Economics 204 Summer/Fall 2011 Lecture 11–Monday August 8, 2011

Sections 4.1-4.3 (Unified)

Definition 1 Let $f: I \to \mathbf{R}$, where $I \subseteq \mathbf{R}$ is an open interval. f is differentiable at $x \in I$ if

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = a$$

for some $a \in \mathbf{R}$.

This is equivalent to

$$\begin{split} \lim_{h \to 0} \frac{f(x+h) - (f(x) + ah)}{h} &= 0 \\ \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ 0 < |h| < \delta \Rightarrow \left| \frac{f(x+h) - (f(x) + ah)}{h} \right| < \varepsilon \\ \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ 0 < |h| < \delta \Rightarrow \frac{|f(x+h) - (f(x) + ah)|}{|h|} < \varepsilon \\ \Leftrightarrow \quad \lim_{h \to 0} \frac{|f(x+h) - (f(x) + ah)|}{|h|} = 0 \end{split}$$

Recall that the limit considers h near zero, but not h = 0.

Definition 2 If $X \subseteq \mathbf{R}^n$ is open, $f: X \to \mathbf{R}^m$ is differentiable at $x \in X$ if¹

$$\exists T_x \in L(\mathbf{R}^n, \mathbf{R}^m) \text{ s.t. } \lim_{h \to 0, h \in \mathbf{R}^n} \frac{|f(x+h) - (f(x) + T_x(h))|}{|h|} = 0$$
(1)

f is differentiable if it is differentiable at all $x \in X$.

Note that T_x is uniquely determined by Equation (1). h is a small, nonzero element of \mathbf{R}^n ; $h \to 0$ from any direction, from above, below, along a spiral, etc. The definition requires that one linear operator T_x works no matter how h approaches zero. In this case, $f(x) + T_x(h)$ is the best linear approximation to f(x+h) for small h.

Notation:

•
$$y = O(|h|^n)$$
 as $h \to 0$ – read "y is big-Oh of $|h|^{n}$ " – means
 $\exists K, \delta > 0$ s.t. $|h| < \delta \Rightarrow |y| \le K|h|^n$

¹Recall $|\cdot|$ denotes the Euclidean distance.

• $y = o(|h|^n)$ as $h \to 0$ – read "y is little-oh of $|h|^n$ " – means

$$\lim_{h \to 0} \frac{|y|}{|h|^n} = 0$$

Note that the statement $y = O(|h|^{n+1})$ as $h \to 0$ implies $y = o(|h|^n)$ as $h \to 0$.

Also note that if y is either $O(|h|^n)$ or $o(|h|^n)$, then $y \to 0$ as $h \to 0$; the difference in whether y is "big-Oh" or "little-oh" tells us something about the *rate* at which $y \to 0$.

Using this notation, note that f is differentiable at $x \Leftrightarrow \exists T_x \in L(\mathbf{R}^n, \mathbf{R}^m)$ such that

$$f(x+h) = f(x) + T_x(h) + o(h) \text{ as } h \to 0$$

Notation:

- df_x is the linear transformation T_x
- Df(x) is the matrix of df_x with respect to the standard basis.
 This is called the Jacobian or Jacobian matrix of f at x
- $E_f(h) = f(x+h) (f(x) + df_x(h))$ is the error term

Using this notation,

f is differentiable at
$$x \Leftrightarrow E_f(h) = o(h)$$
 as $h \to 0$

Now compute $Df(x) = (a_{ij})$. Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{R}^n . Look in direction e_j (note that $|\gamma e_j| = |\gamma|$).

$$o(\gamma) = f(x + \gamma e_j) - \left(f(x) + T_x(\gamma e_j)\right)$$

$$= f(x + \gamma e_j) - \left(f(x) + \left(\begin{array}{ccc}a_{11} & \cdots & a_{1j} & \cdots & a_{1n}\\\vdots & \ddots & \vdots & \ddots & \vdots\\a_{m1} & \cdots & a_{mj} & \cdots & a_{mn}\end{array}\right) \left(\begin{array}{c}0\\\vdots\\0\\\gamma\\0\\\vdots\\0\end{array}\right)\right)$$

$$= f(x + \gamma e_j) - \left(f(x) + \left(\begin{array}{c}\gamma a_{1j}\\\vdots\\\gamma a_{mj}\end{array}\right)\right)$$

