1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit points of those sets.)

(a) The interval $(0, 1)$ as a subset of \mathbb{R}

Solution. Open, not closed. Any point is an interior point. Also note that 1 is a limit point.

(b) The interval $(0, 1)$ as a subset of \mathbb{R}^2, that is $\{(x, 0) \in \mathbb{R}^2 \mid x \in (0, 1)\}$

Solution. Not open, not closed — none of its points are interior points (remember though, only need to find one for it to be not open) and $(1, 0)$ is a limit point not in the set.

(c) \mathbb{R} as the subset of \mathbb{R}

Solution. Open and closed.

(d) \mathbb{R} imbedded as a subset $\{(x, 0) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$ of \mathbb{R}^2

Solution. Not open, as none of its points are interior points. It is closed.

(e) $\{1/n \mid n \in \mathbb{N}\}$ as a subset of \mathbb{R}

Solution. Not open, not closed (note that zero is a limit point).

(f) $\{1/n \mid n \in \mathbb{N}\}$ as a subset of the interval $(0, \infty)$.

Solution. Not open, closed.

2. Consider the following two sets:

\[A = \{(x, y) \in \mathbb{R}^2 \mid x^2 - y^2 \leq 3\} \]
\[B = \{(x, y) \in \mathbb{R}^2 \mid y > \sqrt{|x|}\} \]

(a) Using the “pre-image of a closed set is closed (under a continuous function)” definition, determine whether sets A and B are open, closed, both or neither

Solution.

Set A. Closed, not open. First, note that if a function $g : \mathbb{R} \to \mathbb{R}$ is continuous, then the functions $H, G : \mathbb{R}^2 \to \mathbb{R}$ defined by:

\[G(x, y) = g(x) \quad \text{and} \quad H(x, y) = g(y) \]
are continuous. Then for some open $A \subset \mathbb{R}$ we have:

$$G^{-1}(A, \mathbb{R}) = g^{-1}(A) \times \mathbb{R}$$

$$H^{-1}(A, \mathbb{R}) = \mathbb{R} \times g^{-1}(A).$$

If g is continuous, $g^{-1}(A)$ is open. Since \mathbb{R} is open, $G^{-1}(A)$ and $H^{-1}(A)$ are also open and, hence, G and H are continuous.

We can then use this to show that the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = x^2 - y^2$ is continuous. Letting $H(x, y) = y^2$ and $G(x, y) = x^2$, $H(x, y)$ and $G(x, y)$ are continuous on \mathbb{R}^2 by the argument above and hence $f = G - H$ is continuous as well. Now consider the set we are interested in:

$$A = \{(x, y) \in \mathbb{R}^2 | x^2 - y^2 \leq 3\}$$

$$= \{(x, y) \in \mathbb{R}^2 | f(x, y) \leq 3\}$$

$$= f^{-1}((-\infty, 3])$$

f is continuous and $(-\infty, 3]$ is closed; therefore, the set under consideration must be closed as it is a continuous inverse image of a closed set.

The set is not open. We see that $(2, 1)$ is an element of it and any open ball around $(2, 1)$ contains some (x', y') with $x' > 2$ and $y' > 1$. Clearly though, (x', y') is not an element of our set.

Set B. Open, not closed. Observe that Theorem 7 in Lecture 4 assures us that composition of continuous functions is a continuous function, i.e. if $g(x) = |x|$ and $h(x) = \sqrt{x}$, then the function $r(x) = h \circ g$ is continuous as well. Now, as above, letting $H(x, y) = r$ and $G(x, y) = y$, $H(x, y)$ and $G(x, y)$ are continuous on \mathbb{R}^2 and hence $f = G - H$ is continuous as well. Now consider the set we are interested in:

$$B = \{(x, y) \in \mathbb{R}^2 | y > \sqrt{|x|}\}$$

$$= \{(x, y) \in \mathbb{R}^2 | f(x, y) > 0\}$$

$$= f^{-1}((0, \infty))$$

f is continuous and $(0, \infty)$ is open; therefore, the set under consideration must be open as it is a continuous inverse image of a closed set.

