Economics 204 Fall 2011 Problem Set 3 Suggested Solutions

- 1. For x > 0, define $f(x) = \frac{1}{2}(x + \frac{2}{x})$.
 - (a) Show that if X = [1, 2], then f is a contraction on X.
 - (b) What is the fixed point of this contraction?
 - (c) Show that if $X = (0, \infty)$, then f is not a contraction on X; that is, there does not exist $\beta \in (0, 1)$ such that

$$\forall x, y \in X : |f(x) - f(y)| \le \beta |x - y|.$$

Solution:

(a) First, X is a complete metric space as a closed subset of \mathbb{R} , which is complete. Then we need to show that f maps X into X. Since $f(x) = \frac{1}{2}x + \frac{1}{x}$, it suffices to show that $\frac{1}{2}x + \frac{1}{x} \ge 1$ and $\frac{1}{2}x + \frac{1}{x} \le 2$ for all $x \in X$. The first follows from the fact that $\frac{1}{2}x \ge \frac{1}{2}$ for $x \ge 1$ and $\frac{1}{x} \ge \frac{1}{2}$ for $x \le 2$. The second follows from the fact that $\frac{1}{2}x \le 1$ for $x \le 2$ and $\frac{1}{x} \le 1$ for $x \ge 1$.

We now want to show: $|f(x) - f(y)| \le \beta |x - y|$ for some $\beta < 1$ and all $x, y \in X$. Assuming $x \ge y$ without loss of generality, we get:

$$\begin{split} |f(x) - f(y)| &= |\frac{1}{2}(x + \frac{2}{x}) - \frac{1}{2}(y + \frac{2}{y})| \\ &= |\frac{1}{2}(x - y) + \frac{y - x}{xy}| \\ &= |(x - y)(\frac{1}{2} - \frac{1}{xy})| \\ &= |x - y| \cdot |\frac{1}{2} - \frac{1}{xy}| \\ &\leq \frac{1}{2}|x - y|, \end{split}$$

where the inequality follows from the fact that $\frac{1}{4} \leq \frac{1}{xy} \leq 1$ and therefore $\frac{1}{2} - \frac{1}{xy} \in [-\frac{1}{2}, \frac{1}{4}]$ and $|\frac{1}{2} - \frac{1}{xy}| \leq \frac{1}{2}$. So f is a contraction of modulus $\frac{1}{2}$.

(b) $\sqrt{2}$

This answer comes from solving f(x) = x:

1

$$\frac{1}{2}(x + \frac{2}{x}) = x$$

$$\Leftrightarrow \frac{1}{x} = \frac{1}{2}x$$

$$\Leftrightarrow 2 = x^{2}$$

$$\Leftrightarrow x = \sqrt{2}$$

By the Contraction Mapping Theorem, we know that this fixed point is unique.

- (c) Notice that $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{1}{2}(x+\frac{2}{x}) = \infty$. Thus the distance between f(x) and $f(\sqrt{2}) = \sqrt{2}$ goes to infinity as x approaches 0, but the distance between x and $\sqrt{2}$ is bounded above by $\sqrt{2}$. If f were a contraction of modulus β , the distance between f(x) and $f(\sqrt{2})$ for small x would have been bounded above by $\beta\sqrt{2}$. Therefore f is not a contraction.
- 2.(a) Show that boundedness and total boundedness are equivalent under the usual metric in \mathbb{R}^n . (In class we showed that total boundedness is a stronger condition than boundedness. Now you need to supply only the other direction.)
 - (b) For $x, y \in \mathbb{R}^n$, define $\rho(x, y) = \min\{d(x, y), 1\}$, where d is the usual metric. Show that $E \subset \mathbb{R}^n$ is bounded with respect to d iff E is totally bounded with respect to ρ .

Solution:

(a) We need to show that under the usual metric in \mathbb{R}^n , boundedness implies total boundedness. Fix $\varepsilon > 0$ and let E be a bounded set. In particular, let $||a|| < M \frac{\varepsilon}{\sqrt{n}}$ for some $M \in \mathbb{N}$ and for all $a \in E$. For ease of notation, let $\frac{\varepsilon}{\sqrt{n}} = \delta$. (See below for an explanation about why we care about this ratio) Now let:

$$X = \{(a_1, \dots, a_n) : a_i \in \{-M\delta, \dots, -\delta, 0, \delta, 2\delta, \dots, (M-1)\delta, M\delta\}\}$$

Notice that X is a finite set with $(2M + 1)^n$ elements. Now it suffices to show that the union of ε -balls centered around elements of X covers the ball $B_{M\delta}(0)$, which in turn contains E. (Notice that this uses de la Fuente's definition of total boundedness, which is equivalent to the one presented in class.) To see that, notice that

$$||a|| < M\delta \Rightarrow \sum_{i=1}^{n} |a_i|^2 < (M\varepsilon)^2 \Rightarrow \forall i : |a_i| < M\delta$$

