Economics 204
Fall 2011
Problem Set 2 Suggested Solutions

1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit points of those sets.)
(a) The interval $(0,1)$ as a subset of \mathbf{R}

Solution. Open, not closed. Any point is an interior point. Also note that 1 is a limit point.
(b) The interval $(0,1)$ as a subset of \mathbf{R}^{2}, that is $\left\{(x, 0) \in \mathbf{R}^{2} \mid x \in(0,1)\right\}$

Solution. Not open, not closed - none of its points are interior points (remember though, only need to find one for it to be not open) and (1,0) is a limit point not in the set.
(c) \mathbf{R} as the subset of \mathbf{R}

Solution. Open and closed.
(d) \mathbf{R} imbedded as a subset $\left\{(x, 0) \in \mathbf{R}^{2} \mid x \in \mathbf{R}\right\}$ of \mathbf{R}^{2}

Solution. Not open, as none of its points are interior points. It is closed.
(e) $\{1 / n \mid n \in \mathbf{N}\}$ as a subset of \mathbf{R}

Solution. Not open, not closed (note that zero is a limit point).
(f) $\{1 / n \mid n \in \mathbf{N}\}$ as a subset of the interval $(0, \infty)$.

Solution. Not open, closed.
2. Consider the following two sets:

$$
\begin{aligned}
& A=\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}-y^{2} \leq 3\right\} \\
& B=\left\{(x, y) \in \mathbf{R}^{2} \mid y>\sqrt{|x|}\right\}
\end{aligned}
$$

(a) Using the "pre-image of a closed set is closed (under a continuous function)" definition, determine whether sets A and B are open, closed, both or neither

Solution.

Set A. Closed, not open. First, note that if a function $g: \mathbf{R} \rightarrow \mathbf{R}$ is continuous, then the functions $H, G: \mathbf{R}^{2} \rightarrow \mathbf{R}$ defined by:

$$
G(x, y)=g(x) \quad \text { and } \quad H(x, y)=g(y)
$$

are continuous. Then for some open $A \subset \mathbf{R}$ we have:

$$
\begin{aligned}
G^{-1}(A, \mathbf{R}) & =g^{-1}(A) \times \mathbf{R} \\
H^{-1}(A, \mathbf{R}) & =\mathbf{R} \times g^{-1}(A) .
\end{aligned}
$$

If g is continuous, $g^{-1}(A)$ is open. Since \mathbf{R} is open, $G^{-1}(A)$ and $H^{-1}(A)$ are also open and, hence, G and H are continuous.
We can then use this to show that the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ defined by $f(x, y)=x^{2}-y^{2}$ is continuous. Letting $H(x, y)=y^{2}$ and $G(x, y)=x^{2}$, $H(x, y)$ and $G(x, y)$ are continuous on \mathbf{R}^{2} by the argument above and hence $f=G-H$ is continuous as well. Now consider the set we are interested in:

$$
\begin{aligned}
A & =\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}-y^{2} \leq 3\right\} \\
& =\left\{(x, y) \in \mathbf{R}^{2} \mid f(x, y) \leq 3\right\} \\
& =f^{-1}((-\infty, 3])
\end{aligned}
$$

f is continuous and $(-\infty, 3]$ is closed; therefore, the set under consideration must be closed as it is a continuous inverse image of a closed set.
The set is not open. We see that $(2,1)$ is an element of it and any open ball around $(2,1)$ contains some $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime}>2$ and $y^{\prime}>1$. Clearly though, $\left(x^{\prime}, y^{\prime}\right)$ is not an element of our set.

Set B. Open, not closed. Observe that Theorem 7 in Lecture 4 assures us that composition of continuous functions is a continuous function, i.e. if $g(x)=|x|$ and $h(x)=\sqrt{x}$, then the function $r(x)=h \circ g$ is continuous as well. Now, as above, letting $H(x, y)=r$ and $G(x, y)=y, H(x, y)$ and $G(x, y)$ are continuous on \mathbf{R}^{2} and hence $f=G-H$ is continuous as well. Now consider the set we are interested in:

$$
\begin{aligned}
B & =\left\{(x, y) \in \mathbf{R}^{2} \mid y>\sqrt{|x|}\right\} \\
& =\left\{(x, y) \in \mathbf{R}^{2} \mid f(x, y)>0\right\} \\
& =f^{-1}((0, \infty))
\end{aligned}
$$

f is continuous and $(0, \infty)$ is open; therefore, the set under consideration must be open as it is a continuous inverse image of a closed set.
The set is not closed. We see that, note $(0,0)$ is a limit point of B but it is not an element of our set.
(b) Find their closure, exterior and boundary.