For i = 1, ..., m, let f^i denote the i^{th} component of the function f:

$$f^{i}(x + \gamma e_{j}) - (f^{i}(x) + \gamma a_{ij}) = o(\gamma)$$

so $a_{ij} = \frac{\partial f^{i}}{\partial x_{i}}(x)$

Theorem 3 (Thm. 3.3) Suppose $X \subseteq \mathbf{R}^n$ is open and $f : X \to \mathbf{R}^m$ is differentiable at $x \in X$. Then $\frac{\partial f^i}{\partial x_j}$ exists at x for $1 \le i \le m, 1 \le j \le n$, and

$$Df(x) = \begin{pmatrix} \frac{\partial f^1}{\partial x_1}(x) & \cdots & \frac{\partial f^1}{\partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f^m}{\partial x_1}(x) & \cdots & \frac{\partial f^m}{\partial x_n}(x) \end{pmatrix}$$

i.e. the Jacobian at x is the matrix of partial derivatives at x.

Remark: If f is differentiable at x, then all first-order partial derivatives $\frac{\partial f^i}{\partial x_j}$ exist at x. However, the converse is false: existence of all the first-order partial derivatives does not imply that f is differentiable. The missing piece is continuity of the partial derivatives:

Theorem 4 (Thm. 3.4) If all the first-order partial derivatives $\frac{\partial f^i}{\partial x_j}$ $(1 \le i \le m, 1 \le j \le n)$ exist and are continuous at x, then f is differentiable at x.

Directional Derivatives:

Suppose $X \subseteq \mathbf{R}^n$ open, $f: X \to \mathbf{R}^m$ is differentiable at x, and |u| = 1.

$$f(x + \gamma u) - (f(x) + T_x(\gamma u)) = o(\gamma) \text{ as } \gamma \to 0$$

$$\Rightarrow \quad f(x + \gamma u) - (f(x) + \gamma T_x(u)) = o(\gamma) \text{ as } \gamma \to 0$$

$$\Rightarrow \quad \lim_{\gamma \to 0} \frac{f(x + \gamma u) - f(x)}{\gamma} = T_x(u) = Df(x)u$$

i.e. the directional derivative in the direction u (with |u| = 1) is

$$Df(x)u \in \mathbf{R}^m$$

Theorem 5 (Thm. 3.5, Chain Rule) Let $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$ be open, $f : X \to Y$, $g: Y \to \mathbb{R}^p$. Let $x_0 \in X$ and $F = g \circ f$. If f is differentiable at x_0 and g is differentiable at $f(x_0)$, then $F = g \circ f$ is differentiable at x_0 and

$$dF_{x_0} = dg_{f(x_0)} \circ df_{x_0}$$
(composition of linear transformations)
$$DF(x_0) = Dg(f(x_0))Df(x_0)$$
(matrix multiplication)

Remark: The statement is exactly the same as in the univariate case, except we replace the univariate derivative by a linear transformation. The proof is more or less the same, with a bit of linear algebra added.

Theorem 6 (Thm. 1.7, Mean Value Theorem, Univariate Case) Let $a, b \in \mathbb{R}$. Suppose $f : [a, b] \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b). Then there exists $c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

that is, such that

$$f(b) - f(a) = f'(c)(b - a)$$

Proof: Consider the function

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

Then g(a) = 0 = g(b). See Figure 1. Note that for $x \in (a, b)$,

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

so it suffices to find $c \in (a, b)$ such that g'(c) = 0.

Case I: If g(x) = 0 for all $x \in [a, b]$, choose an arbitrary $c \in (a, b)$, and note that g'(c) = 0, so we are done.

Case II: Suppose g(x) > 0 for some $x \in [a, b]$. Since g is continuous on [a, b], it attains its maximum at some point $c \in (a, b)$. Since g is differentiable at c and c is an interior point of the domain of g, we have g'(c) = 0, and we are done.

