Economics 204

Fall 2011

Problem Set 4 Suggested Solutions

1. Determine whether or not each of the following sets is a vector space. In case

it is,

(a)

find the dimension of the space and a Hamel basis for it.

The set of solutions in R? to the following system of linear equations, with
vector addition and scalar multiplication defined in the usual way

$1—5$2+2I3:O
5[E1+3(E2—£B3:O

Solution. Here we will only show it is closed under vector addition and
scalar multiplication. So, for any two elements v and v from this set and
scalars o and f3, since both u and v satisfy both equations, it is easy to see
that au + Sv also make the above equation equal to 0. {(1,1,1)} is one of
the Hamel basis and its dimension is 1. The checks of all other conditions
are just as straightforward.

The set of n x n matrices having a trace equal to one, with matrix addition
and scalar multiplication defined in the usual way !

Solution. No. It is not closed under addition.

The set of m x n matrices having all their elements sum-up to zero, with
matrix addition and scalar multiplication defined in a usual way

Solution. Again, here we will only show it is closed under vector addition
and scalar multiplication. So, for any two matrices A and B from this set
and scalars a and [, since both A and B have all their elements sum-up
to 0, it is easy to see that the sum of all elements of €A+ 5B is also equal
to 0. One Hamel basis is given by mn — 1 matrices

{M;;: 1<i<m,1<j<n}

where
1 itk=i, {=jandk#m, L #n
(Mz'j>k€: —1 lfk:m, {=n
0 otherwise.

Clearly, the dimension of the space is mn — 1.

IThe trace of an n x n matrix M, denoted tr(M), is the sum of the diagonal entries of M
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(d)

The set of 2 x 1 matrices with real entries, with vector addition and scalar
multiplication defined as

X1 To 1 — T2 X rxr
+ = T =
)+ (e)=Cm) (0)=0)
Solution. No. Observe that addition defined in such a way is not com-
mutative. Take for instance two standard basis vectors in R2.

All strictly positive reals Ry, = {# € R | z > 0}, with vector addition

defined as x + y = 7 - y and scalar multiplication defined as Az = z*.

Solution. Again, here we will only show it is closed under vector addition
and scalar multiplication. So, for any two strictly positive reals x, y € R,
and scalars a and 3, it is easy to see that ax + By = 2% - y? is a strictly
positive real itself. The vector space axioms are satisfied with additive
identity equal to 1 and additive inverse equal to 1/z, they follow from the
field properties of R. One Hamel basis is {2} and the dimension of the
space is 1.

2. Let A and B be subspaces of a vector space V. Are the following assertions
true? Always? Sometimes? Never?

(a)

AN B is a subspace?

Solution. Always. Take any two vectors v, w € AN B (we can always
do that because the intersection is non-empty; do you see why?) and two
scalars o and [ . Because A and B are subspaces themselves, the linear
combination av 4+ fw is in A and in B as well. Consequently, av + fw €
AUB =— AU B is closed under linear combination of two vectors. We
are done.

AU B is a subspace?
Solution. Sometimes. It can only happen if one subspace is “bigger,” i.e.
ACBor BCA.

To see that the answer is not “always,” take V to be R?, take A to be sub-
space generated by the first standard basis vector, e;, and B — generated
by the second standard basis vector, e,

A={awae;: a€ R}
B={aey: a€ R}

Notice that e; + e; ¢ AU B as the sum is neither in A nor in B.

Observe that the answer is not “never,” because if A C B or B C A then
clearly AU B is a subspace. We prove that A U B is a subspace only if
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either A C B or B C A by contrapositive, i.e. we assume that A ¢ B and
B ¢ A to show that the union is not a subspace. The assumption that A
is not a subset of B means that there is an a € A with a ¢ B. The other
assumption gives a b € B with b ¢ A. Consider a + b and note that the
sum is not an element of A or else (a 4+ b) —a would be in A, which would
lead to a contradiction. Similarly, the sum is not an element of B.

(c) If A is a subspace, then its complement is also a vector subspace.

Solution. Never. Note that A° = V'\ A, therefore 0 ¢ A€ as it is contained
both in V' and in A.

3. Let U be a subspace of R® defined by
1
U= {(z1,79,73,24,25) ER®: x5 = %4 and T = z5}.
Find a basis of U.

Solution. Because of the linear dependence of x5 on x4 and z; on x5, our
U = span{vy, vq, v3}, where v; = (0, 1, 0, 2, 0), v, = (1,0, 0, 0, 1) and v3 =
(0, 0, 1, 0, 0). To see that this is true we will first check that span { vy, vy, v3} C
V. Take v € U, we have

v = aqU; + Qv + 33 = (ag, aq, a3, 204, Q2)

where aq, as, ag € R. By inspection, we find that v € U.