The set is not closed. We see that, note $(0, 0)$ is a limit point of B but it is not an element of our set.

(b) Find their closure, exterior and boundary.

Solution.

Set A.

$$\partial A = \{(x, y) \in \mathbb{R}^2 | x^2 - y^2 = 3\}$$

$$\text{ext } A = \{(x, y) \in \mathbb{R}^2 | x^2 - y^2 > 3\}$$

$$\bar{A} = \{(x, y) \in \mathbb{R}^2 | x^2 - y^2 \leq 3\}$$
Set B.

$$
\partial B = \{(x,y) \in \mathbb{R}^2 \mid y = \sqrt{|x|}\}
$$

$$
ext B = \{(x,y) \in \mathbb{R}^2 \mid y < \sqrt{|x|}\}
$$

$$
\bar{B} = \{(x,y) \in \mathbb{R}^2 \mid y \geq \sqrt{|x|}\}
$$

3. Let $A, B \subset X$. Suppose that $\text{int } A = \text{int } B = \emptyset$.

(a) Prove that if A is closed in X, then $\text{int } (A \cup B) = \emptyset$.

Solution. Let $\text{int } A = \text{int } B = \emptyset$ and A is closed in X, but assume to contradiction that $\text{int } (A \cup B) \neq \emptyset$. Then, there exists some point $x \in X$ with its open neighborhood U_x that is contained entirely in $\text{int } A \cup B$. Let consider the following two cases:

Case A. Let suppose that $U_x \setminus A \neq \emptyset$. Notice that $U_x \setminus A = U_x \cap A^c$ and because intersection of two open sets is open, $U_x \setminus A$ is open. Now, if $y \in U_x \setminus A$ then $y \in \text{int } B$, but if this is so, we get a contradiction because $U_x \setminus A \subset B$ and B has an empty interior.

Case B. Let suppose now that $U_x \setminus A = \emptyset$, which means if $x \in U_x \subset A$ then $x \in \text{int } A$. As before we get a contradiction that proves us the result we seek.

(b) Give an example with $\text{int } (A \cup B) \neq \emptyset$ if A isn’t necessarily closed in X.

Solution. Let $X = \mathbb{R}$, $A = \mathbb{Q}$, and $B = \mathbb{R} \setminus \mathbb{Q}$. Notice that $\text{int } A = \text{int } B = \emptyset$ because \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are dense sets and for any $x \in \mathbb{R}$ and any open U_x containing x, both rational and irrational points are contained in U_x. Also, observe that neither \mathbb{Q} nor $\mathbb{R} \setminus \mathbb{Q}$ are closed in \mathbb{R}. Finally, we have $A \cup B = \mathbb{R}$ and, definitely, $\text{int } \mathbb{R} \neq \emptyset$.

4. Let f be a monotonic, increasing function from \mathbb{R} to \mathbb{R}. Suppose that $f(0) > 0$ and $f(100) < 100$. Prove that $f(x) = x$ for some $x \in (0, 100)$.

Solution. We provide two solutions, with the first one being more intuitive and the second one being more rigorous. Suppose that we have $f(0) > 0$ and $f(100) < 100$. Set $a_0 = 0$ and $b_0 = 100$. If $f(50) = 50$ then we stop, otherwise either $f(50) < 50$ or $f(50) > 50$. If $f(50) < 50$, set $a_1 = a_0$ and $b_1 = 50$; if $f(50) > 50$, set $a_1 = 50$ and $b_1 = b_0$. Now, let's repeat this process on (a_1, b_1), (a_2, b_2), This yields a sequence of open intervals $\{(a_n, b_n)\}$ such that for all $n \in \mathbb{N}$ we have

$$
f(a_n) > a_n
$$

$$
f(b_n) < b_n
$$
and
\[b_n - a_n = \frac{1}{2^n} \cdot 100. \]

Also, we can immediately see that \(\{a_n\} \) is an increasing sequence and \(\{b_n\} \) is an decreasing sequence. By monotonicity of \(f(x) \) we get that \(\{f(a_n)\} \) is an increasing sequence and \(\{f(b_n)\} \) is a decreasing one. Moreover, for all \(n \in \mathbb{N} \) we must have \(f(a_n) \leq f(b_n) \).

