
Economics 204
Fall 2011
Problem Set 2 Suggested Solutions

1. Determine whether the following sets are open, closed, both or neither under
the topology induced by the usual metric. (Hint: think about limit points of
those sets.)

(a) The interval (0, 1) as a subset of R

Solution. Open, not closed. Any point is an interior point. Also note
that 1 is a limit point.

(b) The interval (0, 1) as a subset of R2, that is {(x, 0) ∈ R2 | x ∈ (0, 1)}
Solution. Not open, not closed — none of its points are interior points
(remember though, only need to find one for it to be not open) and (1, 0)
is a limit point not in the set.

(c) R as the subset of R

Solution. Open and closed.

(d) R imbedded as a subset {(x, 0) ∈ R2 | x ∈ R} of R2

Solution. Not open, as none of its points are interior points. It is closed.

(e) {1/n | n ∈ N} as a subset of R

Solution. Not open, not closed (note that zero is a limit point).

(f) {1/n | n ∈ N} as a subset of the interval (0,∞).

Solution. Not open, closed.

2. Consider the following two sets:

A ={(x, y) ∈ R2 | x2 − y2 ≤ 3}
B ={(x, y) ∈ R2 | y >

√
|x|}

(a) Using the “pre-image of a closed set is closed (under a continuous func-
tion)” definition, determine whether sets A and B are open, closed, both
or neither

Solution.

Set A. Closed, not open. First, note that if a function g : R → R is
continuous, then the functions H, G : R2 → R defined by:

G(x, y) = g(x) and H(x, y) = g(y)
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are continuous. Then for some open A ⊂ R we have:

G−1(A, R) = g−1(A)×R
H−1(A, R) = R× g−1(A).

If g is continuous, g−1(A) is open. Since R is open, G−1(A) and H−1(A)
are also open and, hence, G and H are continuous.

We can then use this to show that the function f : R2 → R defined by
f(x, y) = x2 − y2 is continuous. Letting H(x, y) = y2 and G(x, y) = x2,
H(x, y) and G(x, y) are continuous on R2 by the argument above and hence
f = G −H is continuous as well. Now consider the set we are interested
in:

A = {(x, y) ∈ R2 |x2 − y2 ≤ 3}
= {(x, y) ∈ R2 | f(x, y) ≤ 3}
= f−1 ((−∞, 3])

f is continuous and (−∞, 3] is closed; therefore, the set under consideration
must be closed as it is a continuous inverse image of a closed set.

The set is not open. We see that (2, 1) is an element of it and any open
ball around (2, 1) contains some (x′, y′) with x′ > 2 and y′ > 1. Clearly
though, (x′, y′) is not an element of our set.

Set B. Open, not closed. Observe that Theorem 7 in Lecture 4 assures us
that composition of continuous functions is a continuous function, i.e. if
g(x) = |x| and h(x) =

√
x, then the function r(x) = h ◦ g is continuous

as well. Now, as above, letting H(x, y) = r and G(x, y) = y, H(x, y) and
G(x, y) are continuous on R2 and hence f = G−H is continuous as well.
Now consider the set we are interested in:

B = {(x, y) ∈ R2 | y >
√
|x|}

= {(x, y) ∈ R2 | f(x, y) > 0}
= f−1 ((0,∞))

f is continuous and (0,∞) is open; therefore, the set under consideration
must be open as it is a continuous inverse image of a closed set.

The set is not closed. We see that, note (0, 0) is a limit point of B but it
is not an element of our set.

(b) Find their closure, exterior and boundary.

Solution.

Set A.

∂A = {(x, y) ∈ R2 | x2 − y2 = 3}
extA = {(x, y) ∈ R2 | x2 − y2 > 3}

Ā = {(x, y) ∈ R2 | x2 − y2 ≤ 3}
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Set B.

