by the

arrows). The crd arrows go in both directions because crd is an

isomorphism.
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Change of Basis

Let X be a finite-dimensional vector space with basis V . If

T ∈ L(X,X) it is customary to use the same basis in the domain

and range. In this case, MtxV (T) denotes MtxV,V (T).

Question: If W is another basis for X, how are MtxV (T) and

MtxW(T) related?
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MtxV,W(id) · MtxW (T) · MtxW,V (id) = MtxV,W(id) · MtxW,V (T ◦ id)

= MtxV,V (id ◦ T ◦ id)

= MtxV (T)

and

MtxV,W (id) · MtxW,V (id) = MtxV,V (id)

=











1 0 0 · · · 0 0
0 1 0 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 0 1
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So this says that

MtxV (T) = P−1MtxW (T)P

for the invertible matrix

P = MtxW,V (id)

that is the change of basis matrix.

On the other hand, if P is any invertible matrix, then P is also a

change of basis matrix for appropriate corresponding bases (see

handout).
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Similarity

Definition 1. Square matrices A and B are similar if

A = P−1BP

for some invertible matrix P .
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Similarity
Theorem 5.Suppose that X is a finite-dimensional vector space.

1. If T ∈ L(X, X) then any two matrix representations of T
are similar. That is, if U, W are any two bases of X, then

MtxW(T) and MtxU(T) are similar.

2. Conversely, two similar matrices represent the same linear

transformation T , relative to suitable bases. That is, given

similar matrices A, B with A = P−1BP and any basis U, there

is a basis W and T ∈ L(X, X) such that

B = MtxU(T)

A = MtxW (T)

P = MtxU,W (id)

P−1 = MtxW,U(id)
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Proof. See Handout on Diagonalization and Quadratic Forms.



Eigenvalues and Eigenvectors

Here, we define eigenvalues and eigenvectors of a linear trans-

formation and show that λ is an eigenvalue of T if and only if λ

is an eigenvalue for some matrix representation of T if and only

if λ is an eigenvalue for every matrix representation of T .

Definition 2. Let X be a vector space and T ∈ L(X, X). We

say that λ is an eigenvalue of T and v 6= 0 is an eigenvector

corresponding to λ if T(v) = λv.
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Eigenvalues and Eigenvectors

Theorem 6 (Theorem 4 in Handout).Let X be a finite-dimensional

vector space, and U a basis. Then λ is an eigenvalue of T if and

only if λ is an eigenvalue of MtxU(T). v is an eigenvector of

T corresponding to λ if and only if crdU(v) is an eigenvector of

MtxU(T) corresponding to λ.

Proof. By the Commutative Diagram Theorem,

T(v) = λv ⇔ crdU(T(v)) = crdU(λv)

⇔ MtxU(T)(crdU(v)) = λ(crdU(v))
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Computing Eigenvalues and Eigenvectors

Suppose dimX = n; let I be the n × n identity matrix. Given

T ∈ L(X,X), fix a basis U and let

A = MtxU(T)

Find the eigenvalues of T by computing the eigenvalues of A:

Av = λv ⇐⇒ (A − λI)v = 0

⇐⇒ (A − λI) is not invertible

⇐⇒ det(A − λI) = 0
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We have the following facts:

• If A ∈ Rn×n,

f(λ) = det(A − λI)

is an nth degree polynomial in λ with real coefficients; it is

called the characteristic polynomial of A.

• f has n roots in C, counting multiplicity:

f(λ) = (λ − c1)(λ − c2) · · · (λ − cn)

where c1, . . . , cn ∈ C are the eigenvalues; the cj’s are not

necessarily distinct. Notice that f(λ) = 0 if and only if

λ ∈ {c1, . . . , cn}, so the roots are the solutions of the equation

f(λ) = 0.
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• the roots that are not real come in conjugate pairs:

f(a + bi) = 0 ⇔ f(a − bi) = 0

• if λ = cj ∈ R, there is a corresponding eigenvector in Rn.

• if λ = cj 6∈ R, the corresponding eigenvectors are in Cn \ Rn.



Diagonalization

Definition 3.Suppose X is a finite-dimensional vector space with

basis U. Given a linear transformation T ∈ L(X, X), let

A = MtxU(T)

We say that A can be diagonalized if there is a basis W for X

such that MtxW(T) is a diagonal matrix, that is,
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MtxW (T) =











λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 0 λn











So

A can be diagonalized ⇐⇒ A is similar to a diagonal matrix

⇐⇒ A = P−1BP where B is diagonal
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Suppose there is a basis W such that

MtxW (T) =











λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 0 λn











Then the standard basis vectors of Rn are eigenvectors of MtxW (T).

zj is an eigenvector of T corresponding to λj ⇐⇒ crdW (zj) is

an eigenvector of MtxW (T) corresponding to λj.

So an eigenvector corresponding to λj is wj, since crdW (wj) = ej,

the jth standard basis vector in Rn.
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Thus MtxW (T) is diagonal if and only if W = {w1, . . . , wn} where

wj is an eigenvector of T corresponding to λj for each j.

Then the action of T is clear: it stretches each basis element wi

by the factor λi.



Diagonalization

Theorem 7 (Thm. 6.7’). Let X be an n-dimensional vector

space, T ∈ L(X, X), U any basis of X, and A = MtxU(T). Then

the following are equivalent:

1. A can be diagonalized

2. there is a basis W for X consisting of eigenvectors of T

3. there is a basis V for Rn consisting of eigenvectors of A

Proof. Follows from Theorem 6.7 in de la Fuente and Theorem

4 from the Handout.
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Diagonalization

Theorem 8 (Thm. 6.8’). Let X be a vector space and T ∈

L(X, X).

1. If λ1, . . . , λm are distinct eigenvalues of T with corresponding

eigenvectors v1, . . . , vm, then {v1, . . . , vm} is linearly indepen-

dent.

2. If dimX = n and T has n distinct eigenvalues, then X has

a basis consisting of eigenvectors of T ; consequently, if U is

any basis of X, then MtxU(T) is diagonalizable.

Proof. This is an adaptation of the proof of Theorem 6.8 in de

la Fuente.

31