Case III: If g(x) < 0 for some $x \in [a, b]$, the argument is similar to that in Case II.

Remark: The Mean Value Theorem is useful for estimating bounds on functions and error terms in approximation of functions.

Notation:

$$\ell(x, y) = \{ \alpha x + (1 - \alpha)y : \alpha \in [0, 1] \}$$

is the line segment from x to y.

Theorem 7 (Mean Value Theorem) Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable on an open set $X \subseteq \mathbb{R}^n$, $x, y \in X$ and $\ell(x, y) \subseteq X$. Then there exists $z \in \ell(x, y)$ such that

$$f(y) - f(x) = Df(z)(y - x)$$

Remark: This statement is different from Theorem 3.7 in de la Fuente. Notice that the statement is exactly the same as in the univariate case. For $f : \mathbf{R}^n \to \mathbf{R}^m$, we can apply the Mean Value Theorem to each component, to obtain $z_1, \ldots, z_m \in \ell(x, y)$ such that

$$f^{i}(y) - f^{i}(x) = Df^{i}(z_{i})(y - x)$$

However, we cannot find a single z which works for every component. Note that each $z_i \in \ell(x, y) \subset \mathbf{R}^n$; there are m of them, one for each component in the range.

The following result plays the same role in estimating function values and error terms for functions taking values in \mathbb{R}^m as the Mean Value Theorem plays for functions from \mathbb{R} to \mathbb{R} .

Theorem 8 Suppose $X \subset \mathbf{R}^n$ is open and $f : X \to \mathbf{R}^m$ is differentiable. If $x, y \in X$ and $\ell(x, y) \subseteq X$, then there exists $z \in \ell(x, y)$ such that

$$\begin{aligned} |f(y) - f(x)| &\leq |df_z(y - x)| \\ &\leq ||df_z|||y - x| \end{aligned}$$

Remark: To understand why we don't get equality, consider $f:[0,1] \to \mathbb{R}^2$ defined by

$$f(t) = (\cos 2\pi t, \sin 2\pi t)$$

f maps [0, 1] to the unit circle in \mathbb{R}^2 . Note that f(0) = f(1) = (1, 0), so |f(1) - f(0)| = 0. However, for any $z \in [0, 1]$,

$$|df_z(1-0)| = |2\pi(-\sin 2\pi z, \cos 2\pi z)| \\ = 2\pi \sqrt{\sin^2 2\pi z + \cos^2 2\pi z} \\ = 2\pi$$

Section 4.4. Taylor's Theorem

Theorem 9 (Thm. 1.9, Taylor's Theorem in R¹) Let $f : I \to \mathbf{R}$ be n-times differentiable, where $I \subseteq \mathbf{R}$ is an open interval. If $x, x + h \in I$, then

$$f(x+h) = f(x) + \sum_{k=1}^{n-1} \frac{f^{(k)}(x)h^k}{k!} + E_n$$

where $f^{(k)}$ is the k^{th} derivative of f and

$$E_n = \frac{f^{(n)}(x+\lambda h)h^n}{n!} \text{ for some } \lambda \in (0,1)$$

Motivation: Let

$$T_{n}(h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^{k}}{k!}$$

$$= f(x) + f'(x)h + \frac{f''(x)h^{2}}{2} + \dots + \frac{f^{(n)}(x)h^{n}}{n!}$$

$$T_{n}(0) = f(x)$$

$$T'_{n}(h) = f'(x) + f''(x)h + \dots + \frac{f^{(n)}(x)h^{n-1}}{(n-1)!}$$

$$T''_{n}(0) = f'(x)$$

$$T''_{n}(h) = f''(x) + \dots + \frac{f^{(n)}(x)h^{n-2}}{(n-2)!}$$

$$T''_{n}(0) = f''(x)$$

$$\vdots$$

$$T_{n}^{(n)}(0) = f^{(n)}(x)$$

so $T_n(h)$ is the unique n^{th} degree polynomial such that

$$T_{n}(0) = f(x) T'_{n}(0) = f'(x) \vdots T_{n}^{(n)}(0) = f^{(n)}(x)$$

The proof of the formula for the remainder E_n is essentially the Mean Value Theorem; the problem in applying it is that the point $x + \lambda h$ is not known in advance.

