
Economics 204
Fall 2011
Problem Set 1 Suggested Solutions

1. Suppose k is a positive integer. Use induction to prove the following
two statements.

(a) For all n ∈ N0, the inequality (k2 + n)! ≥ k2n holds.

(b) For all natural n ≥ 2k2, the inequality n! ≥ kn holds.

(Recall that the factorial of a non-negative integer n is defined by n! =∏n
m=1m with the convention 0! = 1.)

Solution:

(a) Base step n = 0: The RHS is k0 = 1, while the LHS equals (k2)!,
which is clearly greater or equal to 1 since k is a positive integer.

Induction step: Assume (k2 + n)! ≥ k2n holds for some n ∈ N.
Now consider the corresponding inequality for n+1. Starting from
the LHS, we have:

(k2 + n+ 1)! = (k2 + n)!(k2 + n+ 1)

≥ k2n(k2 + n+ 1)

= k2n+2 + k2n(n+ 1)

≥ k2(n+1),

where the first inequality follows from the inductions assumption.
So by mathematical induction, (k2 + n)! ≥ k2n for all n ∈ N0.

(b) Base step n = 2k2: The LHS can now be expressed as:

(2k2)! = (k2 + k2)!,

while the RHS equals k2k2 . The inequality (2k2)! ≥ k2k2 then
follows from part (a) of this problem for n = k2.
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Induction step: Assume n! ≥ kn holds for some n ≥ 2k2. Now
for n+ 1, we have:

(n+ 1)! = n!(n+ 1)

≥ kn(n+ 1)

> kn(2k2)

> kn+1,

where the first inequality follows from the induction assumption
and the second one from the fact that n + 1 > n ≥ 2k2. So by
mathematical induction, n! ≥ kn for all n ≥ 2k2.

2. Let n be a positive integer, and suppose that n chords are drawn in
a circle, cutting the circle into a number of regions. Prove that the
regions can be colored with two colors in such a way that adjacent
regions (that is, regions that share an edge) are different colors.

Solution: We will prove this using mathematical induction.

The base step n=1 is trivial.

Induction step: Assume that the hypothesis holds for all circles with
n chords. Now consider a circle with n+1 chords. Number these chords
from 1 to n+ 1. Now we color the circle in the following manner:

• Take the first n chords (those numbered 1 to n) and assume that
they divide the circle into K regions. Denote them A1, A2, . . . , AK
and call their collection A:

A = {Ai : i ∈ N, i ≤ K}

Color the regions in A so that they satisfy the desired property
(this coloring is possible by the induction assumption).

• Now consider the regions defined by all n+1 chords, preserving the
coloring from the previous step. Similarly to above, let the n+ 1
chords divide the circle into K ′ ≥ K regions. Call the collections
of these regions B:

B = {Bi : i ∈ N, i ≤ K ′}.
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Notice that for each Bi ∈ B we have Bi ⊆ Aj for some j. Unless
the n + 1-st chord coincides with one of the other n chords, the
coloring now does not satisfy the desired property since adjacent
regions in B whose border lies on the n + 1-st chord are part of
the same region in A and thus have the same color.

• On its own (i.e. without any of the other chords), the n+1-st chord
partitions the circle into two parts. Similarly, it also partitions B
into two parts: call them U and V .

• Flip all the colors for all regions in U : if the two colors are fuchsia
and lime for example, change the color of all fuchsia regions to lime
and vice versa. Keep the colors of all regions in V unchanged.

We now need to show that this coloring satisfies the desired properties.
To do that we just need to consider any pair of adjacent regions in B:
without loss of generality, call them B1 and B2. There are two cases to
consider.

• B1 and B2’s common edge is not the n+ 1-st chord: in this case,
there are Ai, Aj ∈ A such that B1 = Ai and B2 = Aj. Further-
more, either {B1, B2} ⊆ V or {B1, B2} ⊆ U . Since the initial
coloring satisfied the desired property for the regions in A, the
two regions (B1 = Ai and B2 = Aj) must be colored differently
(even if they are in U and had their colors reversed).

• B1 and B2’s common edge is the n + 1-st chord: in this case,
there exists Ai ∈ A such that B1 and B2 partition Ai. This means
that with the original coloring, B1 and B2 had the same color.
Furthermore, we also know that exactly one from B1 and B2 is a
member of U , while the other one is a member of V . Therefore,
exactly one from B1 and B2 had its color changed. Thus the two
regions are now colored differently.

Please see Figure 1 for an illustration of the construction of the coloring
in the induction step for the case n = 3. The first panel shows a coloring
for the regions defined by three of the four chords. The second panel
adds the fourth chord; in the third panel, the colors in the regions
“above” that chord are reversed, creating a coloring that satisfies the
requirements.
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Figure 1: Coloring Construction in the Induction Step

3. Define the relation ∼ on the space of all sets in the following manner:
A ∼ B iff there exists a bijection f : A → B. Show that ∼ is an
equivalence relation. (Notice that this is just the definition of numer-
ical equivalence. The problem is asking you to prove that numerical
equivalence is indeed an equivalence relation, as the name suggests.)

