
Economics 204 Summer/Fall 2011
Lecture 3–Wednesday July 27, 2011

Section 2.1. Metric Spaces and Normed Spaces

Here we seek to generalize notions of distance and length in Rn to abstract settings.

Definition 1 A metric space is a pair (X, d), where X is a set and d : X × X → R+ a
function satisfying

1. d(x, y) ≥ 0, d(x, y) = 0⇔ x = y ∀x, y ∈ X

2. d(x, y) = d(y, x) ∀x, y ∈ X

3. triangle inequality:
d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X

y
↗ ↘

x → z

A function d : X ×X → R+ satisfying 1-3 is called a metric on X.

A metric gives a notion of distance between elements of X.

Definition 2 Let V be a vector space over R. A norm on V is a function ‖ · ‖ : V → R+

satisfying

1. ‖x‖ ≥ 0 ∀x ∈ V

2. ‖x‖ = 0⇔ x = 0 ∀x ∈ V

3. triangle inequality:
‖x + y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ V

x
x↗ ↘ y
0 → x + y
y ↘ ↗ x

y

4. ‖αx‖ = |α|‖x‖ ∀α ∈ R, x ∈ V

A normed vector space is a vector space over R equipped with a norm.
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A norm gives a notion of length of a vector in V .

Example: In Rn, the standard notion of distance between two vectors x and y measures

the length of the difference x− y, i.e., d(x, y) = ‖x− y‖ =
√

∑n
i=1(xi − yi)2.

In an abstract normed vector space, the norm can be used analogously to define a notion
of distance.

Theorem 3 Let (V, ‖ · ‖) be a normed vector space. Let d : V × V ⇒ R+ be defined by

d(v, w) = ‖v − w‖

Then (V, d) is a metric space.

Proof: We must verify that d satisfies all the properties of a metric.

1. Let v, w ∈ V . Then by definition, d(v, w) = ‖v − w‖ ≥ 0 (why?), and

d(v, w) = 0 ⇔ ‖v − w‖ = 0

⇔ v − w = 0

⇔ (v + (−w)) + w = w

⇔ v + ((−w) + w) = w

⇔ v + 0 = w

⇔ v = w

2. First, note that for any x ∈ V , 0 · x = (0 + 0) · x = 0 · x + 0 · x, so 0 · x = 0. Then
0 = 0 · x = (1− 1) · x = 1 · x + (−1) · x = x + (−1) · x, so we have (−1) · x = (−x).
Then let v, w ∈ V .

d(v, w) = ‖v − w‖

= | − 1|‖v − w‖

= ‖(−1)(v + (−w))‖

= ‖(−1)v + (−1)(−w)‖

= ‖ − v + w‖

= ‖w + (−v)‖

= ‖w − v‖

= d(w, v)

3. Let u, w, v ∈ V .

d(u, w) = ‖u− w‖

= ‖u + (−v + v)−w‖

= ‖u− v + v − w‖

≤ ‖u− v‖+ ‖v −w‖

= d(u, v) + d(v, w)
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Thus d is a metric on V .

Examples of Normed Vector Spaces

• En: n-dimensional Euclidean space.

V = Rn, ‖x‖2 = |x| =

√

√

√

√

n
∑

i=1

(xi)2

• V = Rn, ‖x‖1 =
n
∑

i=1
|xi| (the “taxi cab” norm or L1 norm)

• V = Rn, ‖x‖∞ = max{|x1|, . . . , |xn|} (the maximum norm, or sup norm, or L∞ norm)

• C([0, 1]), ‖f‖∞ = sup{|f(t)| : t ∈ [0, 1]}

• C([0, 1]), ‖f‖2 =
√

∫ 1
0 (f(t))2 dt

• C([0, 1]), ‖f‖1 =
∫ 1
0 |f(t)| dt

Theorem 4 (Cauchy-Schwarz Inequality)
If v, w ∈ Rn, then

(

n
∑

i=1

viwi

)2

≤

(

n
∑

i=1

v2
i

)(

n
∑

i=1

w2
i

)

|v · w|2 ≤ |v|2|w|2

|v ·w| ≤ |v||w|

Proof: Read the proof in de La Fuente.