∂B = {(x, y) ∈ R2 | y =
√
|x|}

extB = {(x, y) ∈ R2 | y <
√
|x|}

B̄ = {(x, y) ∈ R2 | y ≥
√
|x|}

3. Let A,B ⊂ X. Suppose that intA = intB = ∅.

(a) Prove that if A is closed in X, then int (A ∪B) = ∅.
Solution. Let int A = int B = ∅ and A is closed in X, but assume to
contradiction that int (A ∪ B) 6= ∅. Then , there exists some point x ∈ X
with its open neighborhood Ux that is contained entirely in intA∪B. Lets
consider the following two cases:

Case A. Let suppose that Ux \ A 6= ∅. Notice that Ux \ A = Ux ∩ Ac and
because intersection of two open sets is open, Ux \ A is open. Now, if
y ∈ Ux \A then y ∈ intB, but if this is so, we get a contradiction because
Ux \ A ⊂ B and B has an empty interior.

Case B. Let suppose now that Ux \ A = ∅, which means if x ∈ Ux ⊂ A
then x ∈ intA. As before we get a contradiction that proves us the result
we seek.

(b) Give an example with int (A ∪B) 6= ∅ if A isn’t necessarily closed in X.

Solution. Let X = R, A = Q, and B = R \Q. Notice that intA = int
B = ∅ because Q and R \ Q are dense sets and for any x ∈ R and any
open Ux containing x, both rational and irrational points are contained in
Ux. Also, observe that neither Q nor R \Q are closed in R. Finally, we
have A ∪B = R and, definitely, intR 6= ∅.

4. Let f be a monotonic, increasing function from R to R. Suppose that f(0) > 0
and f(100) < 100. Prove that f(x) = x for some x ∈ (0, 100).

Solution. We provide two solutions, with the first one being more intuitive
and the second one being more rigorous. Suppose that we have f(0) > 0 and
f(100) < 100. Set a0 = 0 and b0 = 100. If f(50) = 50 then we stop, otherwise
either f(50) < 50 or f(50) > 50. If f(50) < 50, set a1 = a0 and b1 = 50; if
f(50) > 50, set a1 = 50 and b1 = b0. Now, lets repeat this process on (a1, b1),
(a2, b2), . . . . This yields a sequence of open intervals {(an, bn)} such that for
all n ∈ N we have

f(an) > an

f(bn) < bn
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and

bn − an =
1

2n
· 100.

Also, we can immediately see that {an} is an increasing sequence and {bn} is
an decreasing sequence. By monotonicity of f(x) we get that {f(an)} is an
increasing sequence and {f(bn)} is a decreasing one. Moreover, for all n ∈ N
we must have f(an) ≤ f(bn).

We claim that
lim
n→∞

an = lim
n→∞

bn = x∗

and that
f(x∗) = x∗.

To see this, notice that both {an} and {bn} are bounded and monotonic, thus,
both limn→∞ an = a and limn→∞ bn = b exist. Moreover, we must have a = b,
because otherwise b− a > 0 and ∃N such that for all n > N we have

|an − bn| <
1

2
· 100 < b− a

But

|an − a| <
1

2
· (b− a) and |bn − b| <

1

2
· (b− a)

which is a contradiction and we must have a = b = x∗.

Also, let

lim
n→∞

f(an) = y

lim
n→∞

f(bn) = z

and f(an) < f(x∗) < f(bn) for all n ∈ N, which implies that y ≤ f(x∗) ≤ z.
Notice that by construction for all n ∈ N we have f(an) > an and f(bn) < bn.
Thus, we get that z ≤ x∗ ≤ y, or that

x∗ ≤ y ≤ f(x∗) ≤ z ≤ x∗.

This means that y = z = x∗ = f(x∗).

Now, we provide our second proof that does not rely on the iterative process of
“shrinking intervals.” Lets consider a set

A = {x ∈ (0, 100) | f(x) ≥ x}

Observe that A is non-empty and bounded, thus, it has a finite supremum which
we will denote by x∗. We claim that f(x∗) ≥ x∗. To see this, note that for all
x ∈ A we have x ≤ x∗ and that by monotonicity of f we must have

x ≤ f(x) ≤ f(x∗) for all x ∈ A,
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from which it follows that x∗ ≤ f(x∗) because f(x∗) is also an upper bound for
A and x∗ = supA.