Theorem 10 (Alternate Taylor's Theorem in R¹) Let $f : I \to \mathbf{R}$ be n times differentiable, where $I \subseteq \mathbf{R}$ is an open interval and $x \in I$. Then

$$f(x+h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^{k}}{k!} + o(h^{n}) \text{ as } h \to 0$$

If f is (n + 1) times continuously differentiable (i.e. all derivatives up to order n + 1 exist and are continuous), then

$$f(x+h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^k}{k!} + O\left(h^{n+1}\right) \text{ as } h \to 0$$

Remark: The first equation in the statement of the theorem is essentially a restatement of the definition of the n^{th} derivative. The second statement is proven from Theorem 1.9, and the continuity of the derivative, hence the boundedness of the derivative on a neighborhood of x.

Definition 11 Let $X \subseteq \mathbf{R}^n$ be open. A function $f: X \to \mathbf{R}^m$ is continuously differentiable on X if

- f is differentiable on X and
- df_x is a continuous function of x from X to $L(\mathbf{R}^n, \mathbf{R}^m)$, with operator norm $||df_x||$

f is C^k if all partial derivatives of order less than or equal to k exist and are continuous in X.

Theorem 12 (Thm. 4.3) Suppose $X \subseteq \mathbf{R}^n$ is open and $f : X \to \mathbf{R}^m$. Then f is continuously differentiable on X if and only if f is C^1 .

Remark: The notation in Taylor's Theorem is difficult. If $f : \mathbf{R}^n \to \mathbf{R}^m$, the quadratic terms are not hard for m = 1; for m > 1, we handle each component separately. For cubic and higher order terms, the notation is a mess.

Linear Terms:

Theorem 13 Suppose $X \subseteq \mathbf{R}^n$ is open and $x \in X$. If $f : X \to \mathbf{R}^m$ is differentiable, then f(x+h) = f(x) + Df(x)h + o(h) as $h \to 0$

The previous theorem is essentially a restatement of the definition of differentiability.

Theorem 14 (Corollary of 4.4) Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}^m$ is C^2 , then

$$f(x+h) = f(x) + Df(x)h + O\left(|h|^2\right) \text{ as } h \to 0$$

Quadratic Terms:

We treat each component of the function separately, so consider $f: X \to \mathbf{R}, X \subseteq \mathbf{R}^n$ an open set. Let

$$D^{2}f(x) = \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(x) & \cdots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(x) & \cdots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) & \cdots & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x) \end{pmatrix}$$

$$f \in C^{2} \Rightarrow \frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(x) = \frac{\partial^{2}f}{\partial x_{j}\partial x_{i}}(x)$$

$$\Rightarrow D^{2}f(x) \text{ is symmetric}$$

$$\Rightarrow D^{2}f(x) \text{ has an orthonormal basis of eigenvectors}$$
and thus can be diagonalized

Theorem 15 (Stronger Version of Thm. 4.4) Let $X \subseteq \mathbb{R}^n$ be open, $f : X \to \mathbb{R}$, $f \in C^2(X)$, and $x \in X$. Then

$$f(x+h) = f(x) + Df(x)h + \frac{1}{2}h^{\top}(D^2f(x))h + o\left(|h|^2\right) \text{ as } h \to 0$$

If $f \in C^3$,

$$f(x+h) = f(x) + Df(x)h + \frac{1}{2}h^{\top}(D^2f(x))h + O\left(|h|^3\right) \text{ as } h \to 0$$

Remark: de la Fuente assumes X is convex. X is said to be *convex* if, for every $x, y \in X$ and $\alpha \in [0, 1]$, $\alpha x + (1 - \alpha)y \in X$. Notice we don't need this. Since X is open,

$$x \in X \Rightarrow \exists \delta > 0 \text{ s.t. } B_{\delta}(x) \subseteq X$$

and $B_{\delta}(x)$ is convex.

