
Economics 204
Fall 2011
Problem Set 4 Suggested Solutions

1. Determine whether or not each of the following sets is a vector space. In case
it is, find the dimension of the space and a Hamel basis for it.

(a) The set of solutions in R3 to the following system of linear equations, with
vector addition and scalar multiplication defined in the usual way

x1 − 5x2 + 2x3 = 0

5x1 + 3x2 − x3 = 0

Solution. Here we will only show it is closed under vector addition and
scalar multiplication. So, for any two elements u and v from this set and
scalars α and β, since both u and v satisfy both equations, it is easy to see
that αu+ βv also make the above equation equal to 0. {(1, 1, 1)} is one of
the Hamel basis and its dimension is 1. The checks of all other conditions
are just as straightforward.

(b) The set of n×n matrices having a trace equal to one, with matrix addition
and scalar multiplication defined in the usual way 1

Solution. No. It is not closed under addition.

(c) The set of m× n matrices having all their elements sum-up to zero, with
matrix addition and scalar multiplication defined in a usual way

Solution. Again, here we will only show it is closed under vector addition
and scalar multiplication. So, for any two matrices A and B from this set
and scalars α and β, since both A and B have all their elements sum-up
to 0, it is easy to see that the sum of all elements of αA+βB is also equal
to 0. One Hamel basis is given by mn− 1 matrices

{Mij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

where

(Mij)k` =


1 if k = i, ` = j and k 6= m, ` 6= n
−1 if k = m, ` = n
0 otherwise.

Clearly, the dimension of the space is mn− 1.

1The trace of an n× n matrix M, denoted tr(M), is the sum of the diagonal entries of M
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(d) The set of 2× 1 matrices with real entries, with vector addition and scalar
multiplication defined as(

x1
y1

)
+

(
x2
y2

)
=

(
x1 − x2
y1 − y2

)
r ·
(
x
y

)
=

(
rx
ry

)
Solution. No. Observe that addition defined in such a way is not com-
mutative. Take for instance two standard basis vectors in R2.

(e) All strictly positive reals R++ = {x ∈ R | x > 0}, with vector addition
defined as x+ y = x · y and scalar multiplication defined as λx = xλ.

Solution. Again, here we will only show it is closed under vector addition
and scalar multiplication. So, for any two strictly positive reals x, y ∈ R++

and scalars α and β, it is easy to see that αx + βy = xα · yβ is a strictly
positive real itself. The vector space axioms are satisfied with additive
identity equal to 1 and additive inverse equal to 1/x, they follow from the
field properties of R. One Hamel basis is {2} and the dimension of the
space is 1.

2. Let A and B be subspaces of a vector space V . Are the following assertions
true? Always? Sometimes? Never?

(a) A ∩B is a subspace?

Solution. Always. Take any two vectors v, w ∈ A ∩ B (we can always
do that because the intersection is non-empty; do you see why?) and two
scalars α and β . Because A and B are subspaces themselves, the linear
combination αv + βw is in A and in B as well. Consequently, αv + βw ∈
A ∪ B =⇒ A ∪ B is closed under linear combination of two vectors. We
are done.

(b) A ∪B is a subspace?

Solution. Sometimes. It can only happen if one subspace is “bigger,” i.e.
A ⊂ B or B ⊂ A.

To see that the answer is not “always,” take V to be R3, take A to be sub-
space generated by the first standard basis vector, e1, and B — generated
by the second standard basis vector, e2

A = {αe1 : α ∈ R}
B = {αe2 : α ∈ R}

Notice that e1 + e2 /∈ A ∪B as the sum is neither in A nor in B.

Observe that the answer is not “never,” because if A ⊂ B or B ⊂ A then
clearly A ∪ B is a subspace. We prove that A ∪ B is a subspace only if
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either A ⊂ B or B ⊂ A by contrapositive, i.e. we assume that A 6⊂ B and
B 6⊂ A to show that the union is not a subspace. The assumption that A
is not a subset of B means that there is an a ∈ A with a /∈ B. The other
assumption gives a b ∈ B with b /∈ A. Consider a + b and note that the
sum is not an element of A or else (a+ b)− a would be in A, which would
lead to a contradiction. Similarly, the sum is not an element of B.

(c) If A is a subspace, then its complement is also a vector subspace.

Solution. Never. Note that Ac = V \A, therefore ~0 /∈ Ac as it is contained
both in V and in A.

3. Let U be a subspace of R5 defined by

U = {(x1, x2, x3, x4, x5) ∈ R5 : x2 =
1

2
x4 and x1 = x5}.

Find a basis of U .

Solution. Because of the linear dependence of x2 on x4 and x1 on x5, our
U = span{v1, v2, v3}, where v1 = (0, 1, 0, 2, 0), v2 = (1, 0, 0, 0, 1) and v3 =
(0, 0, 1, 0, 0). To see that this is true we will first check that span { v1, v2, v3} ⊂
V . Take v ∈ U , we have

v = α1v1 + α2v2 + α3v3 = (α2, α1, α3, 2α1, α2)

where α1, α2, α3 ∈ R. By inspection, we find that v ∈ U .

