Economics 204
Fall 2011
Problem Set 4 Suggested Solutions

1. Determine whether or not each of the following sets is a vector space. In case it is, find the dimension of the space and a Hamel basis for it.
(a) The set of solutions in \mathbf{R}^{3} to the following system of linear equations, with vector addition and scalar multiplication defined in the usual way

$$
\begin{aligned}
& x_{1}-5 x_{2}+2 x_{3}=0 \\
& 5 x_{1}+3 x_{2}-x_{3}=0
\end{aligned}
$$

Solution. Here we will only show it is closed under vector addition and scalar multiplication. So, for any two elements u and v from this set and scalars α and β, since both u and v satisfy both equations, it is easy to see that $\alpha u+\beta v$ also make the above equation equal to $0 .\{(1,1,1)\}$ is one of the Hamel basis and its dimension is 1 . The checks of all other conditions are just as straightforward.
(b) The set of $n \times n$ matrices having a trace equal to one, with matrix addition and scalar multiplication defined in the usual way ${ }^{1}$
Solution. No. It is not closed under addition.
(c) The set of $m \times n$ matrices having all their elements sum-up to zero, with matrix addition and scalar multiplication defined in a usual way
Solution. Again, here we will only show it is closed under vector addition and scalar multiplication. So, for any two matrices A and B from this set and scalars α and β, since both A and B have all their elements sum-up to 0 , it is easy to see that the sum of all elements of $\alpha A+\beta B$ is also equal to 0 . One Hamel basis is given by $m n-1$ matrices

$$
\left\{M_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

where

$$
\left(M_{i j}\right)_{k \ell}= \begin{cases}1 & \text { if } k=i, \ell=j \text { and } k \neq m, \ell \neq n \\ -1 & \text { if } k=m, \ell=n \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, the dimension of the space is $m n-1$.

[^0](d) The set of 2×1 matrices with real entries, with vector addition and scalar multiplication defined as
$$
\binom{x_{1}}{y_{1}}+\binom{x_{2}}{y_{2}}=\binom{x_{1}-x_{2}}{y_{1}-y_{2}} \quad r \cdot\binom{x}{y}=\binom{r x}{r y}
$$

Solution. No. Observe that addition defined in such a way is not commutative. Take for instance two standard basis vectors in \mathbf{R}^{2}.
(e) All strictly positive reals $\mathbf{R}_{++}=\{x \in \mathbf{R} \mid x>0\}$, with vector addition defined as $x+y=x \cdot y$ and scalar multiplication defined as $\lambda x=x^{\lambda}$.
Solution. Again, here we will only show it is closed under vector addition and scalar multiplication. So, for any two strictly positive reals $x, y \in \mathbf{R}_{++}$ and scalars α and β, it is easy to see that $\alpha x+\beta y=x^{\alpha} \cdot y^{\beta}$ is a strictly positive real itself. The vector space axioms are satisfied with additive identity equal to 1 and additive inverse equal to $1 / x$, they follow from the field properties of \mathbf{R}. One Hamel basis is $\{2\}$ and the dimension of the space is 1 .
2. Let A and B be subspaces of a vector space V. Are the following assertions true? Always? Sometimes? Never?
(a) $A \cap B$ is a subspace?

Solution. Always. Take any two vectors $v, w \in A \cap B$ (we can always do that because the intersection is non-empty; do you see why?) and two scalars α and β. Because A and B are subspaces themselves, the linear combination $\alpha v+\beta w$ is in A and in B as well. Consequently, $\alpha v+\beta w \in$ $A \cup B \Longrightarrow A \cup B$ is closed under linear combination of two vectors. We are done.
(b) $A \cup B$ is a subspace?

Solution. Sometimes. It can only happen if one subspace is "bigger," i.e. $A \subset B$ or $B \subset A$.
To see that the answer is not "always," take V to be \mathbf{R}^{3}, take A to be subspace generated by the first standard basis vector, e_{1}, and B - generated by the second standard basis vector, e_{2}

$$
\begin{aligned}
& A=\left\{\alpha e_{1}: \alpha \in R\right\} \\
& B=\left\{\alpha e_{2}: \alpha \in R\right\}
\end{aligned}
$$

Notice that $e_{1}+e_{2} \notin A \cup B$ as the sum is neither in A nor in B.
Observe that the answer is not "never," because if $A \subset B$ or $B \subset A$ then clearly $A \cup B$ is a subspace. We prove that $A \cup B$ is a subspace only if
either $A \subset B$ or $B \subset A$ by contrapositive, i.e. we assume that $A \not \subset B$ and $B \not \subset A$ to show that the union is not a subspace. The assumption that A is not a subset of B means that there is an $a \in A$ with $a \notin B$. The other assumption gives a $b \in B$ with $b \notin A$. Consider $a+b$ and note that the sum is not an element of A or else $(a+b)-a$ would be in A, which would lead to a contradiction. Similarly, the sum is not an element of B.
(c) If A is a subspace, then its complement is also a vector subspace.