Solution: We need to show that the ∼ relation is reflexive, symmetric,
and transitive. Let X, Y , and Z in the following denote sets.

• Reflexive: Consider the identity function f : X → X defined by
f(x) = x. It is obviously both 1-1 and onto. Hence X ∼ X.

• Symmetric: Let X ∼ Y . Then there exists an 1-1 and onto func-
tion f : X → Y . Now consider its inverse f−1 : Y → 2X , defined
as usual by f−1(y) = {x : f(x) = y}. This is a well-defined func-
tion from Y to X since f is 1-1 (so f−1(y) is at most a singleton
set for all y ∈ Y ) and onto (so f−1 is non-empty for all y ∈ Y ).

Furthermore, it is 1-1 and onto. If it weren’t 1-1, we would have
y 6= y′, such that f−1(y) = f−1(y′), which implies two different
values for some f(x), which is impossible. The inverse function is
onto since f ’s domain is all of X. Since f−1 is a bijection from Y
to X, the two sets are numerically equivalent and Y ∼ X.

• Transitive: Let X ∼ Y and Y ∼ Z with the corresponding bijec-
tions f : X → Y and g : Y → Z. Consider the composition of f
and g, g ◦ f : X → Z, defined by (g ◦ f)(x) = g(f(x)). Since f
and g are both 1-1, we have:

x 6= x′ ⇒ f(x) 6= f(x′)⇒ g(f(x)) 6= g(f(x′)).
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Therefore, g ◦ f is 1-1. Further, since f and g are both onto (and
hence f(X) = Y and f(Y ) = Z), we have:

(g ◦ f)(X) = g(f(X)) = g(Y ) = Z.

So g ◦ f is also onto. Hence g ◦ f is a bijection and X ∼ Z.

4. Prove that the countable union of countable sets is countable.

Solution:

Since we have countably many sets, we can enumerate them using the
space of integers Z as an index. In other words, let the countable
collection of sets be: {Ai}i∈Z. Similarly, we can enumerate the elements
in each of the sets Ai: Ai = {aij}j∈Z\{0} (notice that now we are using
the integers without zero as the index set for the elements of Ai, which
is permissible since Z\{0} is also countable). Using this notation, the
union is:

U =
⋃
{Ai}i∈Z = {aij}i,j∈Z,j 6=0.

But U then clearly has the same cardinality as the set

Q = { i
j

: i, j ∈ Z, j 6= 0},

which is the set of all rationals and is countable.

You cannot use induction to prove this statement since the principle
of induction can be used to prove only statements of the form “all
natural numbers larger than or equal to n0 have the property P”. It
is relatively easy to come up with examples of properties that hold for
any collection of finitely many sets but fail for countably many sets:
for example, think about the intersection of open sets and whether it
is open.

Aside: This proof used the fact that Q is countable. A direct (but
more ungainly) proof could enumerate the sets Ai and the elements
aij in each set using N (i.e. U = {aij}i,j∈N) and then we can define

f : N → U by f(n) = {aij : i + j = mn + 2; i = n − (mn+1)mn

2
}, where

mn = max{m ∈ N0 : (m+1)m
2

< n}. Then one can verify that f(n) is
always a singleton and hence f is a function, and that f is a bijection.
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This function simply adapts and formalizes the “picture” argument
presented for the countability of Q.

Bigger aside: This problem originally also asked you to prove that
the uncountable union of countable sets is uncountable, which is incor-
rect without an additional assumption. To see that, we can just take
uncountably many copies of N; naturally, their union (N) is countable.
Apologies for the confusion!

An additional sufficient condition is that the sets are pairwise disjoint.
Then, similarly to the previous proof, we can let:

U = {aij}i∈I;j∈N,

where I is some uncountable set. Importantly, due to the additional
assumption, we have: aij 6= ai

′

j′ whenever (i, j) 6= (i′, j′).

Let also:
V = {ai1}i∈I .

It is clear that V and I have the same cardinality (i.e. V has uncount-
ably many distinct elements) but also V ⊂ U . Thus U is a superset of
an uncountable set and is therefore itself uncountable.

Notice that the sets being pairwise unequal does not suffice to guarantee
that the union will be uncountable. To see that, let P∞(N) be the
collection of all infinite subsets of N. It is clear that all elements of
P∞(N) are countable sets and pairwise unequal. However, we can show
that P∞(N) itself is uncountable1, while the union of the elements of
P∞(N) equals N.

5. Suppose A ⊆ R+, b ∈ R+, and for every list a1, a2, . . . , an of finitely
many distinct elements of A, a1 + a2 + · · · + an ≤ b. Prove that A is
at most countable (i.e. either finite or countable). (Hint: Consider the
sets An = {x ∈ A|x ≥ 1/n}. Feel free to use problem 4.)

Solution: If A is finite, we are done. Assume instead that A is an
infinite set. Let An = {x ∈ A|x ≥ 1/n} for all n ∈ N.

