Economics 204

Fall 2011
Problem Set 4
Due Tuesday, August 9 in Lecture

1. Determine whether or not each of the following sets is a vector space. In case it is, find the dimension of the space and a Hamel basis for it.
(a) The set of solutions in \mathbf{R}^{3} to the following system of linear equations, with vector addition and scalar multiplication defined in the usual way

$$
\begin{aligned}
& x_{1}-5 x_{2}+2 x_{3}=0 \\
& 5 x_{1}+3 x_{2}-x_{3}=0
\end{aligned}
$$

(b) The set of $n \times n$ matrices having a trace equal to one, with matrix addition and scalar multiplication defined in the usual way ${ }^{1}$
(c) The set of $m \times n$ matrices having all their elements sum-up to zero, with matrix addition and scalar multiplication defined in a usual way
(d) The set of 2×1 matrices with real entries, with vector addition and scalar multiplication defined as

$$
\binom{x_{1}}{y_{1}}+\binom{x_{2}}{y_{2}}=\binom{x_{1}-x_{2}}{y_{1}-y_{2}} \quad r \cdot\binom{x}{y}=\binom{r x}{r y}
$$

(e) All strictly positive reals $\mathbf{R}_{++}=\{x \in \mathbf{R} \mid x>0\}$, with vector addition defined as $x+y=x \cdot y$ and scalar multiplication defined as $\lambda x=x^{\lambda}$.
2. Let A and B be subspaces of a vector space V. Are the following assertions true? Always? Sometimes? Never?
(a) $A \cap B$ is a subspace?
(b) $A \cup B$ is a subspace?
(c) If A is a subspace, then its complement is also a vector subspace.
3. Let U be a subspace of \mathbf{R}^{5} defined by

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbf{R}^{5}: x_{2}=\frac{1}{2} x_{4} \text { and } x_{1}=x_{5}\right\} .
$$

Find a basis of U.

[^0]4. Let $T: X \rightarrow Y$ be a linear transformation and U a subspace of X. Prove that the image of U under $T, T(U)=\{T(u) \mid u \in U\}$ is a subspace of Y.
5. Let $T: V \rightarrow V$ be a linear transformation. Suppose that there is an $v \in V$ such that $T^{n}(v)=0$ but $T^{n-1}(v) \neq 0$ for some $n>0$. Prove that $v, T(v), T^{2}(v), \ldots$, $T^{n-1}(v)$ are linearly independent.
6. Let $T: V \rightarrow V$ be a linear transformation. Prove that
$$
\operatorname{ker} T \cap \operatorname{Im} T=\{0\} \Longrightarrow \operatorname{ker} T=\operatorname{ker} T^{2}
$$
7. Let V be finite dimensional and $T: V \rightarrow W$ a linear transformation. Prove that T is surjective if and only if there exists $S \in L(W, V)$ such that $T S$ is an identity map on W.
8. Call v a right null vector of a symmetric matrix A if $A v=0$, and similarly a left null vector if $v^{T} A=0$. Let $n \times n$ symmetric matrix A be diagonalizable and have a one-dimension null space. Prove that a non-zero left null vector of A cannot be orthogonal to a non-zero right null vector.

[^0]: ${ }^{1}$ The trace of an $n \times n$ matrix M , denoted $\operatorname{tr}(M)$, is the sum of the diagonal entries of M

