Economics 204
Fall 2011
Problem Set 2
Due Tuesday, August 2 in Lecture

1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit points of those sets.)
(a) The interval $(0,1)$ as a subset of \mathbf{R}
(b) The interval $(0,1)$ as a subset of \mathbf{R}^{2}, that is $\left\{(x, 0) \in \mathbf{R}^{2} \mid x \in(0,1)\right\}$
(c) \mathbf{R} as the subset of \mathbf{R}
(d) \mathbf{R} imbedded as a subset $\left\{(x, 0) \in \mathbf{R}^{2} \mid x \in \mathbf{R}\right\}$ of \mathbf{R}^{2}
(e) $\{1 / n \mid n \in \mathbf{N}\}$ as a subset of \mathbf{R}
(f) $\{1 / n \mid n \in \mathbf{N}\}$ as a subset of the interval $(0, \infty)$.
2. Consider the following two sets:

$$
\begin{aligned}
& A=\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}-y^{2} \leq 3\right\} \\
& B=\left\{(x, y) \in \mathbf{R}^{2} \mid y>\sqrt{|x|}\right\}
\end{aligned}
$$

(a) Using the "pre-image of a closed set is closed (under a continuous function)" definition, determine whether sets A and B are open, closed, both or neither
(b) Find their closure, exterior and boundary.
3. Let $A, B \subset X$. Suppose that $\operatorname{int} A=\operatorname{int} B=\emptyset$.
(a) Prove that if A is closed in X, then $\operatorname{int}(A \cup B)=\emptyset$.
(b) Give an example with $\operatorname{int}(A \cup B) \neq \emptyset$ if A isn't necessarily closed in X.
4. Let f be a monotonic, increasing function from \mathbf{R} to \mathbf{R}. Suppose that $f(0)>0$ and $f(100)<100$. Prove that $f(x)=x$ for some $x \in(0,100)$.
5. Call a mapping of X into Y open if $f(V)$ is an open set in Y whenever V is an open set in X. Prove that every continuous open mapping of \mathbf{R} into \mathbf{R} is monotonic.
6. Suppose that $\left\{x_{n}\right\}$ is a convergent sequence of points which lies, together with its limit x, in a set $X \subset \mathbf{R}^{n}$. In addition, suppose that $\left\{f_{n}\right\}$ converges on X to the function f.
(a) Is it true that $f(x)=\lim f_{n}\left(x_{n}\right)$? Prove if true or provide counterexample.
(b) Would you change your answer if you know that convergence of $\left\{f_{n}\right\}$ is uniform on X ? Again, prove if true or provide counterexample.
7. Some practice with contraction maps
(a) Let (X, d) be a space of continuous function on a closed interval $[0, \beta]$ with a supremum norm, i.e. $X=C([0, \beta])$, and $d(f, g)=\max _{t}|f(t)-g(t)|$, where $\beta<1$. Define $T: X \rightarrow X$ by

$$
(T f)(t)=\int_{0}^{t} f(s) d s+g(t)
$$

for some continuous function $g(t)$.
Show that T has a unique fixed point. ${ }^{1}$
(b) Now suppose (X, d) is an arbitrary complete metric space, but $T: X \rightarrow X$ is an expansion, i.e. there exists $\beta>1$ such that $d(T(x), T(y))>\beta d(x, y)$ for all x, y in X, and that $T(X)=X$. Show that T has a fixed point.

[^0]
[^0]: ${ }^{1}$ Note that to invoke Contraction Mapping Theorem here, you need first to show that (X, d) is a complete metric space. Completeness of \mathbf{R} will come to your rescue here.