1Showing this is somewhat challenging. If you want to try, you can think about a
mapping from P∞(N) into [0, 1]; in particular, think about the binary expansion of the
elements in [0, 1]. Equivalently, you can prove that there are countably many finite subsets
of N (i.e. P(N)\P∞(N) is countable): show that the collection of subsets of N with k
elements is countable for all k ∈ N (try mapping it into Nk) and then use this problem.
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Notice that an arbitrary set An cannot have more than nb elements.
Otherwise, for the sum of nb + 1 elements that all belong to An, we
would have:

a1 + · · ·+ anb+1 ≥ (nb+ 1)(1/n) = b+ 1/n > b,

which is impossible by the assumptions on A. Therefore An is finite for
all n.

By the Archimedean property, however, we have:

A ⊆
∞⋃
n=0

An,

where A0 = {0}. Notice that the set inclusion follows from the fact
that for all a ∈ A: either a = 0 ∈ A0, or a > 0 and ∃n̄ ∈ N : 1/n̄ < a
so a ∈ An̄.

So A is a subset of a countable union of finite sets, which implies that
A is at most countable by Problem 4.

6. Consider the space R∞ of all sequences x = {x1, x2, ...} of real numbers.
Define the function d : R∞ × R∞ → R by:

d(x, y) =
∞∑
n=1

1

2n
|xn − yn|

1 + |xn − yn|
.

(a) Show that d is well-defined (i.e. d(x, y) <∞ for all x, y ∈ R∞).

(b) Show that d is a metric on R∞.

(c) A metric d is said to be induced by a norm φ if

d(x, y) = φ(x− y),

where x − y = (x1 − y1, x2 − y2, . . .). Show that d is not induced
by any norm on R∞.

Solution:
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(a) For any x, y ∈ R∞, we have:

d(x, y) =
∞∑
n=1

1

2n
|xn − yn|

1 + |xn − yn|

<

∞∑
n=1

1

2n

= 1,

where the inequality follows from the fact that for any α ≥ 0 :
α

1+α
< 1.

(b) Since 1
2n

|xn−yn|
1+|xn−yn| ≥ 0 for any xn, yn ∈ R, d(x, y) ≥ 0 as the

(infinite) sum of non-negative reals. The expression holds with
an equality iff xn = yn. Therefore d(x, y) = 0 iff xn = yn for all
n ∈ N. Since |a−b| = |b−a|, it is easy to see that d(x, y) = d(y, x).

Notice that to show that d(x, z) ≤ d(x, y) + d(y, z), it suffices to
show:

|xn − zn|
1 + |xn − zn|

≤ |xn − yn|
1 + |xn − yn|

+
|yn − zn|

1 + |yn − zn|

for all n. Now for notational simplicity, fix n and let:

|xn − zn| = α

|xn − yn| = β

|yn − zn| = γ,

where by the triangle inequality we have: α ≤ β + γ. Modifying
the expression that we need to show:

α

1 + α
≤ β

1 + β
+

γ

1 + γ

⇔ α(1 + β)(1 + γ) ≤ β(1 + α)(1 + γ) + γ(1 + α)(1 + β)

⇔ α + αβ + αγ + αβγ ≤ β + βα + βγ + αβγ + γ + γα + γβ + αβγ

⇔ α ≤ β + γ + 2βγ + αβγ

Since α, β, γ ≥ 0, the last inequality is implied by the triangle
inequality α ≤ β + γ.
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(c) Assume toward contradiction that d is induced by some norm φ.
Then for some x 6= y, we have: d(x, y) = φ(x − y) > 0. Let
φ(x− y) = c > 0. Then, since φ is a norm, we have:

2 =
2

c
c

=
2

c
φ(x− y)

= φ(
2

c
(x− y))

= φ(
2

c
x− 2

c
y)

= d(
2

c
x,

2

c
y),

but in part (a) we showed that d(·, ·) < 1. This is a contradiction
and, therefore, d is not induced by a norm on R∞.

A norm’s property that φ(ax) = |α|φ(x) suggests that the range
of a norm φ : X → R+ must be unbounded. Therefore, this
proof can be adapted to show that any metric that is bounded
(i.e. ρ(x, y) < M for all x, y ∈ X and some M > 0) is not induced
by a norm.

7. Suppose that {an} is a sequence of real numbers and {bn} is a sequence
obtained by some rearrangement of the terms of {an} (in other words,
{an} and {bn} have exactly the same terms, and repeated terms appear
the same number of times in {bn} as in {an}). Prove that {an} → x iff
{bn} → x.

Solution: Assume {an} → x. Now we need to show {bn} → x. We
will show this directly using the definition of convergent sequences. Fix
ε > 0. We know:

∃N ∈ N : ∀m ≥ N, am ∈ Bε(x).

Thus, there are finitely many (at most N − 1) elements of {an} (and
hence of {bn}) that are not in Bε(x). Let the highest index of those
elements in {bn} be M . Then ∀m > M : bm ∈ Bε(x). But since ε
was arbitrary, this implies {bn} → x. The proof that {bn} → x implies
{an} → x is identical.
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