
Economics 204
Fall 2011
Problem Set 6 Suggested Solutions

1. Consider the following quadratic forms:

f(x, y) = 2x2 − 4xy + 5y2,

g(x, y) = x2 + 6xy + y2,

h(x, y) = 16xy.

Answer the following questions for each of these forms:

(a) Find a symmetric matrix M such that the form equals [x y] M

[
x
y

]
.

Solution. We seek a, b, c, and d such that:[
x y

] [ a b
c d

] [
x
y

]
= 2x2 − 4xy + 5y2

The diagonal elements of the matrix are the coefficients of the squared
terms and the off diagonal elements are half of the crossed terms. This
gives us

Mf =

[
a b
c d

]
=

[
2 −2
−2 5

]
.

For the second quadratic form, g(x, y) = 3x2 − 2xy + y2, we find:

Mg =

[
1 3
3 1

]
.

For the third quadratic form, h(x, y) = 16xy, we find:

Mh =

[
0 8
8 0

]
.

(b) Find the eigenvalues of matrix M .

Solution. We compute the characteristic polynomial for each matrix, set
it equal to zero, and solve. We find that the eigenvalues of Mf are 1, 6 of
Mg are −2, 4 and for Mh we have −8, 8.

(c) Find an orthonormal basis of eigenvectors.

Solution. We find that (2, 1) and (−1, 2) form a basis of eigenvectors
for Mf . To normalize, we divide both vectors by their respective lengths,
which yields an orthonormal basis of eigenvectors:

{v1, v2} =

{(
2/
√

5

1/
√

5

)
,

(
−1/
√

5

2/
√

5

)}
.
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Repeating the same process for matrix Mg yields

{w1, w2} =

{(
1/
√

2

−1/
√

2

)
,

(
1/
√

2

1/
√

2

)}
.

and for matrix Mh

{u1, u2} =

{(
1/
√

2

−1/
√

2

)
,

(
1/
√

2

1/
√

2

)}
.

(d) Find a unitary matrix S such that M = S−1DS, where D is a diagonal
matrix.

Solution. We do this first for matrix Mf . Note that S−1 = (Mtx)U,V (id),
where U is the standard basis, so the columns are just the eigenvectors:

S−1 =

[
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

]
.

Since the columns of S−1 are orthonormal, it follows that S−1 is a unitary
matrix. Since S−1 is unitary, S = (S−1)

−1
= (S−1)

T
, so

S =

[
2/
√

5 1/
√

5

−1/
√

5 2/
√

5

]
.

Similarly, for matrices Mg and Mh we have

S−1 =

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
.

and S = (S−1)
T

as well.

(e) Describe the level sets of the form and state whether the form has a local
maximum, local minimum, or neither at (0, 0). (Level sets are solutions to
f(x, y) = c for some c ∈ R.)

Solution. The quadratic form f is associated with matrix Mf which has
two positive eigenvalues. This means that the level sets are ellipses and
that there is a local minimum at the origin.

The maximum value of the form on the unit circle is simply the norm of
M , which is equal to the largest of the absolute values of the eigenvalues,
which is 6. Similarly, the minimum value of the form on the unit circle is
1. To obtain level sets of the form, we convert to the basis of orthonormal
eigenvectors v1 and v2 and write

f(γ1, γ2) = (γ1, γ2) D

(
γ1
γ2

)
2
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where D is the diagonal matrix of eigenvalues and (γ1, γ2)
T are the coor-

dinates of (x, y)T in the basis {v1, v2}, i.e.(
γ1
γ2

)
= S

(
x

y

)
Thus, we have ellipses associated with the level c described by the equation
6γ21 + γ22 = c. For these eclipses major axis is along the line formed by v2
and a minor axis is along the line formed by v1. The ellipse crosses the
major axis at ±

√
c, and crosses the minor axis at ±

√
c/6. Note, therefore,

that the ellipse is longest in the direction of the eigenvector corresponding
to the smallest eigenvalue.

The form g is associated with Mg, which has one positive and one negative
eigenvalue. This means that there is neither a maximum or a minimum
at the origin. The maximum value of the form on the unit circle is 4,
and the minimum value is -2. Level sets are given by r(γ1, γ2) = −2γ21 +
4γ22 = c, which generates a hyperbola, where (γ1, γ2) are coordinates in
the eigenvector basis. Rearranging this to γ1 = ±

√
2γ22 − c/4 informs us

that the slopes of the asymptotes in the (γ1, γ2) plane are plus and minus√
2. Taking first the case that c < 0 and solving for γ2 = 0, we see that

the hyperbola crosses the γ2-axis at γ1 = ±
√
−c/4. For c > 0, we can

no longer have γ2 = 0, and we instead solve for γ1 = 0 to learn that the
hyperbola intersects the γ2-axis at the points γ2 = ±

√
c/2 (and for c = 0,

the hyperbola reduces to the asymptotes).

