Economics 204

Fall 2011

Problem Set 5
Due Friday, August 12 in Lecture

1. (a) Prove that $y=h^{3}$ is both $o\left(|h|^{2}\right)$ as $h \rightarrow 0$ and $O\left(|h|^{3}\right)$ as $h \rightarrow 0$.
(b) Prove that $y=\sin (h)$ is not $o(|h|)$ as $h \rightarrow 0$ but is $O(|h|)$ as $h \rightarrow 0$. (You can use the fact that $|\sin (h)| \leq|h|$).
2. (a) Prove that the following identity holds for $-1<x \leq 1$:

$$
\ln (x+1)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n} .
$$

(b) Find the second-order Taylor expansion of:

$$
f(x, y)=-x^{2}+2 x y+3 y^{2}-6 x-2 y-4
$$

around $(x, y)=(-\pi / 4, \ln 42)$.
(c) Find the second-order Taylor expansion of $g(x, y)=y^{x}$ around $(x, y)=(1,1)$.
3. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by

$$
f(x, y, z)=x^{2} y+e^{x}+z
$$

Show that there exists a differentiable function g in some neighborhood of $(1,-1)$ in \mathbb{R}^{2}, such that $g(1,-1)=0$ and

$$
f(g(y, z), y, z)=0 .
$$

Compute $\operatorname{Dg}(1,-1)$.
4. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $F(x, y)=\left(e^{y} \cos (x), e^{y} \sin (x)\right)$.
(a) Show that F satisfies the prerequisites of the Inverse Function Theorem for all $(x, y) \in \mathbb{R}^{2}$ (and is therefore locally injective everywhere) but F is not globally injective.
(b) Compute the Jacobian of the local inverse of F and evaluate it at $F\left(\frac{\pi}{3}, 0\right)$.
(c) Find an explicit formula for the continuous inverse of F mapping a neighborhood of $F\left(\frac{\pi}{3}, 0\right)$ into a neighborhood of $\left(\frac{\pi}{3}, 0\right)$ and verify that its Jacobian at $F\left(\frac{\pi}{3}, 0\right)$ equals the one you calculated in part (b). (You might want to look up a few basic trigonometric facts.)
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on the interval (a, b), and let $a<c<$ $d<b$.
(a) Suppose that $f^{\prime}(c)<0<f^{\prime}(d)$. Prove that the restriction of f to $[c, d]$ does not achieve a global minimum at c or at d.
(b) Again suppose that $f^{\prime}(c)<0<f^{\prime}(d)$. Prove that there exists some $p \in(c, d)$ such that $f^{\prime}(p)=0$. (In order to receive full credit, please prove any claims you make about the derivative at extremal points.)
(c) Now suppose that $f^{\prime}(c)<\alpha<f^{\prime}(d)$. Prove that there exists some $p \in(c, d)$ such that $f^{\prime}(p)=\alpha$.
6. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1}. Prove that there exists $\varepsilon>0$ such that the function $f:[1,2] \rightarrow \mathbb{R}$ given by

$$
f(x)=x^{3}-x^{2}+\varepsilon g(x)
$$

is injective. (Hint: You probably want to start by using the ExtremeValue Theorem appropriately.)

