Economics 204
Fall 2011
Problem Set 2 Suggested Solutions

1. Determine whether the following sets are open, closed, both or neither under
the topology induced by the usual metric. (Hint: think about limit points of
those sets.)

(a) The interval (0, 1) as a subset of R

Solution. Open, not closed. Any point is an interior point. Also note
that 1 is a limit point.

(b) The interval (0,1) as a subset of R?, that is {(z,0) €e R* | z € (0,1)}

Solution. Not open, not closed — none of its points are interior points
(remember though, only need to find one for it to be not open) and (1,0)
is a limit point not in the set.

(¢) R as the subset of R

Solution. Open and closed.

(d) R imbedded as a subset {(z,0) € R? | z € R} of R?

Solution. Not open, as none of its points are interior points. It is closed.

(e) {1/n | n € N} as a subset of R

Solution. Not open, not closed (note that zero is a limit point).

(f) {1/n | n € N} as a subset of the interval (0, c0).

Solution. Not open, closed.

2. Consider the following two sets:

A={(z,y) eR* | 2* —y* < 3}
B ={(z,y) € R* | y > /|z[}
(a) Using the “pre-image of a closed set is closed (under a continuous func-

tion)” definition, determine whether sets A and B are open, closed, both
or neither

Solution.

Set A. Closed, not open. First, note that if a function ¢ : R — R is
continuous, then the functions H, G : R? — R defined by:

G(v,y) =g(z) and H(z,y)=g(y)
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are continuous. Then for some open A C R we have:

G YA R) = g (A) xR
1A, R) = Rxgl(A).

If g is continuous, g~'(A) is open. Since R is open, G71(A) and H~1(A)
are also open and, hence, G and H are continuous.

We can then use this to show that the function f : R? — R defined by

f(x,y) = 2% — y? is continuous. Letting H(x,y) = y? and G(z,y) = 22,

H(x,y) and G(z,y) are continuous on R? by the argument above and hence
f = G — H is continuous as well. Now consider the set we are interested
in:
A= {(z,y) € R*|2® —y* < 3}
={(z,y) e R*| f(a,y) < 3}
= [ ((=00,3))

f is continuous and (—o0, 3] is closed; therefore, the set under consideration
must be closed as it is a continuous inverse image of a closed set.

The set is not open. We see that (2,1) is an element of it and any open
ball around (2,1) contains some (2', y') with 2’ > 2 and y’ > 1. Clearly
though, (2, ¢') is not an element of our set.

Set B. Open, not closed. Observe that Theorem 7 in Lecture 4 assures us
that composition of continuous functions is a continuous function, i.e. if
g(x) = |z| and h(z) = y/z, then the function r(z) = h o g is continuous
as well. Now, as above, letting H(z,y) = r and G(z,y) = y, H(z,y) and
G(x,y) are continuous on R? and hence f = G — H is continuous as well.
Now consider the set we are interested in:

B ={(z,y) e R*|y > /[a[}
{(fvay) e R?| f(z,y) > 0}
F71((0,00))

f is continuous and (0, c0) is open; therefore, the set under consideration
must be open as it is a continuous inverse image of a closed set.

The set is not closed. We see that, note (0,0) is a limit point of B but it
is not an element of our set.
Find their closure, exterior and boundary.

Solution.
Set A.

0A = {(z,y) e R* | 2” —y* =3}
ext A= {(x,y) € R* | 2* —y* > 3}
A={(z,y) eR* | 2 —y* < 3}
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Set B.

0B = {(z,y) e R?|y = /|z[}
ext B = {(x,y) € R?|y < \/|z[}
B ={(x,y) e R?*|y > |z}

3. Let A, B C X. Suppose that int A = int B = ().

(a)

Prove that if A is closed in X, then int (AU B) = 0.

Solution. Let int A = int B = () and A is closed in X, but assume to
contradiction that int (AU B) # (). Then , there exists some point = € X
with its open neighborhood U, that is contained entirely in int AU B. Lets
consider the following two cases:

Case A. Let suppose that U, \ A # (). Notice that U, \ A = U, N A° and
because intersection of two open sets is open, U, \ A is open. Now, if
y € U, \ A then y € int B, but if this is so, we get a contradiction because
U, \ A C B and B has an empty interior.

Case B. Let suppose now that U, \ A = ), which means if x € U, C A
then = € int A. As before we get a contradiction that proves us the result
we seek.

Give an example with int (AU B) # 0 if A isn’t necessarily closed in X.

Solution. Let X = R, A = Q, and B = R\ Q. Notice that int A = int
B = () because Q and R\ Q are dense sets and for any x € R and any
open U, containing x, both rational and irrational points are contained in
U,. Also, observe that neither Q nor R\ Q are closed in R. Finally, we
have AU B = R and, definitely, int R # 0.

4. Let f be a monotonic, increasing function from R to R. Suppose that f(0) > 0
and f(100) < 100. Prove that f(z) = x for some x € (0, 100).