The Cauchy-Schwarz Inequality is essential in proving the triangle inequality in En.
Deriving the triangle inequality in En from the Cauchy-Schwarz inequality is a good exercise.
The Cauchy-Schwarz inequality can also be viewed as a consequence of geometry in R2, in
particular the law of cosines. Note that for v, w ∈ R2, v · w = |v||w| cos θ where θ is the
angle between v and w; see Figure 1.1

Notice that a given vector space may have many different norms. As a trivial example,
if ‖ · ‖ is a norm on a vector space V , so are 2‖ · ‖ and 3‖ · ‖ and k‖ · ‖ for any k > 0. Less
trivially, Rn supports many different norms as in the examples above. Different norms on a
given vector space yield different geometric properties; for example, see Figure 2 for different
norms on R2.

1From the law of cosines, (v−w)·(v−w) = v ·v+w ·w−2|v||w| cosθ. On the other hand, (v−w)·(v−w) =
v · v − 2v ·w + w · w, so v ·w = |v||w| cosθ.
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Figure 1: θ is the angle between v and w.

Definition 5 Two norms ‖ ·‖ and ‖ ·‖∗ on the same vector space V are said to be Lipschitz-
equivalent ( or equivalent ) if ∃m, M > 0 s.t. ∀x ∈ V ,

m‖x‖ ≤ ‖x‖∗ ≤M‖x‖

Equivalently, ∃m, M > 0 s.t. ∀x ∈ V, x 6= 0,

m ≤
‖x‖∗

‖x‖
≤M

If two norms are equivalent, then they define the same notions of convergence and con-
tinuity. For topological purposes, equivalent norms are indistinguishable. For example,
suppose two norms ‖ · ‖ and ‖ · ‖∗ on the vector space V are equivalent, and fix x ∈ V . Let
Bε(x, ‖ · ‖) denote the ‖ · ‖-ball of radius ε about x; similarly, let Bε(x, ‖ · ‖∗) denote the
‖ · ‖∗-ball of radius ε about x. That is,

Bε(x, ‖ · ‖) = {y ∈ V : ‖x− y‖ < ε}

Bε(x, ‖ · ‖∗) = {y ∈ V : ‖x− y‖∗ < ε}

Then for any ε > 0,
B ε

M
(x, ‖ · ‖) ⊆ Bε(x, ‖ · ‖∗) ⊆ B ε

m
(x, ‖ · ‖)

See Figure 3.

In Rn (or any finite-dimensional normed vector space), all norms are equivalent. This
says roughly that, up to a difference in scaling, for topological purposes there is a unique
norm in Rn.

Theorem 6 All norms on Rn are equivalent.2

2The statement of the theorem in de la Fuente (Theorem 10.8, p. 107) is correct, but the proof has a
problem.
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However, infinite-dimensional spaces support norms that are not equivalent. For example,
on C([0, 1]), let fn be the function

fn(t) =







1− nt if t ∈
[

0, 1
n

]

0 if t ∈
(

1
n
, 1
]

Then
‖fn‖1
‖fn‖∞

=
1
2n

1
=

1

2n
→ 0

Definition 7 In a metric space (X, d), a subset S ⊆ X is bounded if ∃x ∈ X, β ∈ R such
that ∀s ∈ S, d(s, x) ≤ β.

In a metric space (X, d), define

Bε(x) = {y ∈ X : d(y, x) < ε}

= open ball with center x and radius ε

Bε[x] = {y ∈ X : d(y, x) ≤ ε}

= closed ball with center x and radius ε

We can use the metric d to define a generalization of “radius”. In a metric space (X, d),
define the diameter of a subset S ⊆ X by

diam (S) = sup{d(s, s′) : s, s′ ∈ S}

Similarly, we can define the distance from a point to a set, and distance between sets, as
follows:

d(A, x) = inf
a∈A

d(a, x)

d(A, B) = inf
a∈A

d(B, a)

= inf{d(a, b) : a ∈ A, b ∈ B}

Note that d(A, x) cannot be a metric (since a metric is a function on X×X, the first and
second arguments must be objects of the same type); in addition, d(A, B) does not define a
metric on the space of subsets of X (why?).3

Section 2.2. Convergence of Sequences in Metric Spaces

Definition 8 Let (X, d) be a metric space. A sequence {xn} converges to x (written xn → x
or limn→∞ xn = x) if

∀ε > 0 ∃N(ε) ∈ N s.t. n > N(ε)⇒ d(xn, x) < ε

3Another, more useful notion of the distance between sets is the Hausdorff distance, given by d(A, B) =
max{supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)}.
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Notice that this is exactly the same as the definition of convergence of a sequence of real
numbers, except we replace the standard measure of distance | · | in R by the general metric
d.