Conversely, let v = (x1, x2, x3, 2x2, x1) ∈ U , for some x1, x2, x3 ∈ R. We then
obtain: v = x2v1 + x1v2 + x3v3, showing that U ⊂ span { v1, v2, v3}.

4. Let T : X → Y be a linear transformation and U a subspace of X. Prove that
the image of U under T , T (U) = {T (u) | u ∈ U} is a subspace of Y .

Solution. First, note that the image of T is non-empty, because U is non-
empty. Now, consider v1, v1, . . . , vn ∈ U. By linearity of T we have

α1T (v1) + α2T (v2) + . . . αnT (vn) = T (α1v1 + α2v2 + . . . αnvn),

which is itself in T (U) since α1v1 + α2v2 + . . . αnvn ∈ U. Thus, we have shown
that T (U) is closed under taking finite linear combinations, and we are done.

5. Let T : V → V be a linear transformation. Suppose that there is an v ∈ V such
that T n(v) = 0 but T n−1(v) 6= 0 for some n > 0. Prove that v, T (v), T 2(v), . . . ,
T n−1(v) are linearly independent.
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Solution. By contradiction. Suppose that v, T (v), T 2(v), . . . , T n−1(v) are
linearly dependent, then there exist non-zero scalars, α0, α1, . . . , αn−1 ∈ R
such that

α0v + α1T (v) + . . . , αn−1T
n−1(v) = 0

Applying T n−1 to both sides and using linearity, we get that

α0T
n−1v + α1T

n(v) + . . . , αn−1T
2n−2(v) = 0.

Thus, α0 = 0 and proceeding in a similar fashion yields α1 = 0, α2 = 0, . . . ,
αn−1 = 0. Contradiction.

6. Let T : V → V be a linear transformation. Prove that

kerT ∩ ImT = {0} =⇒ kerT = kerT 2.

Solution. First, it is easy to see that ker T ⊂ kerT 2. Take any v ∈ kerT and
apply T twice to it to get

T 2(v) = T (T (v)) = T (0) = 0 =⇒ x ∈ kerT 2.

To show the set inclusion in the other direction, lets proceed by contradiction,
and suppose that there exists v ∈ kerT 2 \ kerT . If that is the case, we must
have T (v) 6= 0, but T (T (v)) = 0. But, this means T (v) ∈ kerT and at the same
time, T (v) ∈ ImT. We have a contradiction, that proves our result.

7. Let V be finite dimensional and T : V → W a linear transformation. Prove
that T is surjective if and only if there exists S ∈ L(W,V ) such that TS is an
identity map on W .

Solution. First, lets suppose that T is onto. Take a basis w1, w2, . . . , wn of
W . It is finite dimensional by Rank-Nullity Theorem. By the surjectivity of
T for each j, there exists vj ∈ V such that wj = T (vj). Lets define a linear
transformation S : W → V as

S(α1w1 + α2w2 + · · ·+ αnwn) = α1v1 + α2v2 + · · ·+ αnvn.

Clearly, we have then

(TS)(α1w1 + α2w2 + · · ·+ αnwn) = T (α1v1 + α2v2 + · · ·+ αnvn) =

= α1T (v1) + α2T (v2) + · · ·+ αnT (vn) =

= α1w1 + α2w2 + · · ·+ αnwn.

Which shows that TS ∈ L(W,W ) is an identity map.

Now, lets suppose that there exists S ∈ L(W,V ) such that TS is the identity
map on W . Take any w ∈ W , then w = T (S(w)), and therefore w ∈ ImT. But
this means that ImT = W, or that T is surjective.
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8. Call v a right null vector of a symmetric matrix A if Av = 0, and similarly a
left null vector if vTA = 0. Let n × n symmetric matrix A be diagonalizable
and have a one-dimension null space. Prove that a non-zero left null vector of
A cannot be orthogonal to a non-zero right null vector.

Solution. Lets assume to contradiction that we have v · u = 0 for a right null
vector of v and left null vector u of a diagonalizable matrix A. The Theorem
10 in Lecture 9 guarantees us that we can choose a basis w1, w2, . . . , wn of Rn

consisting of eigenvectors of A. Notice that since v is a right null vector it must
be the case that v is an eigenvector corresponding to λ = 0. Also, observe that
the null space of A is assumed to be one-dimensional. The latter allows us to
deduce two things: first is that one of the basis vectors w1, w2, . . . , wn is a
multiple of v, so lets assume without any loss of generality that w1 = v. Second
is that eigenvalues λj associated with eigenvectors wj are nonzero for all other
j > 1.

Thus, for j > 1 we get

uwj =
1

λj
u(Awj) =

1

λj
(uA)wj = 0.

i.e. that u is orthogonal to each of the basis vectors w1, w2, . . . , wn.

We claim that u must be zero. To see this note that since w1, w2, . . . , wn are
basis vectors, there exist constants α1, α2, . . . , αn not all zero such that

u = α1 · w1 + α2 · w2 + · · ·+ αn · wn

taking a dot product with u on both sides we get

||u||2 = α1 · (uw1) + α2 · (uw2) + · · ·+ αn · (uwn)

= α1 · 0 + α2 · 0 + · · ·+ αn · 0
= 0

Therefore, u must be a zero vector. We have arrived at contradiction, which
proves the result we seek.
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