Solution. Never. Note that $A^{c}=V \backslash A$, therefore $\overrightarrow{0} \notin A^{c}$ as it is contained both in V and in A.
3. Let U be a subspace of \mathbf{R}^{5} defined by

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbf{R}^{5}: x_{2}=\frac{1}{2} x_{4} \text { and } x_{1}=x_{5}\right\} .
$$

Find a basis of U.
Solution. Because of the linear dependence of x_{2} on x_{4} and x_{1} on x_{5}, our $U=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$, where $v_{1}=(0,1,0,2,0), v_{2}=(1,0,0,0,1)$ and $v_{3}=$ $(0,0,1,0,0)$. To see that this is true we will first check that span $\left\{v_{1}, v_{2}, v_{3}\right\} \subset$ V. Take $v \in U$, we have

$$
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=\left(\alpha_{2}, \alpha_{1}, \alpha_{3}, 2 \alpha_{1}, \alpha_{2}\right)
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbf{R}$. By inspection, we find that $v \in U$.
Conversely, let $v=\left(x_{1}, x_{2}, x_{3}, 2 x_{2}, x_{1}\right) \in U$, for some $x_{1}, x_{2}, x_{3} \in \mathbf{R}$. We then obtain: $v=x_{2} v_{1}+x_{1} v_{2}+x_{3} v_{3}$, showing that $U \subset \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
4. Let $T: X \rightarrow Y$ be a linear transformation and U a subspace of X. Prove that the image of U under $T, T(U)=\{T(u) \mid u \in U\}$ is a subspace of Y.

Solution. First, note that the image of T is non-empty, because U is nonempty. Now, consider $v_{1}, v_{1}, \ldots, v_{n} \in U$. By linearity of T we have

$$
\alpha_{1} T\left(v_{1}\right)+\alpha_{2} T\left(v_{2}\right)+\ldots \alpha_{n} T\left(v_{n}\right)=T\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots \alpha_{n} v_{n}\right)
$$

which is itself in $T(U)$ since $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots \alpha_{n} v_{n} \in U$. Thus, we have shown that $T(U)$ is closed under taking finite linear combinations, and we are done.
5. Let $T: V \rightarrow V$ be a linear transformation. Suppose that there is an $v \in V$ such that $T^{n}(v)=0$ but $T^{n-1}(v) \neq 0$ for some $n>0$. Prove that $v, T(v), T^{2}(v), \ldots$, $T^{n-1}(v)$ are linearly independent.

Solution. By contradiction. Suppose that $v, T(v), T^{2}(v), \ldots, T^{n-1}(v)$ are linearly dependent, then there exist non-zero scalars, $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1} \in \mathbf{R}$ such that

$$
\alpha_{0} v+\alpha_{1} T(v)+\ldots, \alpha_{n-1} T^{n-1}(v)=0
$$

Applying T^{n-1} to both sides and using linearity, we get that

$$
\alpha_{0} T^{n-1} v+\alpha_{1} T^{n}(v)+\ldots, \alpha_{n-1} T^{2 n-2}(v)=0 .
$$

Thus, $\alpha_{0}=0$ and proceeding in a similar fashion yields $\alpha_{1}=0, \alpha_{2}=0, \ldots$, $\alpha_{n-1}=0$. Contradiction.
6. Let $T: V \rightarrow V$ be a linear transformation. Prove that

$$
\operatorname{ker} T \cap \operatorname{Im} T=\{0\} \Longrightarrow \operatorname{ker} T=\operatorname{ker} T^{2}
$$

Solution. First, it is easy to see that $\operatorname{ker} T \subset \operatorname{ker} T^{2}$. Take any $v \in \operatorname{ker} T$ and apply T twice to it to get

$$
T^{2}(v)=T(T(v))=T(0)=0 \Longrightarrow x \in \operatorname{ker} T^{2}
$$

To show the set inclusion in the other direction, lets proceed by contradiction, and suppose that there exists $v \in \operatorname{ker} T^{2} \backslash \operatorname{ker} T$. If that is the case, we must have $T(v) \neq 0$, but $T(T(v))=0$. But, this means $T(v) \in \operatorname{ker} T$ and at the same time, $T(v) \in \operatorname{Im} T$. We have a contradiction, that proves our result.
7. Let V be finite dimensional and $T: V \rightarrow W$ a linear transformation. Prove that T is surjective if and only if there exists $S \in L(W, V)$ such that $T S$ is an identity map on W.

