Economics 204 Fall 2011 Problem Set 6 Due Mon, Aug 15 by 9am in Oleksa's GSI mailbox (Evans, 5th floor)

1. Consider the following quadratic forms:

$$f(x, y) = 2x^{2} - 4xy + 5y^{2},$$

$$g(x, y) = x^{2} + 6xy + y^{2},$$

$$h(x, y) = 16xy.$$

Answer the following questions for each of these forms:

- (a) Find a symmetric matrix M such that the form equals $\begin{bmatrix} x & y \end{bmatrix} M \begin{bmatrix} x \\ y \end{bmatrix}$.
- (b) Find the eigenvalues of matrix M.
- (c) Find an orthonormal basis of eigenvectors.
- (d) Find a unitary matrix S such that $M = S^{-1}DS$, where D is a diagonal matrix.
- (e) Describe the level sets of the form and state whether the form has a local maximum, local minimum, or neither at (0,0). (Level sets are solutions to f(x,y) = c for some $c \in \mathbf{R}$.)
- 2. Suppose $\Psi_1, \Psi_2 : X \to 2^Y$ are compact-valued, upper hemicontinuous correspondences, where $X \subset \mathbf{R}^n, Y \subset \mathbf{R}^m$ for some n, m. Suppose that $\Psi_1 \cap \Psi_2 \neq \emptyset$ for each $x \in X$.
 - (a) Show that $\Psi_1 \cap \Psi_2$ is upper hemicontinuous, where $\Psi_1 \cap \Psi_2$ is defined by

$$(\Psi_1 \cap \Psi_2)(x) = \Psi_1(x) \cap \Psi_2(x), \, \forall x \in X$$

- (b) Lets now weaken our assumptions a bit: lets assume that Ψ_1 is only closed-valued, rather then compact-valued. Show that $\Psi_1 \cap \Psi_2$ is still upper hemicontinuous.
- 3. Let $f: \mathbf{R}^2 \to \mathbf{R}^2$ be a C^1 function and define $F: \mathbf{R}^2 \times \mathbf{R}^2 \to \mathbf{R}^2$ by

$$F(x,\omega) = f(x_1, x_2) - (5\omega_1 + \omega_1^3, 5\omega_2 + \omega_1(1 + 3\omega_1\omega_2))$$

Show that there is a set of Lebesgue measure zero, $\Omega_0 \subset \mathbf{R}^2$, such that if $\omega \notin \Omega_0$, then for each x_0 satisfying $F(x_0, \omega_0) = 0$ there is an open set U containing x_0 , an open set V containing ω_0 , and a C^1 function $h: V \to U$ such that for all $\omega \in V, x = h(\omega)$ is the unique element of U satisfying $F(x, \omega) = 0$. 4. The Minimax Theorem is used for proving quite a few important results in economics, for instance, about an outcome of zero-sum games in noncooperative game theory or in analyzing Bayesian estimators in statistical decision theory. Now you have a chance to prove this Minimax Theorem yourself.

Let X and Y be non-empty, closed, bounded and convex subsets of any two Euclidean spaces. Prove that if $f : X \times Y \to \mathbf{R}$ is continuous, and if the sets $\{z \in X \mid f(z,y) \geq \alpha\}$ and $\{w \in Y \mid f(x,w) \leq \alpha\}$ are convex for each $(x, y, \alpha) \in X \times Y \times \mathbf{R}$, then

$$\max_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \max_{x \in X} f(x, y).$$

(Hint: Start by defining two self-correspondences $\Phi(y): Y \to 2^Y$ and $\Pi(x): X \to 2^X$ as

$$\Phi(y) = \underset{x \in X}{\operatorname{argmax}} f(x, y)$$
$$\Pi(x) = \underset{y \in Y}{\operatorname{argmin}} f(x, y)$$

Then, define self-correspondence $\Psi: X \times Y \to 2^{X \times Y}$ by

$$\Psi(x,y) = \Pi(x) \times \Phi(y).$$

Use Kakutani's Fixed Point theorem).

- 5. Show that the closure of a convex set is convex.
- 6. One of the most useful versions of Separating Hyperplane Theorem is the one on *strong separation* of convex sets. We say that two sets A and B are strongly separated by a hyperplane if there exists $p \in \mathbf{R}^n$ with $p \neq 0$ such that

$$\sup p \cdot A < \inf p \cdot B$$

(In other words, sets are strongly separated if they are contained in the closed halfspaces that are $\epsilon > 0$ away from each other. Notice that another way to show strong separation is to demonstrate existence of two constants c and dtogether with non-zero vector p such that $p \cdot a \leq c < d \leq p \cdot b$ for all $a \in A$ and for all $b \in B$. Please check Theorem 8 in lecture 13 to make sure you understand how strict separation is different from strong one.)

Of course, strong separation requires a stronger initial assumptions.

(a) Let A and B be non-empty, disjoint, convex subsets of \mathbb{R}^n with A being *compact* and B closed. Show directly, without invoking Theorem 7 in Lecture 13, that A and B can be strongly separated.¹ (Hint: Look at the set Y = B - A. Is it compact? Closed?)

¹Although you can't invoke theorem directly, going carefully over its proof will get you far in showing this result.

- (b) Demonstrate by means of an example that the requirement that A is compact is essential, it can't be just closed. In your example, are the sets A and B strictly separated?
- 7. Consider the following inhomogeneous linear differential equation

$$\left(\begin{array}{c} y_1\\ y_2\end{array}\right)' = \left(\begin{array}{cc} 1 & 0\\ 0 & -1\end{array}\right) \left(\begin{array}{c} y_1\\ y_2\end{array}\right) + \left(\begin{array}{c} \sin t\\ \cos t\end{array}\right)$$

- (a) Write down the corresponding homogeneous equation.
- (b) Find the general solution of the homogeneous equation.
- (c) Find a particular solution of the original inhomogeneous equation satisfying the initial condition $y(0) = (1, 1)^T$.

(Hint: The integrals can be solved by integrating by parts twice.)

(d) Find the general solution of the original inhomogeneous equation.