Solution.

Set A.

$$
\begin{aligned}
\partial A & =\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}-y^{2}=3\right\} \\
\operatorname{ext} A & =\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}-y^{2}>3\right\} \\
\bar{A} & =\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}-y^{2} \leq 3\right\}
\end{aligned}
$$

Set B.

$$
\begin{aligned}
\partial B & =\left\{(x, y) \in \mathbf{R}^{2} \mid y=\sqrt{|x|}\right\} \\
\operatorname{ext} B & =\left\{(x, y) \in \mathbf{R}^{2} \mid y<\sqrt{|x|}\right\} \\
\bar{B} & =\left\{(x, y) \in \mathbf{R}^{2} \mid y \geq \sqrt{|x|}\right\}
\end{aligned}
$$

3. Let $A, B \subset X$. Suppose that $\operatorname{int} A=\operatorname{int} B=\emptyset$.
(a) Prove that if A is closed in X, then $\operatorname{int}(A \cup B)=\emptyset$.

Solution. Let int $A=\operatorname{int} B=\emptyset$ and A is closed in X, but assume to contradiction that $\operatorname{int}(A \cup B) \neq \emptyset$. Then, there exists some point $x \in X$ with its open neighborhood U_{x} that is contained entirely in int $A \cup B$. Lets consider the following two cases:
Case A. Let suppose that $U_{x} \backslash A \neq \emptyset$. Notice that $U_{x} \backslash A=U_{x} \cap A^{c}$ and because intersection of two open sets is open, $U_{x} \backslash A$ is open. Now, if $y \in U_{x} \backslash A$ then $y \in \operatorname{int} B$, but if this is so, we get a contradiction because $U_{x} \backslash A \subset B$ and B has an empty interior.
Case B. Let suppose now that $U_{x} \backslash A=\emptyset$, which means if $x \in U_{x} \subset A$ then $x \in \operatorname{int} A$. As before we get a contradiction that proves us the result we seek.
(b) Give an example with $\operatorname{int}(A \cup B) \neq \emptyset$ if A isn't necessarily closed in X.

Solution. Let $X=\mathbf{R}, A=\mathbf{Q}$, and $B=\mathbf{R} \backslash \mathbf{Q}$. Notice that int $A=$ int $B=\emptyset$ because \mathbf{Q} and $\mathbf{R} \backslash \mathbf{Q}$ are dense sets and for any $x \in \mathbf{R}$ and any open U_{x} containing x, both rational and irrational points are contained in U_{x}. Also, observe that neither \mathbf{Q} nor $\mathbf{R} \backslash \mathbf{Q}$ are closed in \mathbf{R}. Finally, we have $A \cup B=\mathbf{R}$ and, definitely, int $\mathbf{R} \neq \emptyset$.
4. Let f be a monotonic, increasing function from \mathbf{R} to \mathbf{R}. Suppose that $f(0)>0$ and $f(100)<100$. Prove that $f(x)=x$ for some $x \in(0,100)$.

Solution. We provide two solutions, with the first one being more intuitive and the second one being more rigorous. Suppose that we have $f(0)>0$ and $f(100)<100$. Set $a_{0}=0$ and $b_{0}=100$. If $f(50)=50$ then we stop, otherwise either $f(50)<50$ or $f(50)>50$. If $f(50)<50$, set $a_{1}=a_{0}$ and $b_{1}=50$; if $f(50)>50$, set $a_{1}=50$ and $b_{1}=b_{0}$. Now, lets repeat this process on $\left(a_{1}, b_{1}\right)$, $\left(a_{2}, b_{2}\right), \ldots$. This yields a sequence of open intervals $\left\{\left(a_{n}, b_{n}\right)\right\}$ such that for all $n \in \mathbf{N}$ we have

$$
\begin{aligned}
f\left(a_{n}\right) & >a_{n} \\
f\left(b_{n}\right) & <b_{n}
\end{aligned}
$$

and

$$
b_{n}-a_{n}=\frac{1}{2^{n}} \cdot 100
$$

Also, we can immediately see that $\left\{a_{n}\right\}$ is an increasing sequence and $\left\{b_{n}\right\}$ is an decreasing sequence. By monotonicity of $f(x)$ we get that $\left\{f\left(a_{n}\right)\right\}$ is an increasing sequence and $\left\{f\left(b_{n}\right)\right\}$ is a decreasing one. Moreover, for all $n \in \mathbf{N}$ we must have $f\left(a_{n}\right) \leq f\left(b_{n}\right)$.
We claim that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=x^{*}
$$

