Economics 204
Fall 2011
Problem Set 6
Due Mon, Aug 15 by 9am in Oleksa's GSI mailbox (Evans, 5th floor)

1. Consider the following quadratic forms:

$$
\begin{aligned}
& f(x, y)=2 x^{2}-4 x y+5 y^{2}, \\
& g(x, y)=x^{2}+6 x y+y^{2}, \\
& h(x, y)=16 x y .
\end{aligned}
$$

Answer the following questions for each of these forms:
(a) Find a symmetric matrix M such that the form equals $\left[\begin{array}{ll}x & y\end{array}\right] M\left[\begin{array}{l}x \\ y\end{array}\right]$.
(b) Find the eigenvalues of matrix M.
(c) Find an orthonormal basis of eigenvectors.
(d) Find a unitary matrix S such that $M=S^{-1} D S$, where D is a diagonal matrix.
(e) Describe the level sets of the form and state whether the form has a local maximum, local minimum, or neither at $(0,0)$. (Level sets are solutions to $f(x, y)=c$ for some $c \in \mathbf{R}$.)
2. Suppose $\Psi_{1}, \Psi_{2}: X \rightarrow 2^{Y}$ are compact-valued, upper hemicontinuous correspondences, where $X \subset \mathbf{R}^{n}, Y \subset \mathbf{R}^{m}$ for some n, m. Suppose that $\Psi_{1} \cap \Psi_{2} \neq \emptyset$ for each $x \in X$.
(a) Show that $\Psi_{1} \cap \Psi_{2}$ is upper hemicontinuous, where $\Psi_{1} \cap \Psi_{2}$ is defined by

$$
\left(\Psi_{1} \cap \Psi_{2}\right)(x)=\Psi_{1}(x) \cap \Psi_{2}(x), \forall x \in X
$$

(b) Lets now weaken our assumptions a bit: lets assume that Ψ_{1} is only closedvalued, rather then compact-valued. Show that $\Psi_{1} \cap \Psi_{2}$ is still upper hemicontinuous.
3. Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a C^{1} function and define $F: \mathbf{R}^{2} \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by

$$
F(x, \omega)=f\left(x_{1}, x_{2}\right)-\left(5 \omega_{1}+\omega_{1}^{3}, 5 \omega_{2}+\omega_{1}\left(1+3 \omega_{1} \omega_{2}\right)\right) .
$$

Show that there is a set of Lebesgue measure zero, $\Omega_{0} \subset \mathbf{R}^{2}$, such that if $\omega \notin \Omega_{0}$, then for each x_{0} satisfying $F\left(x_{0}, \omega_{0}\right)=0$ there is an open set U containing x_{0}, an open set V containing ω_{0}, and a C^{1} function $h: V \rightarrow U$ such that for all $\omega \in V, x=h(\omega)$ is the unique element of U satisfying $F(x, \omega)=0$.
4. The Minimax Theorem is used for proving quite a few important results in economics, for instance, about an outcome of zero-sum games in noncooperative game theory or in analyzing Bayesian estimators in statistical decision theory. Now you have a chance to prove this Minimax Theorem yourself.
Let X and Y be non-empty, closed, bounded and convex subsets of any two Euclidean spaces. Prove that if $f: X \times Y \rightarrow \mathbf{R}$ is continuous, and if the sets $\{z \in X \mid f(z, y) \geq \alpha\}$ and $\{w \in Y \mid f(x, w) \leq \alpha\}$ are convex for each $(x, y, \alpha) \in X \times Y \times \mathbf{R}$, then

$$
\max _{x \in X} \min _{y \in Y} f(x, y)=\min _{y \in Y} \max _{x \in X} f(x, y) .
$$

(Hint: Start by defining two self-correspondences $\Phi(y): Y \rightarrow 2^{Y}$ and $\Pi(x)$: $X \rightarrow 2^{X}$ as

$$
\begin{aligned}
& \Phi(y)=\underset{x \in X}{\operatorname{argmax}} f(x, y) \\
& \Pi(x)=\underset{y \in Y}{\operatorname{argmin}} f(x, y)
\end{aligned}
$$

Then, define self-correspondence $\Psi: X \times Y \rightarrow 2^{X \times Y}$ by

$$
\Psi(x, y)=\Pi(x) \times \Phi(y)
$$

Use Kakutani's Fixed Point theorem).
5. Show that the closure of a convex set is convex.
6. One of the most useful versions of Separating Hyperplane Theorem is the one on strong separation of convex sets. We say that two sets A and B are strongly separated by a hyperplane if there exists $p \in \mathbf{R}^{n}$ with $p \neq 0$ such that

$$
\sup p \cdot A<\inf p \cdot B
$$

(In other words, sets are strongly separated if they are contained in the closed halfspaces that are $\epsilon>0$ away from each other. Notice that another way to show strong separation is to demonstrate existence of two constants c and d together with non-zero vector p such that $p \cdot a \leq c<d \leq p \cdot b$ for all $a \in A$ and for all $b \in B$. Please check Theorem 8 in lecture 13 to make sure you understand how strict separation is different from strong one.)
Of course, strong separation requires a stronger initial assumptions.
(a) Let A and B be non-empty, disjoint, convex subsets of \mathbf{R}^{n} with A being compact and B closed. Show directly, without invoking Theorem 7 in Lecture 13 , that A and B can be strongly separated. ${ }^{1}$ (Hint: Look at the set $Y=B-A$. Is it compact? Closed?)

[^0](b) Demonstrate by means of an example that the requirement that A is compact is essential, it can't be just closed. In your example, are the sets A and B strictly separated?
7. Consider the following inhomogeneous linear differential equation
\[

\binom{y_{1}}{y_{2}}^{\prime}=\left($$
\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}
$$\right)\binom{y_{1}}{y_{2}}+\binom{\sin t}{\cos t}
\]

(a) Write down the corresponding homogeneous equation.
(b) Find the general solution of the homogeneous equation.
(c) Find a particular solution of the original inhomogeneous equation satisfying the initial condition $y(0)=(1,1)^{T}$.
(Hint: The integrals can be solved by integrating by parts twice.)
(d) Find the general solution of the original inhomogeneous equation.

[^0]: ${ }^{1}$ Although you can't invoke theorem directly, going carefully over its proof will get you far in showing this result.

