
Economics 204
Fall 2011
Problem Set 5 Suggested Solutions

1. (a) Prove that y = h3 is both o(|h|2) as h→ 0 and O(|h|3) as h→ 0.

(b) Prove that y = sin(h) is not o(|h|) as h → 0 but is O(|h|) as
h→ 0. (You may use the fact that |sin(h)| ≤ |h|).

Solution:

(a) From class we know that y = O(|h|n+1) as h → 0 implies y =
o(|h|n) as h→ 0. So it suffices to show that h3 is big-Oh of |h|3 as
h → 0. But this follows trivially from the definition since for all
h, we have |h3| = |h|3 (the constant K from the definition equals
1 here).

(b) The fact that sin(h) is O(|h|) as h→ 0 again follows directly from
the definition and from the fact that |sin(h)| ≤ |h| (again we have
K = 1).

To show that sin(h) is not o(|h|) as h→ 0, we use L’Hopital’s rule

since both the numerator and the denominator of | sin(h)||h| tend to
0 as h gets small:

lim
h↓0

| sin(h)|
|h|

= lim
h↓0

sin(h)

h
= lim

h↓0

cos(h)

1
=

1

1
= 1 6= 0.

Similarly, it can be shown that the limit is 1 for h ↑ 0.

2. (a) Prove that the following identity holds for −1 < x ≤ 1:

ln(x+ 1) =
∞∑
n=1

(−1)n+1

n
xn.

(b) Find the second-order Taylor expansion of:

f(x, y) = −x2 + 2xy + 3y2 − 6x− 2y − 4

around (x, y) = (−π/4, ln 42).
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(c) Find the second-order Taylor expansion of g(x, y) = yx around
(x, y) = (1, 1).

Solution:

(a) This part of the problem turned out to be harder than intended.
Apologies for any unnecessary frustration this might have caused!

Consider the n-th order term of the Taylor expansion of ln(1 + x)

around ln(1); it equals ln(n)(1)xn

n!
, where ln(n)(1) denotes the n-the

derivative of the natural logarithm function, evaluated at 1.

Claim:ln(n)(a) = (−1)n+1(n− 1)! 1
an

for all n ∈ N
We can show that using induction. The base step n = 1 is easy:
ln′(a) = 1/a = (−1)1+1(1− 1)! 1

a1
.

For the induction step, assume that the formula holds for some n.
Consider n+ 1 now:

ln(n+1)(a) =
d

da
ln(n)(a)

=
d

da
(−1)n+1(n− 1)!

1

an

= (−1)n+1(n− 1)!(−n)
1

an+1

= (−1)(n+1)+1((n+ 1)− 1)!
1

an+1
,

which completes the proof of the claim.

Plugging 1 into the formula, we get the expression for the n-th
order term of the Taylor expansion of ln(1 +x) around ln(1) to be
(−1)n+1(n− 1)!. Thus, since ln(1 + x) is C∞, the Taylor series is:

ln(1) +
∞∑
n=1

(−1)n+1(n− 1)!xn

n!

=
∞∑
n=1

(−1)n+1

n
xn.

The problem now is that a C∞ function is not necessarily analytic,
that is, not necessarily equal to an infinite Taylor series expansion
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at a point. So a function may be C∞, hence it is possible to
construct the series

∞∑
n=0

f (n)(x)

n!
(x+ h)n

but not have

f(x+ h) =
∞∑
n=0

f (n)(x)

n!
(x+ h)n

for a given h (even if the power series on the right converges). The
missing piece is the requirement that the remainder term go to zero
as n→∞ on a neighborhood of h, and this is not guaranteed for
a C∞ function.

We can start by noticing that

∞∑
n=1

(−1)n+1

n
xn (∗)

is a power series around 01. As such, there is some radius of
convergence r ≥ 0 such that the series above converges for x ∈
(−r, r) and diverges for |x| > r.

The radius r can be computed in various ways. From calculus,

we know that the series converges if limn→∞

∣∣∣an+1xn+1

anxn

∣∣∣ < 1 (this is

the ratio test). For our series we have:

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣∣ nx

n+ 1

∣∣∣∣ = |x| lim
n→∞

∣∣∣∣ n

n+ 1

∣∣∣∣ = |x|

So the radius of convergence of (∗) is 1. This means (∗) converges
for |x| < 1 and diverges for |x| > 1. The case x = 1 can be
handled separately; clearly (∗) does not equal ln(1 +x) at x = −1
since ln(0) is not defined.