Conversely, let v = (1, x9, x3, 229, x1) € U, for some x1, 9, x3 € R. We then
obtain: v = x9v; 4+ T1vy + 2303, showing that U C span{ vy, vq, vs}.

4. Let T : X — Y be a linear transformation and U a subspace of X. Prove that
the image of U under T, T'(U) = {T'(u) | w € U} is a subspace of Y.

Solution. First, note that the image of 7" is non-empty, because U is non-
empty. Now, consider vy, vy, ..., v, € U. By linearity of T" we have

a1 T(v1) + aT(ve) + ..., T(v,) = T(1v1 + ove + . .. ay),
which is itself in T'(U) since ayv; + asvy + ... av, € U. Thus, we have shown

that T'(U) is closed under taking finite linear combinations, and we are done.

5. Let T': V — V be a linear transformation. Suppose that there is an v € V such
that T"(v) = 0 but 7" !(v) # 0 for some n > 0. Prove that v, T'(v), T?(v), ...,
T"!(v) are linearly independent.
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Solution. By contradiction. Suppose that v, T'(v),T?%(v), ..., T" (v) are
linearly dependent, then there exist non-zero scalars, ag, a1, ..., a,_1 € R
such that

agv + a1 T() + ..., a1 T Hv) =0
Applying T"! to both sides and using linearity, we get that

aoT" v+ T"() + ..., a1 T *(v) = 0.

Thus, ag = 0 and proceeding in a similar fashion yields a; = 0, ag =0, ...,
a,_1 = 0. Contradiction.

6. Let T': V — V be a linear transformation. Prove that

ker TNImT = {0} = kerT = ker T°.

Solution. First, it is easy to see that ker T C ker T?. Take any v € ker T" and
apply T twice to it to get

T?(v) =T(T(v)) =T(0) =0 = z € ker T*.

To show the set inclusion in the other direction, lets proceed by contradiction,
and suppose that there exists v € kerT? \ ker T. If that is the case, we must
have T'(v) # 0, but T'(T'(v)) = 0. But, this means T'(v) € ker T" and at the same
time, T'(v) € ImT. We have a contradiction, that proves our result.

7. Let V' be finite dimensional and 7" : V' — W a linear transformation. Prove
that T is surjective if and only if there exists S € L(W, V) such that T'S is an
identity map on W.

Solution. First, lets suppose that 1" is onto. Take a basis wy, ws, ..., w, of
W. It is finite dimensional by Rank-Nullity Theorem. By the surjectivity of
T for each j, there exists v; € V such that w; = T'(v;). Lets define a linear
transformation S : W — V as

S(oywy + agwy + -+ - + auwy,) = vy + QU + - -+ QU
Clearly, we have then
(T'S)(ywy + agwg + - - - + aywy,) = T(oqvy + agvy + + - + apvy) =
= OélT(Ul) + OCQT(UQ) + -+ OKnT(Un> =
= W1 + QWsy + + + + + QpWy,.
Which shows that T'S € L(W, W) is an identity map.

Now, lets suppose that there exists S € L(W, V) such that T'S is the identity
map on W. Take any w € W, then w = T'(S(w)), and therefore w € ImT. But
this means that Im7" = W, or that T is surjective.
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8. Call v a right null vector of a symmetric matrix A if Av = 0, and similarly a
left null vector if v A = 0. Let n x n symmetric matrix A be diagonalizable
and have a one-dimension null space. Prove that a non-zero left null vector of
A cannot be orthogonal to a non-zero right null vector.

Solution. Lets assume to contradiction that we have v -« = 0 for a right null
vector of v and left null vector u of a diagonalizable matrix A. The Theorem
10 in Lecture 9 guarantees us that we can choose a basis wq, ws, ..., w, of R"
consisting of eigenvectors of A. Notice that since v is a right null vector it must
be the case that v is an eigenvector corresponding to A = 0. Also, observe that
the null space of A is assumed to be one-dimensional. The latter allows us to
deduce two things: first is that one of the basis vectors wy, ws, ..., w, is a
multiple of v, so lets assume without any loss of generality that w; = v. Second
is that eigenvalues \; associated with eigenvectors w; are nonzero for all other
7> 1

Thus, for 7 > 1 we get

1

1
J J

i.e. that u is orthogonal to each of the basis vectors wq, wo, ..., w,.

We claim that u must be zero. To see this note that since wq, ws, ..., w, are
basis vectors, there exist constants aq, as, ..., a, not all zero such that

U= Wy t+ay - Wy+ -+ Q- Wy,
taking a dot product with u on both sides we get

[l = a1 - (wwy) + ag - (uwsy) + -+ + ay - (uwwy,)
=a1-04+ay-04+---4+a,-0
=0

Therefore, © must be a zero vector. We have arrived at contradiction, which
proves the result we seek.