The form g is associated with Mg, which has one positive and one nega-
tive eigenvalue. Again, this means that there is neither a maximum or a
minimum at the origin. The maximum value of the form on the unit circle
is 8, and the minimum value is -8.

Level sets are given by g(γ1, γ2) = −8γ21 + 8γ22 = c, which generates a
hyperbola. Rearranging this to γ1 = ±

√
γ22 − c/8 informs us that the

slopes of the asymptotes in the (γ1, γ2) plane are plus and minus one.
Taking first the case that c < 0 and solving for γ2 = 0, we see that the
hyperbola crosses the γ1-axis at γ1 = ±

√
−c/8. For c > 0, we can no

longer have γ2 = 0, and we instead solve for γ1 = 0 to learn that the
hyperbola intersects the γ2-axis at the points γ2 = ±

√
c/8 (and for c = 0,

the hyperbola reduces to the asymptotes).

2. Suppose Ψ1, Ψ2 : X → 2Y are compact-valued, upper hemicontinuous corre-
spondences, where X ⊂ Rn, Y ⊂ Rm for some n, m. Suppose that Ψ1∩Ψ2 6= ∅
for each x ∈ X.

(a) Show that Ψ1 ∩Ψ2 is upper hemicontinuous, where Ψ1 ∩Ψ2 is defined by

(Ψ1 ∩Ψ2)(x) = Ψ1(x) ∩Ψ2(x), ∀x ∈ X

3



Economics 204 Fall 2011 Problem Set 6 Suggested Solution

Solution. We will appeal to the sequential characterization of upper hemi-
continuity (Theorem 12 in lecture 7), since Ψ1 ∩ Ψ2 is clearly a compact-
valued.

So, lets denote by Ψ1 ∩ Ψ2 by Φ, fix x0 ∈ X and consider an arbitrary
sequence {xn} ⊂ X, with xn → x0. Let {yn} be a companion sequence of
{xn}, i.e. we have yn ∈ Φ(xn) for all n. We have to show that there is a
convergent subsequence {ynk

} such that lim ynk
∈ Φ(x0).

Since yn ∈ Φ(xn) for all n, it must be the case that yn ∈ Ψ1(xn) and
yn ∈ Ψ2(xn) for all n. We know that Ψ2 is compact-valued and upper-
hemicontinuous, therefore there exists a subsequence {ynk

} of {yn} such
that ynk

→ y0 with y0 ∈ Ψ2(x0). Now, since Ψ1 is also uhc and compact-
valued, there exists a further subsequence {ynk`

} of {ynk
} such that ynk`

→
y′ and y′ ∈ Ψ1(x0). Since {ynk`

} is a subsequence of {ynk
} and ynk

→ y0,
ynk`
→ y0 as well. By uniqueness of limits y0 = y′, thus y0 ∈ Ψ1(x0). So

y0 ∈ Ψ1(x0) ∩Ψ2(x0) and we are done.

(b) Lets now weaken our assumptions a bit: lets assume that Ψ1 is only closed-
valued, rather then compact-valued. Show that Ψ1 ∩ Ψ2 is still upper
hemicontinuous.

Solution. Note that we can again use Theorem 12 to give us sufficient
conditions for Φ(x) be upper hemicontinuous. So, as before lets fix x0 ∈ X,
and consider an arbitrary sequence {xn} ⊂ X, with xn → x0. Let {yn} be
a companion sequence of {xn}, i.e. yn ∈ Φ(xn) for all n which by definition
implies yn ∈ Ψ1(xn) and yn ∈ Ψ2(xn) for all n.

Because by our assumption Ψ2(x) is compact valued and upper hemicon-
tinuous, {yn} has a convergent subsequence {ynk

} ∈ Ψ2(xnk
). Let y0 be

the limit of that subsequence, so that we have y0 ∈ Ψ2(x0).

Now, lets consider the sequence of ordered pairs {xnk
, ynk
} that converges

to (x0, y0). By our assumption Ψ1(x) is closed-valued and upper hemicon-
tinuous and thus has closed graph. Therefore, our limit (x0, y0) is in the
graph of Ψ1(x), which implies that y0 ∈ Ψ1(x0) =⇒ y0 ∈ Ψ2(x0), and we
get the result we seek.