1Recall from calculus that a power series about c is some series of the form
∑∞
n=0 an(x−

c)n. One of two things can happen: the series either converges only for all x, or there
exists some r ≥ 0 (the radius of convergence) such that the series converges if |x− a| < r
and diverges if |x− a| > r.
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So we know that

ln(1 + x) =
∞∑
n=1

(−1)n+1

n
xn

could only possibly be valid for −1 < x ≤ 1; otherwise the series
on the right diverges.2

Now notice that the error term for the nth order Taylor approxi-
mation of ln(1 + x) around 0 has the form

En(x) =
(−1)n+2

(n+ 1)(1 + yn)n+1
xn+1

for some yn between x and 0 (using the mean value version of the
remainder term and our induction proof from the beginning).

Only if there is a neighborhood about 0 on which En(x) → 0 as
n→∞ are we guaranteed that the “infinite Taylor series” is equal
to the original function.

That is,

f(x) =
∞∑
n=0

f (n)(0)

n!
xn ⇐⇒ En(x)→ 0

For x ∈ (0, 1], it is easy to see that for any yn ∈ (0, x), x
1+yn

< 1
so

En(x) =
(−1)n+2

(n+ 1)

(
x

1 + yn

)n+1

→ 0 as n→∞

For x > 1 a potential problem is that the approximating yn
changes with n. For x > 1, yn ∈ (0, x) but we cannot guaran-
tee that

x

1 + yn
≤ 1 ∀n

2Knowing the series converges for −1 < x ≤ 1 is still not enough, however. A coun-
terexample is the function

f(x) = e−
1
x2 for x > 0 and f(x) = 0 for x ≤ 0

f is C∞, the Taylor series of f at 0 of any order is uniformly 0, and converges uniformly
to 0 for every x. But clearly f is not equal to 0.
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or that (
x

1 + yn

)n+1

→ 0 as n→∞

In fact, in this case one can show that for x > 1, the Taylor
expansions around 0 become worse approximations for ln(1 + x)
as n increases.

Proving that the error term vanishes as n grows when x ∈ (−1, 0)
is harder. The following argument can be used to show this and
the analogous statement for x ∈ (0, 1). Let’s look at the error
term directly.

En(x) = ln(1 + x)−
n∑
k=1

(−1)k+1

k
xk

Notice that for |x| < 1,

|En(x)| =

∣∣∣∣∣
∫ x

0

(
1

1 + t
−

n∑
k=1

(−1)k+1tk−1

)
dt

∣∣∣∣∣
=

∣∣∣∣∫ x

0

1− 1 + t− t+ · · ·+ tn−1 − tn−1 + (−1)ntn

1 + t

∣∣∣∣
=

∣∣∣∣∫ x

0

(−1)ntn

1 + t
dt

∣∣∣∣
≤

∫ x

0

∣∣∣∣ tn

1 + t

∣∣∣∣ dt
→ 0 as n→∞,

where the first equality follows from the Fundamental Theorem
of Calculus and the inequality is a property of integration. Since
|En(x)| ≥ 0, we have that |En(x)| → 0, which is what we set out
to show.

(b) The function f is a second-degree polynomial. Therefore its sec-
ond order Taylor expansion at any point is f itself.
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(c) The function evaluated at (1, 1) equals g(1, 1) = 1.

Dg(x, y) =
(
ln(y)yx xyx−1

)
⇒ Dg(1, 1) =

(
0 1

)
D2g(x, y) =

(
ln2(y)yx yx−1 + ln(y)xyx−1

yx−1 + ln(y)xyx−1 x(x− 1)yx−2

)
⇒ D2g(1, 1) =

(
0 1
1 0

)
The quadratic expansion is then:

g(x, y) ≈ g(1, 1) +Dg(1, 1)

(
x− 1
y − 1

)
+

1

2

(
x− 1
y − 1

)T
D2g(1, 1)

(
x− 1
y − 1

)
= 1 +

(
0 1

)(x− 1
y − 1

)
+

1

2

(
x− 1
y − 1

)T (
0 1
1 0

)(
x− 1
y − 1

)
= 1 + (y − 1) + (x− 1)(y − 1)

3. Define f : R3 → R by

f(x, y1, y2) = x2y + ex + z.