and that

$$
f\left(x^{*}\right)=x^{*} .
$$

To see this, notice that both $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded and monotonic, thus, both $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$ exist. Moreover, we must have $a=b$, because otherwise $b-a>0$ and $\exists N$ such that for all $n>N$ we have

$$
\left|a_{n}-b_{n}\right|<\frac{1}{2} \cdot 100<b-a
$$

But

$$
\left|a_{n}-a\right|<\frac{1}{2} \cdot(b-a) \quad \text { and }\left|b_{n}-b\right|<\frac{1}{2} \cdot(b-a)
$$

which is a contradiction and we must have $a=b=x^{*}$.
Also, let

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f\left(a_{n}\right) & =y \\
\lim _{n \rightarrow \infty} f\left(b_{n}\right) & =z
\end{aligned}
$$

and $f\left(a_{n}\right)<f\left(x^{*}\right)<f\left(b_{n}\right)$ for all $n \in \mathbf{N}$, which implies that $y \leq f\left(x^{*}\right) \leq z$. Notice that by construction for all $n \in \mathbf{N}$ we have $f\left(a_{n}\right)>a_{n}$ and $f\left(b_{n}\right)<b_{n}$. Thus, we get that $z \leq x^{*} \leq y$, or that

$$
x^{*} \leq y \leq f\left(x^{*}\right) \leq z \leq x^{*}
$$

This means that $y=z=x^{*}=f\left(x^{*}\right)$.
Now, we provide our second proof that does not rely on the iterative process of "shrinking intervals." Lets consider a set

$$
A=\{x \in(0,100) \mid f(x) \geq x\}
$$

Observe that A is non-empty and bounded, thus, it has a finite supremum which we will denote by x^{*}. We claim that $f\left(x^{*}\right) \geq x^{*}$. To see this, note that for all $x \in A$ we have $x \leq x^{*}$ and that by monotonicity of f we must have

$$
x \leq f(x) \leq f\left(x^{*}\right) \text { for all } x \in A
$$

from which it follows that $x^{*} \leq f\left(x^{*}\right)$ because $f\left(x^{*}\right)$ is also an upper bound for A and $x^{*}=\sup A$.
Now, if we can show that $x^{*} \geq f\left(x^{*}\right)$ we would be done. To demonstrate that, we will use again the fact that $f(x)$ is monotonically increasing. So, suppose to contradiction that $x^{*}<f\left(x^{*}\right)$. Take $x^{*}<x<f\left(x^{*}\right)$, which implies that $f\left(x^{*}\right) \leq f(x) \leq\left(f\left(f^{*}\right)\right)$ since f is monotone. Putting this together, yields

$$
x<f\left(x^{*}\right) \leq f(x) \leq f\left(f\left(x^{*}\right)\right)
$$

This, in turn, implies that $x \in A$ but $x>x^{*}$, contradicting our definition of x^{*} being a supremum of A. /par
then for all x such that $x^{*}<x<x^{*}+f\left(x^{*}\right)-x^{*}$ we have $f(x)-x \geq f\left(x^{*}\right)-x>$ $f\left(x^{*}\right)-x^{*}-f\left(x^{*}\right)+x^{*}=0$, because $f(x)$ is monotonically increasing. Thus, $f(x)>x>x^{*}$, but this contradicts the definition of x^{*} as the supremum of all x such that $x \leq f(x)$.
We are done.
5. Call a mapping of X into Y open if $f(V)$ is an open set in Y whenever V is an open set in X. Prove that every continuous open mapping of \mathbf{R} into \mathbf{R} is monotonic.