Now, if we can show that x∗ ≥ f(x∗) we would be done. To demonstrate that,
we will use again the fact that f(x) is monotonically increasing. So, suppose
to contradiction that x∗ < f(x∗). Take x∗ < x < f(x∗), which implies that
f(x∗) ≤ f(x) ≤ (f(f ∗)) since f is monotone. Putting this together, yields

x < f(x∗) ≤ f(x) ≤ f(f(x∗))

This, in turn, implies that x ∈ A but x > x∗, contradicting our definition of x∗

being a supremum of A. /par

then for all x such that x∗ < x < x∗+f(x∗)−x∗ we have f(x)−x ≥ f(x∗)−x >
f(x∗) − x∗ − f(x∗) + x∗ = 0, because f(x) is monotonically increasing. Thus,
f(x) > x > x∗, but this contradicts the definition of x∗ as the supremum of all
x such that x ≤ f(x).

We are done.

5. Call a mapping of X into Y open if f(V ) is an open set in Y whenever V is
an open set in X. Prove that every continuous open mapping of R into R is
monotonic.

Solution. We prove it by contradiction. Without any loss of generality, assume
there are two points x, z ∈ X with x < z such that f(x) = f(z) but f is not
constant on (x, z). If it would be constant, we immediately get a contradiction
as the pre-image of a closed set (point) would be open.

Now, since f is not constant and it is continuous, it achieves on (x, z) its max-
imum, M , where for all y ∈ [x, z] : f(y) ≤ M, its minimum, m, where for all
y ∈ [x, z] : f(y) ≥ m, or both. Lets suppose it achieves its maximum at some
y ∈ (x, z). So, take an open neighborhood Uy ∈ (x, y). By our assumption f(Uy)
is open, but this means that M + ε ∈ f(Uy) for some arbitrarily small ε > 0.
Thus, we arrive at contradiction as M can’t be maximum, or, in other words,
M can’t be an interior point of Uy. The case of minimum is handled similarly.

6. Suppose that {xn} is a convergent sequence of points while lies, together with
its limit x, in a set X ⊂ Rn. Suppose that {fn} converges on X to the function
f .

(a) Is it true that f(x) = lim fn(xn)? Prove if true or provide counterexample.

Solution. Consider following counterexample: X = [0, 1], fn(x) = xn

and xn = 1− 1/n. It is easy to see that xn → 1 as n→∞,

fn(x)→
{

1, x = 1
0, otherwise
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and that

lim
n→∞

(
1− 1

n

)n
=

1

e

But clearly, we have 1/e 6= f(1) = 1. We definitely need stronger assump-
tions.

(b) Would you change your answer if you know that convergence of {fn} is
uniform on X? Again, prove if true or provide counterexample.

Solution. No. Even uniform convergence does not guarantee us this re-
sult. To see this consider the following example with f(x) being a Heaviside
step function:

f(x) =

{
1, x ≥ 0
0, x < 0

with xn = −1/n and fn(x) = f(x) + 1/n. Clearly, xn → 0 and fn converge
uniformly to f but limn→∞ fn(xn) = 0 6= 1 = f(0). Actually, to get the
result we seek, we need a uniform convergence to a continuous function f.

7. Some practice with contraction maps

(a) Let (X, d) be a space of continuous function on a closed interval [0, β] with
a supremum norm, i.e. X = C([0, β]), and d(f, g) = maxt |f(t) − g(t)|,
where β < 1. Define T : X → X by

(Tf)(t) =

∫ t

0

f(s) ds+ g(t),

for some continuous function g(t).

Show that T has a unique fixed point.1

Solution. Lets first show that C([0, β]) is a complete metric space, i.e.
that an arbitrary Cauchy sequence {fn(x)}∞n=1 in C([0, β]) converges. In
particular, we need to demonstrate that the limit of a Cauchy sequence
of continuous functions on [0, β], firstly, exists in the sense that for each
x ∈ [0, 1], lim fn(x) exists, and secondly, pointwise limit function, f(x), is
continuous on [0, β].

The first part follows immediately from the fact that Cauchy sequences
of real numbers converge (to real numbers) by the completeness of R ar-
gument. Hence, we are guaranteed the existence of our pointwise limit
function.