Finally, you might have already noticed that 204 final exam for 2010 fur-
ther weakened the assumptions of this problem asking for the proof when
both Ψ1(x) and Ψ2(x) are closed. While the final question also asked you
to supply proof that directly uses the definition of upper hemicontinuity,
it is a good exercise to think through one that relies on alternative, i.e.
sequential, characterization.

3. Let f : R2 → R2 be a C1 function and define F : R2 ×R2 → R2 by

F (x, ω) = f(x1, x2) +
(
5ω1 + ω3

1, 5ω2 + ω1(1 + 3ω1ω2)
)
.

4
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Show that there is a set of Lebesgue measure zero, Ω0 ⊂ R2, such that if ω 6∈ Ω0,
then for each x0 satisfying F (x0, ω0) = 0 there is an open set U containing x0,
an open set V containing ω0, and a C1 function h : V → U such that for all
ω ∈ V , x = h(ω) is the unique element of U satisfying F (x, ω) = 0.

Solution. If we can show that the Jacobian of F with respect to all of its
arguments has rank 2 whenever F (x, ω) = 0, then the Transversality Theorem
guarantees that there is a set of Lebesgue measure zero, Ω0 ⊂ R2, such that if
ω 6∈ Ω0, then for each x0 satisfying F (x0, ω0) = 0, DxF (x0, ω0) has rank 2 as
well.

In this setup, the Jacobian of F is given by

DF (x, ω) =

[
∂f1
∂x1

∂f1
∂x2

5 + 3ω2
1 0

∂f2
∂x1

∂f2
∂x2

1 + 6ω1ω2 5 + 3ω2
1

]
,

since ∂F1

∂ω1
= 5 + 3ω2

1, ∂F2

∂ω1
= 1 + 6ω1ω2,

∂F1

∂ω2
= 0, and ∂F2

∂ω2
= 5 + 3ω2

1. The matrix[
5 + 3ω2

1 0
1 + 6ω1ω2 5 + 3ω2

1

]
has rank 2 for all ω, and therefore the matrix DF (x, ω) must also have rank
2 whenever F (x, ω) = 0. It follows that the Transversality Theorem applies to
this function F , and hence there is a set of Lebesgue measure zero, Ω0 ⊂ R2,
such that if ω 6∈ Ω0, then for each x0 satisfying F (x0, ω0) = 0, DxF (x0, ω0) has
rank 2 as well. Of course, this implies that |DxF (x0, ω0)| 6= 0.

We now complete the proof by using the Implicit Function Theorem. It states
that whenever F (x0, ω0) = 0 and |DxF (x0, ω0)| 6= 0, there is an open set U
containing x0, an open set V containing ω0, and a C1 function h : V → U such
that for all ω ∈ V , x = h(ω) is the unique element of U satisfying F (x, ω) = 0.

4. The Minimax Theorem is used for proving quite a few important results in
economics, for instance, about an outcome of zero-sum games in noncooperative
game theory or in analyzing Bayesian estimators in statistical decision theory.
Now you have a chance to prove this Minimax Theorem yourself.

Let X and Y be non-empty, closed, bounded and convex subsets of any two
Euclidean spaces. Prove that if f : X × Y → R is continuous, and if the
sets { z ∈ X | f(z, y) ≥ α} and {w ∈ Y | f(x,w) ≤ α} are convex for each
(x, y, α) ∈ X × Y ×R, then

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

(Hint: Start by defining two self-correspondences Φ(y) : Y → 2Y and Π(x) :
X → 2X as

Φ(y) =argmax
x∈X

f(x, y)

Π(x) =argmin
y∈Y

f(x, y)

5
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Then, define self-correspondence Ψ : X × Y → 2X×Y by

Ψ(x, y) = Π(x)× Φ(y).

Use Kakutani’s Fixed Point theorem).

Solution. First, observe that our requirement that the sets { z ∈ X | f(z, y) ≥
α} and {w ∈ Y | f(x,w) ≤ α} be convex for each (x, y, α) ∈ X × Y × R
essentially, tells us that f(x, y) is quasi-concave in x and quasi-convex in y.
Graphically, you can imagine that function f(x, y) has a “saddle” at some point
(x∗, y∗) ∈ R2. Because we have such saddle point, we can switch the order of
min and max functions. This is the “heart” of the Minimax Theorem.

One can show that a necessary and sufficient condition for the existence of a
saddle point is

f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y) for every x ∈ Y and y ∈ Y.

This is the insight that we will use in our proof. In what follows, we will define
a self-correspondence on X × Y and show that its fixed point is actually the
saddle point that we seek.