We claim that
\[\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x^* \]

and that
\[f(x^*) = x^*. \]

To see this, notice that both \(\{a_n\} \) and \(\{b_n\} \) are bounded and monotonic, thus, both \(\lim_{n \to \infty} a_n = a \) and \(\lim_{n \to \infty} b_n = b \) exist. Moreover, we must have \(a = b \), because otherwise \(b - a > 0 \) and \(\exists N \) such that for all \(n > N \) we have

\[|a_n - b_n| < \frac{1}{2} \cdot 100 < b - a \]

But

\[|a_n - a| < \frac{1}{2} \cdot (b - a) \quad \text{and} \quad |b_n - b| < \frac{1}{2} \cdot (b - a) \]

which is a contradiction and we must have \(a = b = x^* \).

Also, let

\[\lim_{n \to \infty} f(a_n) = y \]
\[\lim_{n \to \infty} f(b_n) = z \]

and \(f(a_n) < f(x^*) < f(b_n) \) for all \(n \in \mathbb{N} \), which implies that \(y \leq f(x^*) \leq z \).

Notice that by construction for all \(n \in \mathbb{N} \) we have \(f(a_n) > a_n \) and \(f(b_n) < b_n \). Thus, we get that \(z \leq x^* \leq y \), or that

\[x^* \leq y \leq f(x^*) \leq z \leq x^*. \]

This means that \(y = z = x^* = f(x^*) \).

Now, we provide our second proof that does not rely on the iterative process of “shrinking intervals.” Let’s consider a set

\[A = \{ x \in (0, 100) \mid f(x) \geq x \} \]

Observe that \(A \) is non-empty and bounded, thus, it has a finite supremum which we will denote by \(x^* \). We claim that \(f(x^*) \geq x^* \). To see this, note that for all \(x \in A \) we have \(x \leq x^* \) and that by monotonicity of \(f \) we must have

\[x \leq f(x) \leq f(x^*) \quad \text{for all} \quad x \in A, \]
from which it follows that $x^* \leq f(x^*)$ because $f(x^*)$ is also an upper bound for A and $x^* = \sup A$.

Now, if we can show that $x^* \geq f(x^*)$ we would be done. To demonstrate that, we will use again the fact that $f(x)$ is monotonically increasing. So, suppose to contradiction that $x^* < f(x^*)$. Take $x^* < x < f(x^*)$, which implies that $f(x^*) \leq f(x) \leq (f(f^*))$ since f is monotone. Putting this together, yields

$$x < f(x^*) \leq f(x) \leq f(f(x^*))$$

This, in turn, implies that $x \in A$ but $x > x^*$, contradicting our definition of x^* being a supremum of A. /par

then for all x such that $x^* < x < x^* + f(x^*) - x^*$ we have $f(x) - x \geq f(x^*) - x > f(x^*) - x^* - f(x^*) + x^* = 0$, because $f(x)$ is monotonically increasing. Thus, $f(x) > x > x^*$, but this contradicts the definition of x^* as the supremum of all x such that $x \leq f(x)$.

We are done.

5. Call a mapping of X into Y open if $f(V)$ is an open set in Y whenever V is an open set in X. Prove that every continuous open mapping of \mathbb{R} into \mathbb{R} is monotonic.

Solution. We prove it by contradiction. Without any loss of generality, assume there are two points $x, z \in X$ with $x < z$ such that $f(x) = f(z)$ but f is not constant on (x, z). If it would be constant, we immediately get a contradiction as the pre-image of a closed set (point) would be open.

Now, since f is not constant and it is continuous, it achieves on (x, z) its maximum, M, where for all $y \in [x, z] : f(y) \leq M$, its minimum, m, where for all $y \in [x, z] : f(y) \geq m$, or both. Lets suppose it achieves its maximum at some $y \in (x, z)$. So, take an open neighborhood $U_y \in (x, y)$. By our assumption $f(U_y)$ is open, but this means that $M + \epsilon \in f(U_y)$ for some arbitrarily small $\epsilon > 0$. Thus, we arrive at contradiction as M can’t be maximum, or, in other words, M can’t be an interior point of U_y. The case of minimum is handled similarly.