Solution. We provide two solutions, with the first one being more intuitive
and the second one being more rigorous. Suppose that we have f(0) > 0 and
f£(100) < 100. Set ag = 0 and by = 100. If f(50) = 50 then we stop, otherwise
either f(50) < 50 or f(50) > 50. If f(50) < 50, set a; = ay and b; = 50; if
f(50) > 50, set a; = 50 and b; = by. Now, lets repeat this process on (aq, by),
(ag, by), .... This yields a sequence of open intervals {(a,, b,)} such that for
all n € N we have

flan) > a,
f(bn) < by
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and ]
b, — a, = — - 100.
a o

Also, we can immediately see that {a,} is an increasing sequence and {b,} is
an decreasing sequence. By monotonicity of f(z) we get that {f(a,)} is an
increasing sequence and {f(b,)} is a decreasing one. Moreover, for all n € N
we must have f(a,) < f(b,).

We claim that

lim a, = lim b, = 2~
n—oo n—oo

and that
fla®) =,
To see this, notice that both {a,} and {b,} are bounded and monotonic, thus,

both lim,,_, a, = a and lim,,_,., b, = b exist. Moreover, we must have a = b,
because otherwise b — a > 0 and dN such that for all n > N we have

1
|an—bn|<§-100<b—a

But 1 ]
|an—a|<§-(b—a) and |bn—b|<§-(b—a)

*

which is a contradiction and we must have a = b = z*.

Also, let

lim f(a,) =y

n—oo

lim f(b,) =z

n—oo
and f(a,) < f(z*) < f(b,) for all n € N, which implies that y < f(z*) < z.
Notice that by construction for all n € N we have f(a,) > a, and f(b,) < b,.

Thus, we get that z < z* <y, or that
vt <y < flz¥) <z <at
This means that y = z = z* = f(z*).

Now, we provide our second proof that does not rely on the iterative process of
“shrinking intervals.” Lets consider a set

A={z€(0,100) | f(z) > x}

Observe that A is non-empty and bounded, thus, it has a finite supremum which
we will denote by z*. We claim that f(z*) > z*. To see this, note that for all
x € A we have x < 2* and that by monotonicity of f we must have

r < f(x) < f(z") forall x € A,
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from which it follows that z* < f(z*) because f(z*) is also an upper bound for
A and z* = sup A.

Now, if we can show that z* > f(z*) we would be done. To demonstrate that,
we will use again the fact that f(z) is monotonically increasing. So, suppose
to contradiction that z* < f(z*). Take z* < z < f(z*), which implies that
fz*) < f(x) < (f(f*)) since f is monotone. Putting this together, yields

r < f(a") < flx) < F(f(z7))

This, in turn, implies that € A but x > z*, contradicting our definition of x*
being a supremum of A. /par

then for all = such that 2* <z < 2"+ f(2*) —2* we have f(z)—z > f(z*)—2 >
f(z*) —a* — f(z*) + 2* = 0, because f(x) is monotonically increasing. Thus,
f(z) >z > 2*, but this contradicts the definition of 2* as the supremum of all
x such that z < f(x).

We are done.

5. Call a mapping of X into Y open if f(V') is an open set in Y whenever V is
an open set in X. Prove that every continuous open mapping of R into R is
monotonic.

Solution. We prove it by contradiction. Without any loss of generality, assume
there are two points z, z € X with x < z such that f(z) = f(z) but f is not
constant on (z, z). If it would be constant, we immediately get a contradiction
as the pre-image of a closed set (point) would be open.

Now, since f is not constant and it is continuous, it achieves on (z, z) its max-
imum, M, where for all y € [z, 2] : f(y) < M, its minimum, m, where for all
y € [z, 2] : f(y) > m, or both. Lets suppose it achieves its maximum at some
y € (z, ). So, take an open neighborhood U, € (x,y). By our assumption f(U,)
is open, but this means that M + e € f(U,) for some arbitrarily small € > 0.
Thus, we arrive at contradiction as M can’t be maximum, or, in other words,
M can’t be an interior point of U,. The case of minimum is handled similarly.

6. Suppose that {z,} is a convergent sequence of points while lies, together with
its limit x, in a set X C R™. Suppose that {f,} converges on X to the function

I
(a) Isit true that f(z) = lim f,(x,)? Prove if true or provide counterexample.
Solution. Consider following counterexample: X = [0,1], f.(z) = 2™

and z,, = 1 — 1/n. It is easy to see that z,, — 1 as n — o0,

1, =1
Jul@) = { 0, otherwise
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and that

. 1\" 1
lm (1——) =-—
n—00 n e

But clearly, we have 1/e # f(1) = 1. We definitely need stronger assump-
tions.

Would you change your answer if you know that convergence of {f,} is
uniform on X7 Again, prove if true or provide counterexample.