Solution. We prove it by contradiction. Without any loss of generality, assume there are two points $x, z \in X$ with $x<z$ such that $f(x)=f(z)$ but f is not constant on (x, z). If it would be constant, we immediately get a contradiction as the pre-image of a closed set (point) would be open.
Now, since f is not constant and it is continuous, it achieves on (x, z) its maximum, M, where for all $y \in[x, z]: f(y) \leq M$, its minimum, m, where for all $y \in[x, z]: f(y) \geq m$, or both. Lets suppose it achieves its maximum at some $y \in(x, z)$. So, take an open neighborhood $U_{y} \in(x, y)$. By our assumption $f\left(U_{y}\right)$ is open, but this means that $M+\epsilon \in f\left(U_{y}\right)$ for some arbitrarily small $\epsilon>0$. Thus, we arrive at contradiction as M can't be maximum, or, in other words, M can't be an interior point of U_{y}. The case of minimum is handled similarly.
6. Suppose that $\left\{x_{n}\right\}$ is a convergent sequence of points while lies, together with its limit x, in a set $X \subset \mathbf{R}^{\mathbf{n}}$. Suppose that $\left\{f_{n}\right\}$ converges on X to the function f.
(a) Is it true that $f(x)=\lim f_{n}\left(x_{n}\right)$? Prove if true or provide counterexample.

Solution. Consider following counterexample: $X=[0,1], f_{n}(x)=x^{n}$ and $x_{n}=1-1 / n$. It is easy to see that $x_{n} \rightarrow 1$ as $n \rightarrow \infty$,

$$
f_{n}(x) \rightarrow \begin{cases}1, & x=1 \\ 0, & \text { otherwise }\end{cases}
$$

and that

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=\frac{1}{e}
$$

But clearly, we have $1 / e \neq f(1)=1$. We definitely need stronger assumptions.
(b) Would you change your answer if you know that convergence of $\left\{f_{n}\right\}$ is uniform on X ? Again, prove if true or provide counterexample.
Solution. No. Even uniform convergence does not guarantee us this result. To see this consider the following example with $f(x)$ being a Heaviside step function:

$$
f(x)= \begin{cases}1, & x \geq 0 \\ 0, & x<0\end{cases}
$$

with $x_{n}=-1 / n$ and $f_{n}(x)=f(x)+1 / n$. Clearly, $x_{n} \rightarrow 0$ and f_{n} converge uniformly to f but $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=0 \neq 1=f(0)$. Actually, to get the result we seek, we need a uniform convergence to a continuous function f.
7. Some practice with contraction maps
(a) Let (X, d) be a space of continuous function on a closed interval $[0, \beta]$ with a supremum norm, i.e. $X=C([0, \beta])$, and $d(f, g)=\max _{t}|f(t)-g(t)|$, where $\beta<1$. Define $T: X \rightarrow X$ by

$$
(T f)(t)=\int_{0}^{t} f(s) d s+g(t)
$$

for some continuous function $g(t)$.
Show that T has a unique fixed point. ${ }^{1}$
Solution. Lets first show that $C([0, \beta])$ is a complete metric space, i.e. that an arbitrary Cauchy sequence $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ in $C([0, \beta])$ converges. In particular, we need to demonstrate that the limit of a Cauchy sequence of continuous functions on $[0, \beta]$, firstly, exists in the sense that for each $x \in[0,1]$, $\lim f_{n}(x)$ exists, and secondly, pointwise limit function, $f(x)$, is continuous on $[0, \beta]$.
The first part follows immediately from the fact that Cauchy sequences of real numbers converge (to real numbers) by the completeness of \mathbf{R} argument. Hence, we are guaranteed the existence of our pointwise limit function.

[^0]Now, we just need to show continuity of $f(x)$. Fix $\epsilon>0$ and consider $s, t \in[0,1]$. We have

$$
\begin{align*}
|f(s)-f(t)| & =\left|f(s)-f_{n}(s)+f_{n}(s)-f(t)\right| \\
& \leq\left|f(s)-f_{n}(s)\right|+\left|f_{n}(s)-f(t)\right| \\
& =\left|f(s)-f_{n}(s)\right|+\left|f_{n}(s)-f_{n}(t)+f_{n}(t)-f(t)\right| \\
& \leq\left|f(s)-f_{n}(s)\right|+\left|f_{n}(s)-f_{n}(t)\right|+\left|f_{n}(t)-f(t)\right| \tag{1}
\end{align*}
$$

From the definition of $d\left(f_{n}, f\right)$ and the fact that $d\left(f_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty$, there exists an $N(\epsilon)$ such that whenever $n>N(\epsilon)$, the first and last terms on the RHS of (1) are less than $\epsilon / 3$. Furthermore, for any $n, f_{n} \in C([0,1])$. Fix some $n>N(\epsilon)$. (Uniform) Continuity implies that there is a $\delta_{n}>0$ such that whenever $|s-t|<\delta_{n} \Rightarrow\left|f_{n}(s)-f_{n}(t)\right|<\epsilon / 3$. Therefore, all three terms of the RHS of $\left(^{*}\right)$ are less than $\epsilon / 3$. So we get that

$$
|f(s)-f(t)|<\epsilon, \text { whenever }|s-t|<\delta_{n}
$$

This proves that f is (uniformly) continuous.
Now, we show that T is a contraction.