6. Suppose that $\{x_n\}$ is a convergent sequence of points while lies, together with its limit x, in a set $X \subset \mathbb{R}^n$. Suppose that $\{f_n\}$ converges on X to the function f.

(a) Is it true that $f(x) = \lim f_n(x_n)$? Prove if true or provide counterexample.

Solution. Consider following counterexample: $X = [0, 1]$, $f_n(x) = x^n$ and $x_n = 1 - 1/n$. It is easy to see that $x_n \to 1$ as $n \to \infty$,

$$f_n(x) \to \begin{cases} 1, & x = 1 \\ 0, & \text{otherwise} \end{cases}$$
and that
\[\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e}. \]
But clearly, we have \(1/e \neq f(1) = 1 \). We definitely need stronger assumptions.

(b) Would you change your answer if you know that convergence of \(\{f_n\} \) is uniform on \(X \)? Again, prove if true or provide counterexample.

Solution. No. Even uniform convergence does not guarantee us this result. To see this consider the following example with \(f(x) \) being a Heaviside step function:

\[f(x) = \begin{cases}
1, & x \geq 0 \\
0, & x < 0
\end{cases} \]

with \(x_n = -1/n \) and \(f_n(x) = f(x) + 1/n \). Clearly, \(x_n \to 0 \) and \(f_n \) converge uniformly to \(f \) but \(\lim_{n \to \infty} f_n(x_n) = 0 \neq 1 = f(0) \). Actually, to get the result we seek, we need a uniform convergence to a continuous function \(f \).

7. Some practice with contraction maps

(a) Let \((X, d) \) be a space of continuous function on a closed interval \([0, \beta]\) with a supremum norm, i.e. \(X = C([0, \beta]) \), and \(d(f, g) = \max_t |f(t) - g(t)| \), where \(\beta < 1 \). Define \(T : X \to X \) by

\[(Tf)(t) = \int_0^t f(s) \, ds + g(t), \]

for some continuous function \(g(t) \).

Show that \(T \) has a unique fixed point.\(^1\)

Solution. Lets first show that \(C([0, \beta]) \) is a complete metric space, i.e. that an arbitrary Cauchy sequence \(\{f_n(x)\}_{n=1}^\infty \) in \(C([0, \beta]) \) converges. In particular, we need to demonstrate that the limit of a Cauchy sequence of continuous functions on \([0, \beta]\), firstly, exists in the sense that for each \(x \in [0, 1] \), lim \(f_n(x) \) exists, and secondly, pointwise limit function, \(f(x) \), is continuous on \([0, \beta]\).

The first part follows immediately from the fact that Cauchy sequences of real numbers converge (to real numbers) by the completeness of \(\mathbb{R} \) argument. Hence, we are guaranteed the existence of our pointwise limit function.

\(^1\)Note that to invoke Contraction Mapping Theorem here, you need first to show that \((X, d) \) is a complete metric space. Completeness of \(\mathbb{R} \) will come to your rescue here.
Now, we just need to show continuity of \(f(x) \). Fix \(\epsilon > 0 \) and consider \(s, t \in [0, 1] \). We have

\[
|f(s) - f(t)| = |f(s) - f_n(s) + f_n(s) - f(t)|
\leq |f(s) - f_n(s)| + |f_n(s) - f(t)|
= |f(s) - f_n(s)| + |f_n(s) - f_n(t) + f_n(t) - f(t)|
\leq |f(s) - f_n(s)| + |f_n(s) - f_n(t)| + |f_n(t) - f(t)| \tag{1}
\]

From the definition of \(d(f_n, f) \) and the fact that \(d(f_n, f) \to 0 \) as \(n \to \infty \), there exists an \(N(\epsilon) \) such that whenever \(n > N(\epsilon) \), the first and last terms on the RHS of (1) are less than \(\epsilon / 3 \). Furthermore, for any \(n \), \(f_n \in C([0, 1]) \). Fix some \(n > N(\epsilon) \). (Uniform) Continuity implies that there is a \(\delta_n > 0 \) such that whenever \(|s - t| < \delta_n \Rightarrow |f_n(s) - f_n(t)| < \epsilon / 3 \). Therefore, all three terms of the RHS of (*) are less than \(\epsilon / 3 \). So we get that

\[|f(s) - f(t)| < \epsilon, \text{ whenever } |s - t| < \delta_n\]

This proves that \(f \) is (uniformly) continuous.

