Economics 204 Fall 2011 Problem Set 5 Due Friday, August 12 in Lecture

- 1. (a) Prove that $y = h^3$ is both $o(|h|^2)$ as $h \to 0$ and $O(|h|^3)$ as $h \to 0$.
 - (b) Prove that y = sin(h) is not o(|h|) as $h \to 0$ but is O(|h|) as $h \to 0$. (You can use the fact that $|sin(h)| \le |h|$).
- 2. (a) Prove that the following identity holds for $-1 < x \leq 1$:

$$\ln(x+1) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n.$$

(b) Find the second-order Taylor expansion of:

$$f(x,y) = -x^2 + 2xy + 3y^2 - 6x - 2y - 4$$

around $(x, y) = (-\pi/4, \ln 42).$

- (c) Find the second-order Taylor expansion of $g(x, y) = y^x$ around (x, y) = (1, 1).
- 3. Define $f : \mathbb{R}^3 \to \mathbb{R}$ by

$$f(x, y, z) = x^2y + e^x + z.$$

Show that there exists a differentiable function g in some neighborhood of (1, -1) in \mathbb{R}^2 , such that g(1, -1) = 0 and

$$f(g(y,z),y,z) = 0.$$

Compute Dg(1, -1).

- 4. Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $F(x, y) = (e^y \cos(x), e^y \sin(x))$.
 - (a) Show that F satisfies the prerequisites of the Inverse Function Theorem for all $(x, y) \in \mathbb{R}^2$ (and is therefore locally injective everywhere) but F is not globally injective.

- (b) Compute the Jacobian of the local inverse of F and evaluate it at F(π/3, 0).
- (c) Find an explicit formula for the continuous inverse of F mapping a neighborhood of F(^π/₃, 0) into a neighborhood of (^π/₃, 0) and verify that its Jacobian at F(^π/₃, 0) equals the one you calculated in part (b). (You might want to look up a few basic trigonometric facts.)
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable on the interval (a, b), and let a < c < d < b.
 - (a) Suppose that f'(c) < 0 < f'(d). Prove that the restriction of f to [c, d] does not achieve a global minimum at c or at d.
 - (b) Again suppose that f'(c) < 0 < f'(d). Prove that there exists some $p \in (c, d)$ such that f'(p) = 0. (In order to receive full credit, please prove any claims you make about the derivative at extremal points.)
 - (c) Now suppose that $f'(c) < \alpha < f'(d)$. Prove that there exists some $p \in (c, d)$ such that $f'(p) = \alpha$.
- 6. Let $g : \mathbb{R} \to \mathbb{R}$ be C^1 . Prove that there exists $\varepsilon > 0$ such that the function $f : [1, 2] \to \mathbb{R}$ given by

$$f(x) = x^3 - x^2 + \varepsilon g(x)$$

is injective. (Hint: You probably want to start by using the Extreme-Value Theorem appropriately.)