This implies: $E \subseteq B_{M\delta}(0) \subset [-M\delta, M\delta]^n$. Now it is enough to show:

$$-M\delta, M\delta]^n \subset \cup \{B_{\varepsilon}(x)\}_{x \in X}.$$

Let $a \in [-M\delta, M\delta]^n$. By construction, there is an element x of X that is within at most $\frac{1}{2}\delta$ along all dimensions from a. Thus the distance from a to the nearest element of X cannot exceed

$$\sqrt{n(\frac{1}{2}\delta)^2} = \frac{1}{2}\delta\sqrt{n} = \frac{1}{2}\frac{\varepsilon}{\sqrt{n}}\sqrt{n} = \frac{1}{2}\varepsilon < \varepsilon$$

This concludes the proof. The intuition behind the proof is quite simple: we constructed a finite grid of points (the set X) that is fine enough and large enough so that each element of E is within ε of an element of X. At first blush, it might seem sufficient to choose the grid so that its elements have coordinates that are multiples of ε . However, this is not enough for large n (n > 4), since in those cases the point ($1/2, \ldots, 1/2$) is at a distance greater than 1 from all the vertices of the hypercube $[0, 1]^n$. That is why we needed to choose a finer grid by dividing ε by \sqrt{n} .

(b) Assume that E is totally bounded under ρ . Then for all $\varepsilon < 1$, there is a set $\{x_1, \ldots, x_k\} \subseteq E$ such that for all elements a of E we have: $\rho(a, x_i) < \varepsilon < 1$ for some x_i . By definition, if $\rho(a, x_i) < 1$, then $\rho(a, x_i) = d(a, x_i)$. Hence $\{x_1, \ldots, x_k\}$ is also an ε -net for E with respect to d. For $\varepsilon \ge 1$, the $\frac{1}{2}$ -net can also serve as the ε -net with respect to d. Thus E is totally bounded and therefore bounded with respect to d.

Now assume that E is bounded with respect to d. Then by part (a), E is totally bounded with respect to d. Fix ε . Notice that if $\varepsilon \ge 1$, $E \subseteq B_{\varepsilon}(a)$ for any $a \in E$, where $B_{\varepsilon}(a)$ is defined with respect to the metric ρ . This gives us a trivial ε -net for E under ρ . Let $\varepsilon < 1$ instead. Using the same argument as above, the ε -net with respect to d is also the ε -net with respect to ρ . Hence E is totally bounded under ρ .

3. Show that the set of cluster points of a bounded sequence in \mathbb{R}^n is non-empty and compact.

Solution: Recall the sequential characterization of cluster points - c is a cluster point of a sequence iff the sequence has a subsequence converging to c. It will be useful in the following proof.

Non-empty. Denote the sequence by $\{x_n\}$ and let the set of its cluster points be Ω . The set Ω is non-empty by Bolzano-Weierstrass' theorem: $\{x_n\}$ is bounded and thus has a convergent subsequence. Therefore $\{x_n\}$ has at least one cluster point.

Now to show that Ω is also compact, we will show that it is closed and bounded.

Bounded. First, since $\{x_n\}$ is bounded

$$\exists M \in \mathbb{R} : \forall m, n \in \mathbb{N}, ||x_n - x_m|| \le M.$$

Assume toward contradiction that Ω is not bounded. Then

$$\exists \omega, \omega' \in \Omega : ||\omega - \omega'|| > M + 2\varepsilon$$

for some $\varepsilon > 0$. Since ω and ω' are cluster points of $\{x_n\}$, there exist elements of the sequence x and x' such that $x \in B_{\varepsilon}(\omega)$ and $x' \in B_{\varepsilon}(\omega')$. By the triangle inequality:

$$\begin{aligned} ||\omega - \omega'|| &\leq ||\omega - x|| + ||x - x'|| + ||x' - \omega'|| \\ \Rightarrow ||x - x'|| &\geq ||\omega - \omega'|| - ||\omega - x|| - ||x' - \omega'|| \\ &> M + 2\varepsilon - \varepsilon - \varepsilon \\ &= M \end{aligned}$$

But M was chosen so that $||x_n - x_m|| \leq M$ for all n, m. Contradiction! *Closed.* Let $\{\omega_n\}$ be a sequence in Ω that converges to some c. If we show $c \in \Omega$, we would be done. Assume toward contradiction that $c \notin \Omega$ and hence c is not a cluster point of $\{x_n\}$. Then there is some ε such that $A = \{n : x_n \in B_{\varepsilon}(c)\}$ is a finite set. However, $\{\omega_n\} \to c$ so there is some $\omega \in B_{\varepsilon/2}(c) \cap \{\omega_n\}$. Furthermore, ω is a cluster point of $\{x_n\}$ so $B = \{n : x_n \in B_{\varepsilon/2}(\omega)\}$ is infinite. However, notice that since $||\omega - c|| < \varepsilon/2$, we have $B \subseteq A$. But this is impossible since B is infinite and A finite. Contradiction! So Ω is closed.