Show that there exists a differentiable function g in some neighborhood
of (1,−1) in R2, such that g(1,−1) = 0 and

f(g(y, z), y, z) = 0.

Compute Dg(1,−1).

Solution: To show that such a function exists, we can invoke the
Implicit Function Theorem. First, notice that f(0, 1,−1) = 0. Next
we need to verify that Dxf(0, 1,−1) 6= 0:

Dxf(x, y, z) = 2xy + ex ⇒ Dxf(0, 1,−1) = 1 6= 0.

This completes the proof of the existence of g.
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Additionally, we have:

D(y,z)f(x, y, z) =
(
x2 1

)
⇒ D(y,z)f(0, 1,−1) =

(
0 1

)
.

So:

Dg(1,−1) = −[Dxf(0, 1,−1)]−1D(y,z)f(0, 1,−1) =
(
0 −1

)
.

4. Let F : R2 → R2 be defined by F (x, y) = (ey cos(x), ey sin(x)).

(a) Show that F satisfies the prerequisites of the Inverse Function
Theorem for all (x, y) ∈ R2 (and is therefore locally injective ev-
erywhere) but F is not globally injective.

(b) Compute the Jacobian of the local inverse of F and evaluate it at
F (π

3
, 0).

(c) Find an explicit formula for the continuous inverse of F mapping
a neighborhood of F (π

3
, 0) into a neighborhood of (π

3
, 0) and verify

that its Jacobian at F (π
3
, 0) equals the one you calculated in part

(b). (You might want to look up a few basic trigonometric facts.)

Solution:

(a) The domain of F is open and F is C∞ on it. We only need to
verify that det(DF (x, y)) 6= 0 for all (x, y) ∈ R2:

det(DF (x, y)) = det

(
−ey sinx ey cosx
ey cosx ey sinx

)
= −e2y sin2 x− e2y cos2 x

= −e2y

< 0,

where we used the fact that sin2 x+ cos2 x = 1 for all x.

Therefore, by the Inverse Function Theorem F is locally injective.
However, F is not globally injective since F (x, y) = F (x + 2π, y)
for any (x, y) ∈ R2. We mentioned in class that local injectivity
(such as the one implied by the Inverse Function Theorem) need
not imply global injectivity, even if it holds for all points in the
function’s domain. The function F is just an example of that.
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(b) Denoting the local inverse by F−1, directly from the Inverse Func-
tion Theorem, we have:

DF−1(F (x, y)) = [DF (x, y)]−1

= − 1

e2y

(
ey sinx −ey cosx
−ey cosx −ey sinx

)
=

1

ey

(
− sinx cosx
cosx sinx

)
.

At (π
3
, 0) we have (recall that sin π

3
= 1

2
and cos π

3
=
√
3
2

):

DF−1(F (
π

3
, 0)) =

1

2

(
−1

√
3√

3 1

)
.

(c) If F (x, y) = (a, b), to derive an explicit formula for the inverse of
F we need to solve:

ey cosx = a

ey sinx = b

for x and y. This is equivalent to:

b

a
=

sinx

cosx
= tanx

a2 + b2 = e2y(sin2 x+ cos2 x) = e2y.

So:

x = tan−1
b

a

y =
1

2
ln(a2 + b2).

This defines the function F−1(a, b) = (tan−1 b
a
, 1
2

ln(a2 + b2))3.
Then:

DF−1(a, b) =
1

a2 + b2

(
−b a
a b

)
.

3Notice that the inverse of the tangent function is not a well-defined function globally
since tangent is not injective; however, locally (for a small enough neighborhood of π

3 ),

tan−1 is well-defined. Also recall that: d
dx tan−1 x = 1

1+x2 .
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At (π
3
, 0), we have (a, b) = F (π

3
, 0) = (e0 cos π

3
, e0 sin π

3
) = (

√
3
2
, 1
2
).

Notice that a2 + b2 = 1. Then:

DF−1(

√
3

2
,
1

2
) =

1

2

(
−1

√
3√

3 1

)
,

which is the same as the Jacobian calculated in the previous part.

