
Economics 204 Summer/Fall 2022
Final Exam – Suggested Solutions

Answer all of the questions below. Be as complete, correct, and concise as possible. There are
6 questions for a total of 165 points possible; point values for each problem are in parentheses.
For questions with subparts, each subpart is worth the same number of points. You have
180 minutes to complete the exam. Use the points as a guide to allocating your time. You
may use any result from class with appropriate references unless you are specifically being
asked to prove it.

1. (15) Define or state each of the following.

(a) eigenvector of a linear transformation T : X → Y between vector spaces X and
Y over the same field F

(b) open set in a metric space (X, d)

(c) Intermediate Value Theorem

Solution: See notes.

2. (30) Let A and B be n×n matrices that commute, so AB = BA. Show that for every
k ∈ N with k ≥ 2, AkB = BAk (where Mk is the product of k copies of the n × n

matrix M).

(Hint: use induction.)

Solution: For the base case k = 2,

A2B = A(AB) = A(BA) since AB = BA

= (AB)A

= (BA)A again since AB = BA

= BA2

So the claim holds for k = 2.

Now suppose AkB = BAk for k ≥ 2. Then

Ak+1B = A(AkB) = A(BAk) by the induction hypothesis

= (AB)Ak

= (BA)Ak since AB = BA

= BAk+1

Thus the claim holds for k + 1. Then by induction, AkB = BAk for all k ≥ 2.
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3. (30) Let X and Y be vector spaces over the same field F , and let T : X → Y be a linear
transformation. Let V ⊆ X be linearly independent. Show that if T is one-to-one,
then T (V ) ⊆ Y is linearly independent.

Solution: Let y1, . . . , yn ∈ T (V ) and α1, . . . , αn ∈ F such that

n∑

i=1

αiyi = 0

Since y1, . . . , yn ∈ T (V ), for each i there exists vi ∈ V such that T (vi) = yi. Then

0 =

n∑

i=1

αiyi =

n∑

i=1

αiT (vi)

= T (
n∑

i=1

αivi) since T is linear

Thus
∑n

i=1
αivi ∈ kerT . Since T is linear and one-to-one, kerT = {0}. Thus

n∑

i=1

αivi = 0

But V is linearly independent and vi ∈ V for each i = 1, . . . , n, so αi = 0 for each
i = 1, . . . , n. Thus T (V ) is linearly independent.

4. (30) Let (X, d) and (Y, ρ) be metric spaces and f : X → Y be a continuous function.
Let A ⊆ X. Show that f(Ā) ⊆ f(A).

Solution: Let y ∈ f(Ā). Then there exists x ∈ Ā such that f(x) = y. Since x ∈ Ā,
there exists {xn} ⊆ A such that xn → x. Since f is continuous, f(xn) → f(x) = y. By
definition, f(xn) ∈ f(A) for each n since xn ∈ A for each n, so {f(xn)} ⊆ f(A) ⊆ f(A).
Since f(A) is closed and f(xn) → y, y ∈ f(A). Thus f(Ā) ⊆ f(A).

5. (30) Let U ⊆ Rn be open and f : U → R be differentiable on U . Suppose for each
x ∈ U there exists εx > 0 and Mx > 0 such that ‖Df(y)‖ ≤ Mx for all y ∈ Bεx

(x).

Suppose C ⊆ U is convex and compact. Show that f is Lipschitz continuous on C .
(That is, show that there exists M > 0 such that ‖f(x) − f(y)‖ ≤ M‖x − y‖ for all
x, y ∈ C .)

(Hint: Show that there exists M > 0 such that ‖Df(z)‖ ≤ M for all z ∈ C .)

Solution: First claim that there exists M > 0 such that ‖Df(z)‖ ≤ M for all z ∈ C .
To see this, note that by assumption, for each x ∈ C there exists εx > 0 and Mx > 0
such that ‖Df(z)‖ ≤ Mx for each z ∈ Bεx

(x). Then for each x ∈ C , Bεx
(x) is an open
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set and x ∈ Bεx
(x), so {Bεx

(x) : x ∈ C} is an open cover of C . Since C is compact,
there exists x1, . . . , xn ∈ C such that

C ⊆ Bεx1
(x1) ∪ · · · ∪ Bεxn

(xn)

Let M = max{Mεx1
, . . . , Mεxn

}; by definition 0 < M < ∞. Let z ∈ C . Then
z ∈ Bεx

i
(xi) for some i = 1, . . . , n, so

‖Df(z)‖ ≤ Mεxi
≤ M

by definition of M . Therefore ‖Df(z)‖ ≤ M for all z ∈ C .