- 4. (a) For some metric space X, fix $p \in X$ and $\delta > 0$. Define A by $A = \{q \in X : d(p,q) < \delta\}$ and B by $B = \{q \in X : d(p,q) > \delta\}$. Prove that A and B are separated.
 - (b) Prove that every connected metric space with at least two points is uncountable.

Solution:

(a) We want to show that A and B are separated, i.e. $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. Let's show it for $A \cap \overline{B}$ first.

First of all, it is clear that if $B = \emptyset$, $A \cap \overline{B} = \emptyset$ is satisfied. Instead, let $B \neq \emptyset \neq \overline{B}$.

Assume toward contradiction that $A \cap \overline{B} \neq \emptyset$ and let $q \in A \cap \overline{B}$. Then $q \in A$ and $d(p,q) < \delta$. Fix $\varepsilon = \delta - d(p,q) > 0$. Then since $q \in \overline{B}, \exists x \in B \cap B_{\varepsilon}(q)$. But then:

$$d(p, x) \leq d(p, q) + d(q, x)$$

$$< d(p, q) + \varepsilon$$

$$= d(p, q) + (\delta - d(p, q))$$

$$= \delta$$

$$\Rightarrow x \in A,$$

but $x \in B$ and A and B are disjoint - contradiction!

Now, let us show $\overline{A} \cap B = \emptyset$ and, analogously to the above, let $A \neq \emptyset$ and assume toward contradiction $\overline{A} \cap B \neq \emptyset$. For $q \in \overline{A} \cap B$, we have: $q \in B \Rightarrow d(p,q) > \delta$. Since $q \in \overline{A}$, for $\varepsilon = d(p,q) - \delta > 0$

we have $\exists x \in A \cap B_{\varepsilon}(q)$. Then:

$$d(p,q) \le d(p,x) + d(x,q)$$

$$\Rightarrow d(p,x) \ge d(p,q) - d(x,q)$$

$$> d(p,q) - \varepsilon$$

$$= d(p,q) - (d(p,q) - \delta)$$

$$= \delta$$

This implies $x \in B$, but $x \in A$ - contradiction!

(b) Let the metric space (X, d) be connected and let $x, y \in X$ with $x \neq y$. Fix $0 < \delta < d(x, y)$. We want to show that there is some $z \in X$ such that $d(x, z) = \delta$, so assume toward contradiction that there is no such z. Then:

$$X = \{q \in X : d(x,q) < \delta\} \cup \{q \in X : d(x,q) > \delta\}.$$

But by part (a) then, these two sets are separated and X is not connected - contradiction! (It is crucial that both of these sets are non-empty: $x \in \{q \in X : d(x,q) < \delta\}$ and $y \in \{q \in X : d(x,q) > \delta\}$.)

This implies that for all $\delta < d(x, y), \exists z_{\delta} \in X : d(x, z_{\delta}) = \delta$. Since d(x, y) is a real number, there are uncountably many such δ -s. Hence X is uncountable as well.

5. Let X be a compact metric space and let $\{U_i\}_{i\in I}$ be an open cover of X. Show that there exists some real number $\varepsilon > 0$ such that any closed ball in X of radius ε is entirely contained in at least one set U_i . (Hint: Assume not and take aberrant balls of radii $1, 1/2, 1/3, \ldots$ and then use the fact that X is compact.)

Solution: Assume toward contradiction that this does not hold. Then we take a sequence of balls with radii 1/n for $n \in \mathbb{N}$, such that:

$$\bar{B}_{1/n}(x_n) \cap (U_i)^C \neq \emptyset$$

for all $i \in I$.

Consider the sequence $\{x_1, x_2, \ldots\}$. It is a sequence in the compact metric space X so it has a convergent subsequence. Denote the convergent subsequence by $\{y_m\}$ with $\{y_m\} \to y \in X$ and let the radius corresponding to each y_m be ε_m . Now we have:

$$\bar{B}_{\varepsilon_m}(y_m) \cap (U_i)^C \neq \emptyset$$

for all $i \in I$ and all m.