5. Let f : R → R be differentiable on the interval (a, b), and let a < c <
d < b.

(a) Suppose that f ′(c) < 0 < f ′(d). Prove that the restriction of f to
[c, d] does not achieve a global minimum at c or at d.

(b) Again suppose that f ′(c) < 0 < f ′(d). Prove that there exists
some p ∈ (c, d) such that f ′(p) = 0. (In order to receive full
credit, please prove any claims you make about the derivative at
extremal points.)

(c) Now suppose that f ′(c) < α < f ′(d). Prove that there exists some
p ∈ (c, d) such that f ′(p) = α.

Solution:

(a) We know:

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
< 0.

This implies that for sufficiently small positive h we have:

f(c+ h)− f(c)

h
< 0⇒ f(c+ h)− f(c) < 0⇒ f(c+ h) < f(c)

Hence f(c) is not a global minimum of f , since c+ h ∈ [c, d] for h
small enough . Similarly, for d we have:

f ′(d) = lim
h→0

f(d+ h)− f(d)

h
> 0

⇒ ∃h < 0 :
f(d+ h)− f(d)

h
> 0

⇒ f(d+ h)− f(d) < 0

⇒ f(d+ h) < f(d),

where c < d+ h < d for h small enough (in absolute value).

9



(b) The function f is differentiable and therefore continuous. There-
fore the restriction of f on [c, d] achieves its global minimum on
that interval and we know (from part (a)) that neither of f(c) or
f(d) are the global minimum. Therefore there exists some interior
point p ∈ (c, d) such that f(p) ≤ f(x) for all x ∈ [c, d].

Now let’s examine the sign of f ′(p). If f ′(p) > 0 or f ′(p) < 0,
arguments identical to the ones from part (a) can convince us
that f(p) cannot be a global minimum. Therefore we must have
f ′(p) = 0.

(c) Consider the function g : (a, b) → R defined by g(x) = f(x) −
αx. Notice that g is differentiable everywhere on its domain and
g′(x) = f ′(x)− α. Therefore:

g′(c) < 0 < g′(d).

So by part (b), there exists some p ∈ (c, d) such that:

f ′(p)− α = g′(p) = 0⇔ f ′(p) = α.

Aside: It is easy to see that by inverting the argument above
(examining f ’s global maximum, rather than minimum), we can
prove that the same intermediate value property also holds when-
ever f ′(c) > α > f ′(d). Therefore derivative functions have an
intermediate value property on any interval in their domain (even
when they are not continuous!). This result is known as Darboux’s
Theorem.

6. Let g : R → R be C1. Prove that there exists ε > 0 such that the
function f : [1, 2]→ R given by

f(x) = x3 − x2 + εg(x)

is injective. (Hint: You probably want to start by using the Extreme-
Value Theorem appropriately.)

Solution: g is C1 so its derivative g′ is continuous and, by the Extreme-
Value Theorem, g′ is bounded on [1, 2]. To be specific, let |g′(x)| < M
for all x ∈ [1, 2].
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Now take some x, y ∈ [1, 2] such that x > y. In order for f to be
injective we need f(x) 6= f(y) ⇔ f(x) − f(y) 6= 0. Consider that
difference:

f(x)− f(y) = x3 − x2 + εg(x)− (y3 − y2 + εg(y))

= (x− y)(x2 + xy + y2)− (x− y)(x+ y) + ε(g(x)− g(y))

= (x− y)(x2 + xy + y2 − x− y) + ε(x− y)g′(z)

= (x− y)(x2 + xy + y2 − x− y + εg′(z))

for some z ∈ (y, x) ⊆ [1, 2], where the third equality follows from the
Mean Value Theorem.

We want f(x) − f(y) 6= 0. Since x 6= y, we have x − y 6= 0. The
function x2 + xy + y2 − x − y is positive on [1, 2]2 (a ≤ a2 for a ≥ 1)
and achieves a minimum and a maximum value on [1, 2] (again from
the Extreme-Value Theorem.) Let x2 + xy + y2 − x − y > K > 0 for
all (x, y) ∈ [1, 2]2. Now if ε < K/M , we have:

x2 + xy + y2 − x− y + εg′(z) > K − εM > K − K

M
M = 0.

Therefore for any sufficiently small ε, f(x)−f(y) 6= 0 for all x, y ∈ [1, 2]
and f is injective on [1, 2].
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