To begin, note that inequality in one direction is rather straightforward:

max
x∈X

min
y∈Y

f(x, y) ≤ min
y∈Y

max
x∈X

f(x, y).

This is true because for all x ∈ X and y ∈ Y we must have

f(x, y) ≤ max
x∈X

f(x, y).

This implies that for all x ∈ X and y ∈ Y

min
y∈Y

f(x, y) ≤ max
x∈X

f(x, y),

and so on. Proving inequality in other direction is much more difficult and is,
in fact, an application of the Kakutani Fixed Point argument.

Lets first define two self-correspondences Φ(y) : Y → 2Y and Π(x) : X → 2X as

Φ(y) =argmax
x∈X

f(x, y)

Π(x) =argmin
y∈Y

f(x, y)

and, finally, define self-correspondence Ψ : X × Y → 2X×Y by

Ψ(x, y) = Π(x)× Φ(y).

Observe that Φ and Π are both non-empty, compact-valued and upper-hemicontinuous
by the Berge’s Theorem of Maximum. By our assumption of quasi-concavity

6
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and quasi-convexity, they are both convex-valued. Thus, Ψ is also an upper-
hemicontinuous correspondence with non-empty, convex and compact values
and Kakutani’s Fixed Point Theorem guarantee’s the existence of (x∗, y∗) ∈
X × Y with (x∗, y∗) ∈ Ψ(x∗, y∗). In particular, this means that

x∗ ∈ argmax
x∈X

f(x, y∗) and y∗ ∈ argmin
y∈Y

f(x∗, y)

In, other words, we have a saddle with

f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y) for every x ∈ Y and y ∈ Y.

To get the result we seek, denote by V = f(x∗, y∗). By definition of (x∗, y∗) we
have

f(x, y∗) ≤ V for all x ∈ X =⇒
max
x∈X

f(x, y∗) ≤ V

Therefore,
min
y∈Y

max
x∈X

f(x, y) ≤ max
x∈X

f(x, y∗) ≤ V.

Similarly, we obtain
max
x∈X

min
y∈Y

f(x, y) ≥ V,

and we are done.

5. Show that the closure of a convex set is convex.

Solution. Let C be a convex set and let C̄ denote its closure. We wish to
show that C̄ is convex. Let λ ∈ [0, 1], and let x, y ∈ C̄. We will show that
λx + (1 − λ)y ∈ C̄. Since x, y ∈ C̄ we can find convergent sequences xn, yn
in C converging to x and y, respectively. Moreover, letting zn = λxn + (1 −
λ)yn, we obtain, by the convexity of C, that zn ∈ C. Note, moreover, that
zn → λx + (1 − λ)y = z. Hence, z is a limit point of C which implies that
z = λx+ (1− λ)y ∈ C̄. We are done

6. One of the most useful versions of the Separating Hyperplane Theorem is the
one on strong separation of convex sets. We say that two sets A and B are
strongly separated by a hyperplane if there exists p ∈ Rn with p 6= 0 such that

sup p · A < inf p ·B

(In other words, sets are strongly separated if they are contained in the closed
halfspaces that are ε > 0 away from each other. Notice that another way to
show strong separation is to demonstrate existence of two constants c and d
together with non-zero vector p such that p · a ≤ c < d ≤ p · b for all a ∈ A and
for all b ∈ B. Please check Theorem 8 in lecture 13 to make sure you understand
how strict separation is different from strong one.)

Of course, strong separation requires a stronger initial assumptions.

7
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(a) Let A and B be non-empty, disjoint, convex subsets of Rn with A being
compact and B closed. Show directly, without invoking Theorem 7 in
Lecture 13, that A and B can be strongly separated.1

(Hint: Look at the set Y = B − A. Is it compact? Closed?)

Solution. Consider the set Y = B − A. We claim that Y is non-empty,
closed and convex. Non-emptiness and convexity is immediate (but make
sure you know why!). Now, lets show Y is closed, so take a sequence {yn}
of elements in Y, converging to point y.

By definition of Y , for every n there exists an ∈ A and bn ∈ B such that
yn = bn − an. Since A is compact, there exists a subsequence ank

that
is converges to a ∈ A. Note that bbk = ynk

+ ank
, so bnk

is a convergent
subsequence. Let lim bnk

= b and note that b ∈ B because B is closed. By
continuity, bnk

−ank
→ b−a and by our assumption bn−an = yn → y =⇒

y ∈ Y .