Now let x, y ∈ C . Since C is convex, `(x, y) = {αx + (1 − α)y : α ∈ [0, 1]} ⊆ C ⊆ U .
Then by the Mean Value Theorem, there exists z ∈ `(x, y) such that

f(x) − f(y) = Df(z)(x − y)

Thus

‖f(x) − f(y)‖ = ‖Df(z)(x − y)‖

≤ ‖Df(z)‖‖x − y‖

≤ M‖x − y‖

where the last inequality follows as z ∈ `(x, y) ⊆ C , which implies ‖Df(z)‖ ≤ M .
Since x, y ∈ C were arbitrary, f is Lipschitz continuous on C .

6. (30) Let (X, d1) be a nonempty, complete metric space and C ⊆ Rn be a nonempty,
compact, convex set. Consider the metric space (X × C, d), where d : X × C → R+

is the metric given by d((x, y), (z, w)) = d1(x, z) + d2(y, w) for (x, y), (z, w) ∈ X × C ,
where d1 is the metric on X and d2 denotes the standard metric in Rn (you can use
without proof that d is a metric on X × C .)

Let f : X×C → X×C , and write f(x, y) = (f1(x, y), f2(x, y)), where f1 : X×C → X

and f2 : X × C → C . Suppose f is Lipschitz continuous, and for each y ∈ C ,
f1(·, y) : X → X is a contraction on (X, d1). Show that f has a fixed point.

Solution: By assumption, f is Lipschitz continuous, so there exists K > 0 such that

d(f(x′, y′), f(x, y)) ≤ Kd((x, y), (x′, y′)) ∀ (x, y), (x′, y′) ∈ X ×C

Similarly, by assumption for each y ∈ C , f1(·, y) : X → X is a contraction on (X, d1).
Then let y ∈ C , and let βy ∈ (0, 1) such that

d1(f1(x, y), f1(x
′, y)) ≤ βyd1(x, x′) ∀ x, x′ ∈ X

Since (X, d1) is a nonempty complete metric space and f1(·, y) : X → X is a con-
traction, by the Contraction Mapping Theorem there exists a unique x∗

y ∈ X such
that

f1(x
∗

y, y) = x∗

y

3



Then let x : C → X denote the function such that x(y) = x∗

y for each y ∈ C .

Note that f(x, y) = (x, y) ⇐⇒ f1(x, y) = x and f2(x, y) = y. Thus (x, y) is a fixed
point of f if and only if x = x(y) and f2(x(y), y) = y. Then to show that f has a
fixed point, it suffices to show that g : C → C has a fixed point, where g is defined by
g(y) = f2(x(y), y).

To that end, first note that x : C → X is continuous. To see this, suppose {yn} ⊆ C

and yn → y. Then y ∈ C since C is compact, and hence closed. Moreover,

d1(x(yn), x(y)) = d1(f1(x(yn), yn), f1(x(y), y))

≤ d1(f1(x(yn), yn), f1(x(yn), y)) + d1(f1(x(yn), y), f1(x(y), y))

≤ d(f(x(yn), yn), f(x(yn), y)) + βyd1(x(yn), x(y))

where the first inequality follows from the triangle inequality, and the second inequality
follows since f1(·, y) is a contraction with modulus βy, and

d1(f1(x(yn), yn), f1(x(yn), y)) ≤ d1(f1(x(yn), yn), f1(x(yn), y)) + d2(f2(x(yn), yn), f2(x(yn), y))

= d(f(x(yn), yn), f(x(yn), y))

Then using the Lipschitz continuity of f ,

d1(x(yn), x(y)) ≤ d(f(x(yn), yn), f(x(yn), y)) + βyd1(x(yn), x(y))

≤ Kd((x(yn), yn), (x(yn), y)) + βyd1(x(yn), x(y))

= Kd2(yn, y) + βyd1(x(yn), x(y))

This implies (1 − βy)d1(x(yn), x(y)) ≤ Kd2(yn, y). Since βy ∈ (0, 1) and yn → y, this
implies x(yn) → x(y). Thus x : C → X is a continuous function.

Now since f2 is continuous, g : C → C is continuous, as g(y) = f2(x(y), y) for each
y ∈ C . Since C ⊆ Rn is nonempty, compact, and convex, by Brouwer’s Fixed Point
Theorem there exists y∗ ∈ C such that g(y∗) = y∗. Then let x∗ = x(y∗). Note that
(x∗, y∗) is a fixed point of f , as

f1(x
∗, y∗) = f1(x(y∗), y∗) = x(y∗) = x∗ and f2(x

∗, y∗) = f2(x(y∗), y∗) = g(y∗) = y∗

Thus f(x∗, y∗) = (f1(x
∗, y∗), f2(x

∗, y∗)) = (x∗, y∗).
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