Economics 204 Fall 2011 Problem Set 4 Due Tuesday, August 9 in Lecture

- 1. Determine whether or not each of the following sets is a vector space. In case it is, find the dimension of the space and a Hamel basis for it.
 - (a) The set of solutions in \mathbb{R}^3 to the following system of linear equations, with vector addition and scalar multiplication defined in the usual way

$$x_1 - 5x_2 + 2x_3 = 0$$

$$5x_1 + 3x_2 - x_3 = 0$$

- (b) The set of $n \times n$ matrices having a trace equal to one, with matrix addition and scalar multiplication defined in the usual way ¹
- (c) The set of $m \times n$ matrices having all their elements sum-up to zero, with matrix addition and scalar multiplication defined in a usual way
- (d) The set of 2×1 matrices with real entries, with vector addition and scalar multiplication defined as

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \end{pmatrix} \qquad r \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} rx \\ ry \end{pmatrix}$$

- (e) All strictly positive reals $\mathbf{R}_{++} = \{x \in \mathbf{R} \mid x > 0\}$, with vector addition defined as $x + y = x \cdot y$ and scalar multiplication defined as $\lambda x = x^{\lambda}$.
- 2. Let A and B be subspaces of a vector space V. Are the following assertions true? Always? Sometimes? Never?
 - (a) $A \cap B$ is a subspace?
 - (b) $A \cup B$ is a subspace?
 - (c) If A is a subspace, then its complement is also a vector subspace.
- 3. Let U be a subspace of \mathbf{R}^5 defined by

$$U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5 : x_2 = \frac{1}{2}x_4 \text{ and } x_1 = x_5\}.$$

Find a basis of U.

¹The trace of an $n \times n$ matrix M, denoted tr(M), is the sum of the diagonal entries of M

- 4. Let $T: X \to Y$ be a linear transformation and U a subspace of X. Prove that the image of U under $T, T(U) = \{T(u) \mid u \in U\}$ is a subspace of Y.
- 5. Let $T: V \to V$ be a linear transformation. Suppose that there is an $v \in V$ such that $T^n(v) = 0$ but $T^{n-1}(v) \neq 0$ for some n > 0. Prove that $v, T(v), T^2(v), \ldots, T^{n-1}(v)$ are linearly independent.
- 6. Let $T: V \to V$ be a linear transformation. Prove that

$$\ker T \cap \operatorname{Im} T = \{0\} \implies \ker T = \ker T^2.$$

- 7. Let V be finite dimensional and $T: V \to W$ a linear transformation. Prove that T is surjective if and only if there exists $S \in L(W, V)$ such that TS is an identity map on W.
- 8. Call v a right null vector of a symmetric matrix A if Av = 0, and similarly a *left null* vector if $v^T A = 0$. Let $n \times n$ symmetric matrix A be diagonalizable and have a one-dimension null space. Prove that a non-zero left null vector of A cannot be orthogonal to a non-zero right null vector.