Solution. First, lets suppose that T is onto. Take a basis $w_{1}, w_{2}, \ldots, w_{n}$ of W. It is finite dimensional by Rank-Nullity Theorem. By the surjectivity of T for each j, there exists $v_{j} \in V$ such that $w_{j}=T\left(v_{j}\right)$. Lets define a linear transformation $S: W \rightarrow V$ as

$$
S\left(\alpha_{1} w_{1}+\alpha_{2} w_{2}+\cdots+\alpha_{n} w_{n}\right)=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n} .
$$

Clearly, we have then

$$
\begin{aligned}
(T S)\left(\alpha_{1} w_{1}+\alpha_{2} w_{2}+\cdots+\alpha_{n} w_{n}\right) & =T\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}\right)= \\
& =\alpha_{1} T\left(v_{1}\right)+\alpha_{2} T\left(v_{2}\right)+\cdots+\alpha_{n} T\left(v_{n}\right)= \\
& =\alpha_{1} w_{1}+\alpha_{2} w_{2}+\cdots+\alpha_{n} w_{n} .
\end{aligned}
$$

Which shows that $T S \in L(W, W)$ is an identity map.
Now, lets suppose that there exists $S \in L(W, V)$ such that $T S$ is the identity map on W. Take any $w \in W$, then $w=T(S(w))$, and therefore $w \in \operatorname{Im} T$. But this means that $\operatorname{Im} T=W$, or that T is surjective.
8. Call v a right null vector of a symmetric matrix A if $A v=0$, and similarly a left null vector if $v^{T} A=0$. Let $n \times n$ symmetric matrix A be diagonalizable and have a one-dimension null space. Prove that a non-zero left null vector of A cannot be orthogonal to a non-zero right null vector.

Solution. Lets assume to contradiction that we have $v \cdot u=0$ for a right null vector of v and left null vector u of a diagonalizable matrix A. The Theorem 10 in Lecture 9 guarantees us that we can choose a basis $w_{1}, w_{2}, \ldots, w_{n}$ of \mathbf{R}^{n} consisting of eigenvectors of A. Notice that since v is a right null vector it must be the case that v is an eigenvector corresponding to $\lambda=0$. Also, observe that the null space of A is assumed to be one-dimensional. The latter allows us to deduce two things: first is that one of the basis vectors $w_{1}, w_{2}, \ldots, w_{n}$ is a multiple of v, so lets assume without any loss of generality that $w_{1}=v$. Second is that eigenvalues λ_{j} associated with eigenvectors w_{j} are nonzero for all other $j>1$.
Thus, for $j>1$ we get

$$
u w_{j}=\frac{1}{\lambda_{j}} u\left(A w_{j}\right)=\frac{1}{\lambda_{j}}(u A) w_{j}=0 .
$$

i.e. that u is orthogonal to each of the basis vectors $w_{1}, w_{2}, \ldots, w_{n}$.

We claim that u must be zero. To see this note that since $w_{1}, w_{2}, \ldots, w_{n}$ are basis vectors, there exist constants $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ not all zero such that

$$
u=\alpha_{1} \cdot w_{1}+\alpha_{2} \cdot w_{2}+\cdots+\alpha_{n} \cdot w_{n}
$$

taking a dot product with u on both sides we get

$$
\begin{aligned}
\|u\|^{2} & =\alpha_{1} \cdot\left(u w_{1}\right)+\alpha_{2} \cdot\left(u w_{2}\right)+\cdots+\alpha_{n} \cdot\left(u w_{n}\right) \\
& =\alpha_{1} \cdot 0+\alpha_{2} \cdot 0+\cdots+\alpha_{n} \cdot 0 \\
& =0
\end{aligned}
$$

Therefore, u must be a zero vector. We have arrived at contradiction, which proves the result we seek.

[^0]: ${ }^{1}$ The trace of an $n \times n$ matrix M, denoted $\operatorname{tr}(M)$, is the sum of the diagonal entries of M