Now, we show that \(T \) is a contraction.

\[
d(Tf, Tg) = \max_{t \in [0, \beta]} |Tf(t) - Tg(t)|
= \max_{t \in [0, \beta]} |\int_0^t f(s) \, ds - \int_0^t g(s) \, ds|
\leq \max_{t \in [0, \beta]} \int_0^t |f(s) - g(s)| \, ds
\leq \int_0^\beta \max_{t \in [0, \beta]} \{|f(t) - g(t)|\} \, ds
= \beta d(f, g)
\]

(b) Now suppose \((X, d) \) is an arbitrary complete metric space, but \(T : X \to X \) is an \textit{expansion}, i.e. there exists \(\beta > 1 \) such that \(d(Tx, Ty) \geq \beta d(x, y) \) for all \(x, y \) in \(X \), and that \(T(X) = X \). Show that \(T \) has a fixed point.

Solution. We will do it in a sequence of steps. Firstly, we will verify that \(T \) is one-to-one and, thus, since it is also a surjection, the inverse must exists. Secondly, we will argue that \(T^{-1} \) is a contraction. Finally, we will invoke Contraction Mapping Theorem and show that the fixed point of \(T^{-1} \) is also a fixed point of \(T \).

Step 1: verifying \(T \) is one-to-one, i.e. if \(x_1 \neq x_2 \) then \(T(x_1) \neq T(x_2) \). But this is immediate since \(x_1 \neq x_2 \) implies directly that \(d(T(x_1), T(x_2)) \geq \)
\[\beta d(x_1, x_2) > 0. \] Therefore, \(T \) is one-to-one. By our assumption, \(T \) is onto, thus, there exists \(T^{-1} : X \to X \) and \(T \circ T^{-1} = id. \)

Step 2: Show that \(T^{-1} \) is a contraction, i.e. there exists \(\alpha < 1 \) such that \(d(T^{-1}(x_1), T^{-1}(x_2)) \leq \alpha d(x_1, x_2) \) for all \(x_1, x_2 \in X \).

So, if \(T \) is one-to-one and onto, \(T^{-1} : X \to X \) is also one-to-one and onto. Therefore, we can apply expansion \(T \) to any arbitrary image of \(T^{-1} \) since for any \(x \in X : T^{-1}(x) \in X \)

\[
\begin{align*}
d(T(T^{-1}(x_1)), T(T^{-1}(x_2))) &\geq \beta d(T^{-1}(x_1), T^{-1}(x_2)) &\iff &
d(x_1, x_2) &\geq \beta d(T^{-1}(x_1), T^{-1}(x_2)) \iff \\
d(T^{-1}(x_1), T^{-1}(x_2)) &\leq \frac{1}{\beta} d(x_1, x_2)
\end{align*}
\]

We have shown that there exists \(\alpha = \frac{1}{\beta} < 1 \) such that \(d((T^{-1}(x_1), T^{-1}(x_2)) \leq \alpha d(x_1, x_2) \) for all \(x_1, x_2 \in X \), i.e. \(T^{-1} \) is a contraction.

Step 3: By the Contraction Mapping Theorem, we can conclude that there exists \(x^* \), a fixed point, such that \(T^{-1}(x^*) = x^* \). Now, we show that \(x^* \) is also a fixed point of the expansion \(T \).

Since \(x^* = T^{-1}(x^*) \) is an identity, we can apply to each side any arbitrary transformation that preserve the equality. In particular, let’s choose \(T \)

\[T(x^*) = T(T^{-1}(x^*)) \]

which implies

\[T(x^*) = x^* \]

and we get the result we seek.