1Note that to invoke Contraction Mapping Theorem here, you need first to show that (X, d) is a
complete metric space. Completeness of R will come to your rescue here.
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Now, we just need to show continuity of f(x). Fix ε > 0 and consider
s, t ∈ [0, 1]. We have

|f(s)− f(t)| = |f(s)− fn(s) + fn(s)− f(t)|
≤ |f(s)− fn(s)|+ |fn(s)− f(t)|
= |f(s)− fn(s)|+ |fn(s)− fn(t) + fn(t)− f(t)|
≤ |f(s)− fn(s)|+ |fn(s)− fn(t)|+ |fn(t)− f(t)| (1)

From the definition of d(fn, f) and the fact that d(fn, f)→ 0 as n→∞,
there exists an N(ε) such that whenever n > N(ε), the first and last terms
on the RHS of (1) are less than ε/3. Furthermore, for any n, fn ∈ C([0, 1]).
Fix some n > N(ε). (Uniform) Continuity implies that there is a δn > 0
such that whenever |s − t| < δn ⇒ |fn(s) − fn(t)| < ε/3. Therefore, all
three terms of the RHS of (*) are less than ε/3. So we get that

|f(s)− f(t)| < ε, whenever |s− t| < δn

This proves that f is (uniformly) continuous.

Now, we show that T is a contraction.

d(Tf, Tg) = max
t∈[0, β]

|Tf(t)− Tg(t)|

= max
t∈[0, β]

|
∫ t

0

f(s) ds−
∫ t

0

g(s) ds|

≤ max
t∈[0, β]

∫ t

0

|f(s)− g(s)| ds

≤
∫ β

0

max
t∈[0, β]

{|f(t)− g(t)|} ds

= β·d(f, g)

(b) Now suppose (X, d) is an arbitrary complete metric space, but T : X → X
is an expansion, i.e. there exists β > 1 such that d(Tx, Ty) > βd(x, y) for
all x, y in X, and that T (X) = X. Show that T has a fixed point.

Solution. We will do it in a sequence of steps. Firstly, we will verify that
T is one-to-one and, thus, since it is also a surjection, the inverse must
exists. Secondly, we will argue that T−1 is a contraction. Finally, we will
invoke Contraction Mapping Theorem and show that the fixed point of
T−1 is also a fixed point of T.

Step 1 : verifying T is one-to-one, i.e. if x1 6= x2 then T (x1) 6= T (x2). But
this is immediate since x1 6= x2 implies directly that d(T (x1), T (x2)) >
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βd(x1, x2) > 0. Therefore, T is one-to-one. By our assumption, T is onto,
thus, there exists T−1 : X → X and T ◦ T−1 = id.

Step 2 : Show that T−1 is a contraction, i.e. there exists α < 1 such that
d(T−1(x1), T

−1(x2)) ≤ αd(x1, x2) for all x1, x2 ∈ X.
So, if T is one-to-one and onto, T−1 : X → X is also one-to-one and onto.
Therefore, we can apply expansion T to any arbitrary image of T−1 since
for any x ∈ X : T−1(x) ∈ X

d(T (T−1(x1)), T (T−1(x2)) ≥ βd(T−1(x1), T
−1(x2)) ⇐⇒

d(x1, x2) ≥ βd(T−1(x1), T
−1(x2)) ⇐⇒

d(T−1(x1), T
−1(x2)) ≤

1

β
d(x1, x2)

We have shown that there exists α = 1
β
< 1 such that d((T−1(x1), T

−1(x2)) ≤
αd(x1, x2) for all x1, x2 ∈ X, i.e. T−1 is a contraction.

Step 3 : By the Contraction Mapping Theorem, we can conclude that there
exists x∗, a fixed point, such that T−1(x∗) = x∗. Now, we show that x∗ is
also a fixed point of the expansion T.

Since x∗ = T−1(x∗) is an identity, we can apply to each side any arbitrary
transformation that preserve the equality. In particular, let’s choose T

T (x∗) = T (T−1(x∗))

which implies
T (x∗) = x∗

and we get the result we seek.
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