Definition 16 We say f has a *saddle* at x if Df(x) = 0 but f has neither a local maximum nor a local minimum at x.

Corollary 17 Suppose $X \subseteq \mathbf{R}^n$ is open and $x \in X$. If $f : X \to \mathbf{R}$ is C^2 , then there is an orthonormal basis $\{v_1, \ldots, v_n\}$ and corresponding eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbf{R}$ of $D^2 f(x)$ such that

$$f(x+h) = f(x+\gamma_1v_1+\dots+\gamma_nv_n)$$

= $f(x) + \sum_{i=1}^n (Df(x)v_i)\gamma_i + \frac{1}{2}\sum_{i=1}^n \lambda_i\gamma_i^2 + o\left(|\gamma|^2\right)$

where $\gamma_i = h \cdot v_i$.

- 1. If $f \in C^3$, we may strengthen $o(|\gamma|^2)$ to $O(|\gamma|^3)$.
- 2. If f has a local maximum or local minimum at x, then

$$Df(x) = 0$$

3. If Df(x) = 0, then

 $\begin{array}{lll} \lambda_1, \dots, \lambda_n > 0 & \Rightarrow & f \ has \ a \ local \ minimum \ at \ x \\ \lambda_1, \dots, \lambda_n < 0 & \Rightarrow & f \ has \ a \ local \ maximum \ at \ x \\ \lambda_i < 0 \ for \ some \ i, \ \lambda_j > 0 \ for \ some \ j & \Rightarrow & f \ has \ a \ soddle \ at \ x \\ \lambda_1, \dots, \lambda_n \geq 0, \ \lambda_i > 0 \ for \ some \ i & \Rightarrow & f \ has \ a \ local \ minimum \\ or \ a \ saddle \ at \ x \\ \lambda_1, \dots, \lambda_n \leq 0, \ \lambda_i < 0 \ for \ some \ i & \Rightarrow & f \ has \ a \ local \ maximum \\ or \ a \ saddle \ at \ x \\ \lambda_1, \dots, \lambda_n \leq 0, \ \lambda_i < 0 \ for \ some \ i & \Rightarrow & f \ has \ a \ local \ maximum \\ or \ a \ saddle \ at \ x \\ \lambda_1 = \dots = \lambda_n = 0 & gives \ no \ information. \end{array}$

Proof: (Sketch) From our study of quadratic forms, we know the behavior of the quadratic terms is determined by the signs of the eigenvalues. If $\lambda_i = 0$ for some *i*, then we know that the quadratic form arising from the second partial derivatives is identically zero in the direction v_i , and the higher derivatives will determine the behavior of the function *f* in the direction v_i . For example, if $f(x) = x^3$, then f'(0) = 0, f''(0) = 0, but we know that *f* has a saddle at x = 0; however, if $f(x) = x^4$, then again f'(0) = 0 and f''(0) = 0 but *f* has a local (and global) minimum at x = 0.

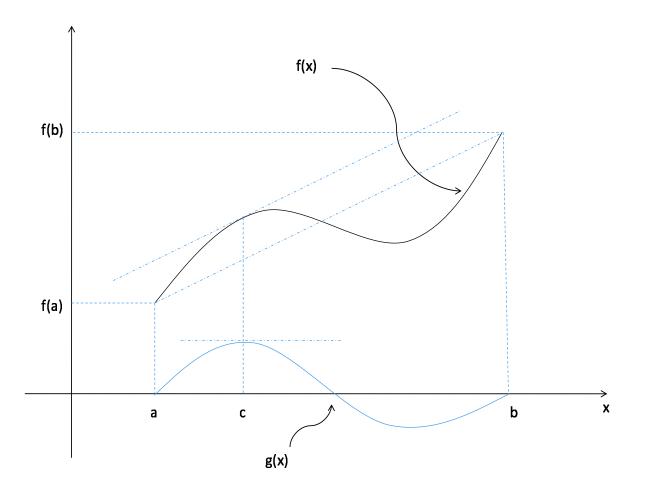


Figure 1: The Mean Value Theorem.