Econ 204

Taylor's Theorem

In this supplement, we give alternative versions of Taylor's Theorem. For univariate functions, we provide a different formulation of the error term using so-called "little oh" and "big Oh" notation. For multivariate functions, we provide the quadratic form of Taylor's Theorem and analyze it as a quadratic form using the machinery in the Supplement to Section 3.6 (de la Fuente just provides the linear form, with quadratic error term).

Definition 1 We say

$$
y=o(x) \text { as } x \rightarrow 0
$$

if

$$
\frac{|y|}{|x|} \rightarrow 0 \text { as } x \rightarrow 0
$$

and

$$
y=O(x) \text { as } x \rightarrow 0
$$

if

$$
\frac{|y|}{|x|} \text { is bounded as } x \rightarrow 0
$$

or more formally

$$
\exists M \exists \varepsilon>0 \text { s.t. }|x| \leq \varepsilon \Rightarrow|y| \leq M|x|
$$

The following theorem is a consequence of Theorem 1.9 on page 160 of de la Fuente. In my experience, knowing the exact form of the error term E_{n} as given in de la Fuente is not particularly useful, because one does not know in advance the location of $x+\lambda h$ at which E_{n} is evaluated. However, if f has an $(n+1)^{s t}$ derivative which is continuous, one can obtain a $O\left(h^{n+1}\right)$ error term from the formula for E_{n}.

Theorem 2 (Taylor's Theorem for Univariate Functions) Let $f: I \rightarrow$ \mathbf{R} be n-times differentiable, where $I \subseteq \mathbf{R}$ is an open interval. If $x \in I$, then

$$
f(x+h)=f(x)+\sum_{k=1}^{n} \frac{f^{(k)}(x) h^{k}}{k!}+o\left(h^{n}\right) \text { as } h \rightarrow 0
$$

If f is $(n+1)$-times continuously differentiable, then

$$
f(x+h)=f(x)+\sum_{k=1}^{n} \frac{f^{(k)}(x) h^{k}}{k!}+O\left(h^{n+1}\right) \text { as } h \rightarrow 0
$$

In the following theorem, Equation (1) is just a restatement of the definition of differentiability, while Equation (2) is a consequence of Theorem 4.4 on page 181 of de la Fuente. Note that the linear term $D f(x)(h)$ here and in de la Fuente is evaluated at the known point x. However, the quadratic term in de la Fuente is evaluated at the unknown point $x+\lambda h$; here, that term is incorporated into the "big Oh" error term. The version in de la Fuente is stated for functions from \mathbf{R}^{n} to \mathbf{R}^{1}, while this version is stated for functions from \mathbf{R}^{n} to \mathbf{R}^{m}; the restriction is needed in de la Fuente's formulation because the point $x+\lambda h$ will be different for different components in the range; the "big Oh" notation allows us to easily state Taylor's Theorem for functions taking values in \mathbf{R}^{m}.
Theorem 3 (Taylor's Theorem for Multivariate Functions-Linear Form) Suppose $X \subseteq \mathbf{R}^{n}$ is open, $x \in X$, and $f: X \rightarrow \mathbf{R}^{m}$ is differentiable. Then

$$
\begin{equation*}
f(x+h)=f(x)+D f(x)(h)+o(|h|) \text { as } h \rightarrow 0 \tag{1}
\end{equation*}
$$

If f is C^{2}, then

$$
\begin{equation*}
f(x+h)=f(x)+D f(x)(h)+O\left(|h|^{2}\right) \text { as } h \rightarrow 0 \tag{2}
\end{equation*}
$$

In understanding the geometry of preference relations and utility functions (including sufficient conditions for the differentiability of demand), it is very useful to have a quadratic version of the multivariate form of Taylor's Theorem. To keep notation simple, we restrict attention to the case of functions from \mathbf{R}^{n} to \mathbf{R}^{1}; this suffices for the treatment of utility functions, and it is easy to generalize to functions from \mathbf{R}^{n} to \mathbf{R}^{m} by treating each component of the range separately.
Definition 4 Let $X \subseteq \mathbf{R}^{n}$ be open, $x \in \mathbf{R}$, and $f \in C^{2}(x)$. Let

$$
D^{2} f(x)=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right)
$$

denote the matrix of second partial derivatives of f, evaluated at x.
Recall that

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

so $D^{2} f(x)$ is a symmetric matrix.
Theorem 5 (Taylor's Theorem for Multivariate Functions-Quadratic Form) Suppose $X \subseteq \mathbf{R}^{n}$ is open, $x \in X$, and $f: X \rightarrow \mathbf{R}$ is C^{2}. Then

$$
f(x+h)=f(x)+D f(x)(h)+\frac{1}{2} h^{T} D^{2} f(x) h+o\left(|h|^{2}\right) \text { as } h \rightarrow 0
$$

If f is C^{3}, then

$$
f(x+h)=f(x)+D f(x)(h)+\frac{1}{2} h^{T} D^{2} f(x) h+O\left(|h|^{3}\right) \text { as } h \rightarrow 0
$$

Remark 6 Theorem 5 is a stronger version of de la Fuente's Theorem 4.4. Note that we don't need to assume that X is convex. Since X is open, if $x \in X$, there exists $\delta>0$ such that $B_{\delta}(x) \subseteq X$ and $B_{\delta}(x)$ is convex.

Because $D^{2} f(x)$ is symmetric, we can apply the diagonalization results from the Supplement to Section 3.6, to obtain the following corollary:

Corollary 7 Suppose $X \subseteq \mathbf{R}^{n}$ is open, $x \in X$, and $f: X \rightarrow \mathbf{R}$ is C^{2}. Then there is an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbf{R}^{n} such that

$$
\begin{aligned}
& f\left(x+\gamma_{1} v_{1}+\ldots+\gamma_{n} v_{n}\right) \\
& \quad=f(x)+\sum_{i=1}^{n} \gamma_{i} \frac{\partial f}{\partial v_{i}}(x)+\frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \gamma_{i}^{2}+o\left(|\gamma|^{2}\right) \text { as } \gamma \rightarrow 0
\end{aligned}
$$

where

$$
\frac{\partial f}{\partial v_{i}}(x)=D f(x) v_{i}
$$

is the directional derivative of f in the direction v_{i}, evaluated at x. In addition,

1. If f is C^{3}, then

$$
\begin{aligned}
& f\left(x+\gamma_{1} v_{1}+\ldots+\gamma_{n} v_{n}\right) \\
& \quad=f(x)+\sum_{i=1}^{n} \gamma_{i} \frac{\partial f}{\partial v_{i}}(x)+\frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \gamma_{i}^{2}+O\left(|\gamma|^{3}\right) \text { as } \gamma \rightarrow 0
\end{aligned}
$$

2. If f has a local maximum or minimum at x, then $D f(x)=0$.
3. If $D f(x)=0$, then
(a) If $\lambda_{1}, \ldots, \lambda_{n}>0$, then f has a local minimum at x.
(b) If $\lambda_{1}, \ldots, \lambda_{n}<0$, then f has a local maximum at x.
(c) If $\lambda_{i}<0$ for some i and $\lambda_{j}>0$ for some j, then f has a saddle at x (i.e. f has neither a local maximum nor a local minimum at $x)$.
(d) If $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ and $\lambda_{i}>0$ for some i, then f has either a local minimum or a saddle at x.
(e) If $\lambda_{1}, \ldots, \lambda_{n} \leq 0$ and $\lambda_{i}<0$ for some i, then f has either a local maximum or a saddle at x.