Theorem 9 (Uniqueness of Limits) In a metric space (X, d), if xn → x and xn → x′,
then x = x′.

·x
· ↓ ε

xn · ↓

· · · ·
^
_ ε = d(x,x′)

2

· ↑
· ↑ ε
·x′

Proof: Suppose {xn} is a sequence in X, xn → x, xn → x′, x 6= x′. Since x 6= x′, d(x, x′) > 0.
Let

ε =
d(x, x′)

2

Then there exist N(ε) and N ′(ε) such that

n > N(ε) ⇒ d(xn, x) < ε

n > N ′(ε) ⇒ d(xn, x′) < ε

Choose
n > max{N(ε), N ′(ε)}

Then

d(x, x′) ≤ d(x, xn) + d(xn, x′)

< ε + ε

= 2ε

= d(x, x′)

d(x, x′) < d(x, x′)

a contradiction.

Definition 10 An element c is a cluster point of a sequence {xn} in a metric space (X, d)
if ∀ε > 0, {n : xn ∈ Bε(c)} is an infinite set. Equivalently,

∀ε > 0, N ∈ N ∃n > N s.t. xn ∈ Bε(c)
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Example:

xn =

{

1− 1
n

if n even
1
n

if n odd

For n large and odd, xn is close to zero; for n large and even, xn is close to one. The sequence
does not converge; the set of cluster points is {0, 1}.

If {xn} is a sequence and n1 < n2 < n3 < · · · then {xnk
} is called a subsequence.

Note that a subsequence is formed by taking some of the elements of the parent sequence,
in the same order.

Example: xn = 1
n
, so {xn} =

(

1, 1
2
, 1

3
, . . .

)

. If nk = 2k, then {xnk
} =

(

1
2
, 1

4
, 1

6
, . . .

)

.

Theorem 11 (2.4 in De La Fuente, plus ...) Let (X, d) be a metric space, c ∈ X, and
{xn} a sequence in X. Then c is a cluster point of {xn} if and only if there is a subsequence
{xnk
} such that limk→∞ xnk

= c.

Proof: Suppose c is a cluster point of {xn}. We inductively construct a subsequence that
converges to c. For k = 1, {n : xn ∈ B1(c)} is infinite, so nonempty; let

n1 = min{n : xn ∈ B1(c)}

Now, suppose we have chosen n1 < n2 < · · · < nk such that

xnj
∈ B 1

j
(c) for j = 1, . . . , k

{n : xn ∈ B 1

k+1

(c)} is infinite, so it contains at least one element bigger than nk, so let

nk+1 = min
{

n : n > nk, xn ∈ B 1

k+1

(c)
}

Thus, we have chosen n1 < n2 < · · · < nk < nk+1 such that

xnj
∈ B 1

j
(c) for j = 1, . . . , k, k + 1

Thus, by induction, we obtain a subsequence {xnk
} such that

xnk
∈ B 1

k
(c)

Given any ε > 0, by the Archimedean property, there exists N(ε) > 1/ε.

k > N(ε) ⇒ xnk
∈ B 1

k
(c)

⇒ xnk
∈ Bε(c)

so
xnk
→ c as k →∞
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Conversely, suppose that there is a subsequence {xnk
} converging to c. Given any ε > 0,

there exists K ∈ N such that

k > K ⇒ d(xnk
, c) < ε⇒ xnk

∈ Bε(c)

Therefore,
{n : xn ∈ Bε(c)} ⊇ {nK+1, nK+2, nK+3, . . .}

Since nK+1 < nK+2 < nK+3 < · · ·, this set is infinite, so c is a cluster point of {xn}.