$$
\begin{aligned}
d(T f, T g) & =\max _{t \in[0, \beta]}|T f(t)-T g(t)| \\
& =\max _{t \in[0, \beta]}\left|\int_{0}^{t} f(s) d s-\int_{0}^{t} g(s) d s\right| \\
& \leq \max _{t \in[0, \beta]} \int_{0}^{t}|f(s)-g(s)| d s \\
& \leq \int_{0}^{\beta} \max _{t \in[0, \beta]}\{|f(t)-g(t)|\} d s \\
& =\beta \cdot d(f, g)
\end{aligned}
$$

(b) Now suppose (X, d) is an arbitrary complete metric space, but $T: X \rightarrow X$ is an expansion, i.e. there exists $\beta>1$ such that $d(T x, T y) \geq \beta d(x, y)$ for all x, y in X, and that $T(X)=X$. Show that T has a fixed point.
Solution. We will do it in a sequence of steps. Firstly, we will verify that T is one-to-one and, thus, since it is also a surjection, the inverse must exists. Secondly, we will argue that T^{-1} is a contraction. Finally, we will invoke Contraction Mapping Theorem and show that the fixed point of T^{-1} is also a fixed point of T.

Step 1: verifying T is one-to-one, i.e. if $x_{1} \neq x_{2}$ then $T\left(x_{1}\right) \neq T\left(x_{2}\right)$. But this is immediate since $x_{1} \neq x_{2}$ implies directly that $d\left(T\left(x_{1}\right), T\left(x_{2}\right)\right) \geq$
$\beta d\left(x_{1}, x_{2}\right)>0$. Therefore, T is one-to-one. By our assumption, T is onto, thus, there exists $T^{-1}: X \rightarrow X$ and $T \circ T^{-1}=i d$.

Step 2: Show that T^{-1} is a contraction, i.e. there exists $\alpha<1$ such that $d\left(T^{-1}\left(x_{1}\right), T^{-1}\left(x_{2}\right)\right) \leq \alpha d\left(x_{1}, x_{2}\right)$ for all $x_{1}, x_{2} \in X$.
So, if T is one-to-one and onto, $T^{-1}: X \rightarrow X$ is also one-to-one and onto. Therefore, we can apply expansion T to any arbitrary image of T^{-1} since for any $x \in X: T^{-1}(x) \in X$

$$
\begin{aligned}
d\left(T\left(T^{-1}\left(x_{1}\right)\right), T\left(T^{-1}\left(x_{2}\right)\right)\right. & \geq \beta d\left(T^{-1}\left(x_{1}\right), T^{-1}\left(x_{2}\right)\right) & & \Longleftrightarrow \\
d\left(x_{1}, x_{2}\right) & \geq \beta d\left(T^{-1}\left(x_{1}\right), T^{-1}\left(x_{2}\right)\right) & & \Longleftrightarrow \\
d\left(T^{-1}\left(x_{1}\right), T^{-1}\left(x_{2}\right)\right) & \leq \frac{1}{\beta} d\left(x_{1}, x_{2}\right) & &
\end{aligned}
$$

We have shown that there exists $\alpha=\frac{1}{\beta}<1$ such that $d\left(\left(T^{-1}\left(x_{1}\right), T^{-1}\left(x_{2}\right)\right) \leq\right.$ $\alpha d\left(x_{1}, x_{2}\right)$ for all $x_{1}, x_{2} \in X$, i.e. T^{-1} is a contraction.
Step 3: By the Contraction Mapping Theorem, we can conclude that there exists x^{*}, a fixed point, such that $T^{-1}\left(x^{*}\right)=x^{*}$. Now, we show that x^{*} is also a fixed point of the expansion T.
Since $x^{*}=T^{-1}\left(x^{*}\right)$ is an identity, we can apply to each side any arbitrary transformation that preserve the equality. In particular, let's choose T

$$
T\left(x^{*}\right)=T\left(T^{-1}\left(x^{*}\right)\right)
$$

which implies

$$
T\left(x^{*}\right)=x^{*}
$$

and we get the result we seek.

[^0]: ${ }^{1}$ Note that to invoke Contraction Mapping Theorem here, you need first to show that (X, d) is a complete metric space. Completeness of \mathbf{R} will come to your rescue here.