The collection $\{U_i\}_{i \in I}$ is an open cover of X and $y \in X$. Therefore $y \in U_i$ for some $i \in I$. The set U_i is open, so there is some $\varepsilon > 0$ such that $B_{\varepsilon}(y) \subseteq U_i$. Since $\{y_m\} \to y$, there is a tail of $\{y_m\}$ contained in $B_{\varepsilon/2}(y)$. Take some y_m from that tail such that $\varepsilon_m < \varepsilon/2$ (this ε_m exists since by the Archimedean property there are only finitely many ε_m , for which $\varepsilon_m \geq \varepsilon/2$). But then:

$$\bar{B}_{\varepsilon_m}(y_m) \subset \bar{B}_{\varepsilon}(y) \subseteq U_i,$$

which is a contradiction!

6. Let X and Y be two non-empty sets and $\Gamma : X \to 2^Y$ a correspondence. We say that Γ is *injective* if $\Gamma(x) \cap \Gamma(x') = \emptyset$ for any distinct $x, x' \in X$, and that it is *surjective* if $\Gamma(X) = Y$, where the image of a set is defined by $\Gamma(S) = \bigcup \{\Gamma(x) : x \in S\}$. Finally, Γ is *bijective* if it is both injective and surjective. Prove that Γ is bijective iff $\Gamma = f^{-1}$ for some $f: Y \to X$.

Solution: Assume that Γ is bijective. Define the correspondence F: $Y \to 2^X$ by $F(y) = \{x : y \in \Gamma(x)\}$. Notice that F(y) is a singleton for all $y \in Y$, since F(y) is at most a singleton for all $y \in Y$ (follows from Γ being injective), and F(y) is non-empty for all $y \in Y$ (follows from Γ being surjective). Since F(y) is always a singleton, we can analyze it as a function $f: Y \to X$. Now consider the inverse of f:

$$f^{-1}(x) = \{y \in Y : f(y) = x\} = \{y \in Y : y \in \Gamma(x)\} = \Gamma(x),$$

where the second equality follows from the definition of F and f.

Now assume that $\Gamma = f^{-1}$ for some $f: Y \to X$. We need to show that Γ is injective and surjective.

The injective part follows from the fact that $f^{-1}(x) \cap f^{-1}(x') = \emptyset$, since otherwise we would have f(y) = x and f(y) = x'. The surjective part follows from the fact that for all $y \in Y$, $y \in \Gamma(f(y))$; thus since $f(y) \in X$, $\Gamma(X) = Y$. 7. Define the correspondence $\Gamma : [0,1] \to 2^{[0,1]}$ by:

$$\Gamma(x) = \begin{cases} [0,1] \cap \mathbb{Q} & \text{if } x \in [0,1] \backslash \mathbb{Q} \\ [0,1] \backslash \mathbb{Q} & \text{if } x \in [0,1] \cap \mathbb{Q} \end{cases}$$

Show that Γ is not continuous, but it is lhc. Is Γ uhc at any rational? At any irrational? Does this correspondence have a closed graph?

Solution: The correspondence is not uhc at any rational number q in the interval [0,1]. To see that consider the open set (0,1), which contains $\Gamma(q) = [0,1] \setminus \mathbb{Q}$. However, any open set containing q also contains an irrational number i and $\Gamma(i) \not\subset (0,1)$ since $\{0,1\} \subset \Gamma(i)$.

The correspondence is not uhc at any irrational number i in the interval [0,1] either. To see that consider the open set $(-1/2, \pi/4) \cup (\pi/4, 3/2)$, which contains $\Gamma(i) = [0,1] \cap \mathbb{Q}$. However, any open set containing i also contains a rational number q and $\Gamma(q) \not\subset (-1/2, \pi/4) \cup (\pi/4, 3/2)$, since $\pi/4 \in \Gamma(q)$.

Thus Γ is nowhere uhc and hence nowhere continuous. Now we'll show that it is lhc. Fix $q \in [0,1] \cap \mathbb{Q}$ and consider some open set $U \subset \mathbb{R}$ such that $U \cap \Gamma(q) \neq \emptyset$. Now it suffices to show that $U \cap \Gamma(x) \neq \emptyset$ for all $x \in [0,1]$. If x is rational, we have $\Gamma(x) = \Gamma(q)$ and hence $U \cap \Gamma(x) \neq \emptyset$. If x is irrational, notice that since U is an open set that contains an irrational number in the interval [0,1], it must also contain a rational number in the same interval and therefore its intersection with $\Gamma(x) = [0,1] \cap \mathbb{Q}$ is non-empty. The proof for $i \in [0,1] \setminus \mathbb{Q}$ and an open U such that $U \cap \Gamma(i) \neq \emptyset$ is analogous.

The correspondence does not have a closed graph. If it did, by a theorem proven in lecture, Γ would be uhc since its codomain [0, 1] is compact. But we saw that Γ is nowhere uhc. Alternatively, we can use the fact that a closed graph implies that the correspondence is closedvalued. However, neither $[0, 1] \cap \mathbb{Q}$ nor $[0, 1] \setminus \mathbb{Q}$ are closed. Therefore, Γ cannot have a closed graph.