Section 2.3. Sequences in R and Rm

Definition 12 A sequence of real number {xn} is increasing (decreasing) if xn+1 ≥ xn

(xn+1 ≤ xn) for all n.

Definition 13 If {xn} is a sequence of real numbers, {xn} tends to infinity (written xn →∞
or limxn =∞) if

∀K ∈ R ∃N(K) s.t. n > N(K)⇒ xn > K

Similarly define xn → −∞ or limxn = −∞.

Notice we don’t say the sequence converges to infinity; the term “converge” is limited to the
case of finite limits.

Theorem 14 (Theorem 3.1’) Let {xn} be an increasing (decreasing) sequence of real num-
bers. Then limn→∞ xn = sup{xn : n ∈ N} ( limn→∞ xn = inf{xn : n ∈ N} ). In particular,
the limit exists.

Proof: Read the proof in the book, and figure out how to handle the unbounded case.

Lim Sups and Lim Infs:4

Consider a sequence {xn} of real numbers. Let

αn = sup{xk : k ≥ n}

= sup{xn, xn+1, xn+2, . . .}

βn = inf{xk : k ≥ n}

Either αn = +∞ for all n, or αn ∈ R and α1 ≥ α2 ≥ α3 ≥ · · ·. Either βn = −∞ for all n,
or βn ∈ R and β1 ≤ β2 ≤ β3 ≤ · · ·.

4See the handout for this material.
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Definition 15

lim sup
n→∞

xn =

{

+∞ if αn = +∞ for all n
limαn otherwise.

lim inf
n→∞

xn =

{

−∞ if βn = −∞ for all n
limβn otherwise.

Theorem 16 Let {xn} be a sequence of real numbers. Then

limn→∞ xn = γ ∈ R ∪ {−∞,∞}
⇔ lim supn→∞

xn = lim infn→∞ xn = γ

Theorem 17 (Theorem 3.2, Rising Sun Lemma) Every sequence of real numbers con-
tains an increasing subsequence or a decreasing subsequence or both.

◦ ← ← ← ← ← ← ← ← ← ← ← ← S
• • • • ◦ ← ← ← ← ← ← ← ← U
• • • • • ◦ ← ← ← N

• • •
•

Proof: Let
S = {s ∈ N : xs > xn ∀n > s}

Either S is infinite, or S is finite.

If S is infinite, let

n1 = minS

n2 = min (S \ {n1})

n3 = min (S \ {n1, n2})
...

nk+1 = min (S \ {n1, n2, . . . , nk})

Then n1 < n2 < n3 < · · ·.

xn1
> xn2

since n1 ∈ S and n2 > n1

xn2
> xn3

since n2 ∈ S and n3 > n2

...

xnk
> xnk+1

since nk ∈ S and nk+1 > nk

...
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so {xnk
} is a strictly decreasing subsequence of {xn}.

If S is finite and nonempty, let n1 = (maxS) + 1; if S = ∅, let n1 = 1. Then

n1 6∈ S so ∃n2 > n1 s.t. xn2
≥ xn1

n2 6∈ S so ∃n3 > n2 s.t. xn3
≥ xn2

...

nk 6∈ S so ∃nk+1 > nk s.t. xnk+1
≥ xnk

...

so {xnk
} is a (weakly) increasing subsequence of {xn}.

Theorem 18 (Thm. 3.3, Bolzano-Weierstrass) Every bounded sequence of real num-
bers contains a convergent subsequence.

Proof: Let {xn} be a bounded sequence of real numbers. By the Rising Sun Lemma, find
an increasing or decreasing subsequence {xnk

}. If {xnk
} is increasing, then by Theorem 3.1’,

limxnk
= sup{xnk

: k ∈ N} ≤ sup{xn : n ∈ N} < ∞, since the sequence is bounded; since
the limit is finite, the subsequence converges. Similarly, if the subsequence is decreasing, it
converges.
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Figure 2: The unit ball around 0 in different norms on R2: standard ‖ · ‖2, ‖ · ‖1 (L1 or taxi
cab norm) and ‖ · ‖∞ (sup norm or L∞ norm).
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Figure 3: All norms on Rn are equivalent.
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