Solution. No. Even uniform convergence does not guarantee us this re-
sult. To see this consider the following example with f(z) being a Heaviside

step function:
1, >0
Jx) = { 0, <0
with z,, = —1/n and f,(x) = f(x)+ 1/n. Clearly, x,, — 0 and f,, converge
uniformly to f but lim, , fu(z,) = 0 # 1 = f(0). Actually, to get the
result we seek, we need a uniform convergence to a continuous function f.

7. Some practice with contraction maps

(a)

Let (X, d) be a space of continuous function on a closed interval [0, 5] with
a supremum norm, i.e. X = C([0,5]), and d(f,g) = max;|f(t) — g(t)|,
where f < 1. Define T : X — X by

(TF)(t) = / £(s) ds + g(t),

for some continuous function g(t).

Show that 7" has a unique fixed point.!

Solution. Lets first show that C([0,]) is a complete metric space, i.e.
that an arbitrary Cauchy sequence {f, ()}, in C(]0, 5]) converges. In
particular, we need to demonstrate that the limit of a Cauchy sequence
of continuous functions on [0, 3], firstly, exists in the sense that for each
x € [0,1], lim f,(z) exists, and secondly, pointwise limit function, f(z), is
continuous on [0, 5.

The first part follows immediately from the fact that Cauchy sequences
of real numbers converge (to real numbers) by the completeness of R ar-
gument. Hence, we are guaranteed the existence of our pointwise limit
function.

!'Note that to invoke Contraction Mapping Theorem here, you need first to show that (X, d) is a
complete metric space. Completeness of R will come to your rescue here.
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Now, we just need to show continuity of f(z). Fix ¢ > 0 and consider
s,t € [0,1]. We have

[f(s) = FOI = [F(s) = fals) + fuls) — f(?)]
< f(s) = fa(s) [+ [ fuls) = F(1)]
= |f(s) = fa()[ + [fnl(s) = fu(t) + fult) = F(D)]
< F(s) = fa(d) 4 [fuls) = fu(O)] + [fu(t) = F(B] (D)

From the definition of d(f,, f) and the fact that d(f,, f) = 0 as n — oo,
there exists an N(€) such that whenever n > N(¢), the first and last terms
on the RHS of (1) are less than ¢/3. Furthermore, for any n, f, € C([0,1]).
Fix some n > N(¢). (Uniform) Continuity implies that there is a d,, > 0
such that whenever |s —t| < 0, = [f.(s) — fu(t)] < €/3. Therefore, all
three terms of the RHS of (*) are less than €/3. So we get that

|f(s) — f(t)] <€, whenever|s—t| <4,

This proves that f is (uniformly) continuous.

Now, we show that T is a contraction.

ATS Ty) = max [Tf(t) - Tg(t)

t t
= a ds — d
ma | / f(s)ds / o(s) ds|

< [ 1) = g(o)l s
< / max {1(8) = g(0)]} ds
= B-d(f, g)

(b) Now suppose (X, d) is an arbitrary complete metric space, but T : X — X
is an ezpansion, i.e. there exists 8 > 1 such that d(T'z, Ty) > Bd(z,y) for
all z, y in X, and that T(X) = X. Show that T has a fixed point.

Solution. We will do it in a sequence of steps. Firstly, we will verify that
T is one-to-one and, thus, since it is also a surjection, the inverse must
exists. Secondly, we will argue that 7! is a contraction. Finally, we will
invoke Contraction Mapping Theorem and show that the fixed point of
T-!is also a fixed point of T

Step 1: verifying T is one-to-one, i.e. if xy # x5 then T'(x1) # T'(x5). But
this is immediate since z7 # xo implies directly that d(7T'(x1), T(x2)) >

7
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pd(xy, x2) > 0. Therefore, T' is one-to-one. By our assumption, 7" is onto,
thus, there exists 77! : X — X and To T~ ! = id.

Step 2: Show that T~! is a contraction, i.e. there exists o < 1 such that
d(T Y (xy), T Yx2)) < ad(xy, z9) for all z1, x5 € X.
So, if T is one-to-one and onto, 77! : X — X is also one-to-one and onto.

Therefore, we can apply expansion T to any arbitrary image of 7! since
foranyz e X : T7'(z) e X

A(T(T N a1)), T(T (22)) = Bd(T(21), T~ (22)) —
d(xq, x9) > Bd(T’l(xl), T’l(xg)) “—
AT (@), T (@2)) < (o, )

We have shown that there exists o = % < 1such that d((T(z1), T (z2)) <
ad(zy, xo) for all 7y, zo € X, i.e. T~ is a contraction.

Step 3: By the Contraction Mapping Theorem, we can conclude that there
exists *, a fixed point, such that T-!(z*) = z*. Now, we show that z* is
also a fixed point of the expansion 7.

Since x* = T~1(z*) is an identity, we can apply to each side any arbitrary
transformation that preserve the equality. In particular, let’s choose T'

which implies

and we get the result we seek.