Now, note that {0} /∈ Y because A and B are disjoint. By Theorem 7 in
Lecture 13, we can separate them with a hyperplane, i.e. there exists a
non-zero p ∈ Rn such that p · 0 ≤ p · Y or p · y ≥ 0 for all y ∈ Y .

Theorem 7 assumes for the clarity of exposition that Y is compact. In
our case, Y is just closed. However, by doing some extra work, we will
strengthen our conclusions by showing essentially that our sets are ε > 0
away. We will demonstrate that, in addition, to non-zero p vector, there
exists a non-zero constant c such that p · y ≥ c > 0 for all y ∈ Y .

Lets imagine for a moment, we have proved that already. Then, the way
Y is defined, for all a ∈ A and b ∈ B

p · b− p · a ≥ c > 0

This implies
p · a+ c ≤ p · b

or
sup p · A+ c ≤ inf p ·B

and we get the result we seek.

Now, it just remains to prove our assertion about existence of non-zero
constant c. We will show this by first proving an intermediate step that
given a non-empty, convex, closed set Y and a point outside of it, x /∈ Y ,
we can always find a unique point y0 ∈ Y that is “closest” to x, in a sense
that2

||y0 − x|| ≤ ||y − x||, for all y ∈ Y.
1Although you can’t invoke theorem directly, going carefully over its proof will get you far in

showing this result.
2Since uniqueness is not essential to our argument, we will not dwell on it here

8
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Moreover, for all y ∈ Y

(y0 − x)T · (y − y0) ≥ 0.

To see this, first, lets pick some point ŷ ∈ Y and define the set Ŷ of all
points that are closer to x then ŷ

Ŷ = { y ∈ Y | ||y − x|| ≤ ||ŷ − x||}

Clearly, Ŷ is compact, as it is closed and bounded. Because norm is a
continuous function, g(y) = ||y − x|| attains a minimum on Ŷ at some
point y0. Also, notice that for all y ∈ Y, ||y0 − x|| ≤ ||y− x||, that is, y0 is
a closest point to x in Y.

Secondly, take any y ∈ Y . By convexity of Y , the line segment αy + (1−
α)y0 ∈ Y and by the argument given above

||y0 − x||2 ≤||(αy + (1− α)y0)− x||2 =

=||(y0 + α(y − y0))− x||2 =

=||(y0 − x) + α(y − y0)||2 =

=||y0 − x||2 + 2α(y0 − x)T · (y − y0) + α2||y − y0||2.

This implies that

2(y0 − x)T · (y − y0) + α||y − y0||2 ≥ 0.

Finally, letting α→ 0 we get the result we seek.

Now, we define our separating hyperplane as (y0 − x)T · y (i.e. as in the
theorem, we are taking p = y0 − x; notice that it is a shortest distance
from x to the set Y and, thus, a normal vector to our hyperplane). We
also set c = (y0 − x)T · y0.3 Then for all y ∈ Y we have

(y0 − x)T · y − (y0 − x)T · y0 = (y0 − x)T · (y − y0) ≥ 0

and therefore
(y0 − x)T · y ≥ (y0 − x)T · y0 = c.

Moreover,

(y0 − x)T · y0 − (y0 − x)T · x = ||y0 − x||2 > 0, because y0 6= x

As a result, we have (y0 − x)T · y0 > (y0 − x)T · x and

(y0 − x)T · x < c ≤ (y0 − x)T · y for all y ∈ Y,

thus, completing the proof.

3You can think about this constant c as a projection of the vector y0 onto the normal vector p.
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(b) Demonstrate by means of an example that the requirement that A is com-
pact is essential, it can’t be just closed. In your example, are the sets A
and B strictly separated?

Solution. Consider following two sets:

A ={(x, y) ∈ R2 | xy ≥ 1}
B ={(x, y) ∈ R2 | y ≤ 0}

Clearly, A and B can’t be strongly separated. Intuitively, A and B come
arbitrarily “close” to each other. At the same time, those two sets can be
strictly separated with p = (0, 1).

7. Consider the following inhomogeneous linear differential equation(
y1
y2

)′
=

(
1 0
0 −1

)(
y1
y2

)
+

(
sin t
cos t

)
(a) Write down the corresponding homogeneous equation.

(b) Find the general solution of the homogeneous equation.

(c) Find a particular solution of the original inhomogeneous equation satisfy-
ing the initial condition y(0) = (1, 1)T .

(Hint: The integrals can be solved by integrating by parts twice.)

(d) Find the general solution of the original inhomogeneous equation.

Solution. This exercise is worked out in the lecture 15 notes on page 5.
In case, you wondered — no, that was not intended. But you are welcome
anyway. Good luck on the exam!
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