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1. Diagonalization of Real Symmetric Matrices
2. Application to Quadratic Forms
3. Linear Maps Between Normed Spaces
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Eigenvalues and Eigenvectors

Here, we define eigenvalues and eigenvectors of a linear trans-
formation and show that )\ is an eigenvalue of T if and only if A\
IS an eigenvalue for some matrix representation of 7' if and only
if X is an eigenvalue for every matrix representation of 7.

Definition 2. Let X be a vector space and T € L(X,X). We
say that A"’/% an eigenvalue of T' and v # 0 is an eigenvector
corresponding to A if T'(v) = M.
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Eigenvalues and Eigenvectors

Theorem 6 (Theorem 4 in Handout). Let X be a finite-dimensional
vector space, and U a basis. Then X\ is an eigenvalue of T if and
only if A is an eigenvalue of Mtxy(T). v is an eigenvector of
T corresponding to X\ if and only if erdy(v) is an eigenvector of
Mtxy(T) corresponding to .

Proof. By the Commutative Diagram Theorem,

N 550 s TW) = & crdU(T(v)) = crdU()\v) NG A
= Mta:U(T)(crdU(v)) = A(erd(v))

A:: \I\/\AT\C-U\CTX : = Qr%(v\J
= Aw = N % 24



Computing Eigenvalues and Eigenvectors

Suppose dimX = n; let I be the n x n identity matrix. Given
T € L(X,X), fix a basis U and let

A= Mtxy(T)
Find the eigenvalues of T by computing the eigenvalues of A:

i\i:‘oD < Ao- Av = v <~ (A_AI)U:O 'S;'\bf‘ Lo WAL \{A?D
<= (A — )\I) is not invertible
< det(A—-\)=0
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We have the following facts:

[ If A - Rnxrn,
F(A) = det(A — A

is an nth degree polynomial in A with real coefficients; it is
called the characteristic polynomial of A.

e f has n roots in C, counting multiplicity:

\N\Q-\s \)\Q‘\Je—
FA) =(c1 =A)(e2—=A) - (cn = A) CL=cg Uk
where c1,...,cn € C are the eigenvalues; the c;'s are not
necessarily distinct. Notice that f(A) = 0 if and only if
A €{c1,...,cn}, SO the roots are the solutions of the equation

f(A) =0.
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e the roots that are not real come in conjugate pairs:

f(a+bi) =0< f(a—0bi) =0

o if \= cj € R, there is a corresponding eigenvector in R".

o if \= C; ¢ R, the corresponding eigenvectors are in C™\ R™.



Diagonalization

Definition 3. Suppose X is a finite-dimensional vector space with
basis U. Given a linear transformation T € L(X,X), let

A — MtJZU(T)

We say that A can be diagonalized if there is a basis W for X
such that Mtxyw (T) is a diagonal matrix, that is,
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A 0 O 0 0
Mtzy(T)=| 0 *2 9 90
O O O 0O A\

So

A can be diagonalized <= A is similar to a diagonal matrix
<~ A= P 1BP where B is diagonal

U
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Suppose there is a basis W such that

A1 0 O -0 O
My =| T 20000
O 0 O --- 0 M
=> X, , Mo oue QL] ~Nodes o W\*x‘w Q_Y\ ond T\
Then the standard basis vectors of R™ are eigenvectors of Mtxy, (T).

AN 3&@ s
zj IS an eigenvector of T corresponding to \; <= crdy(z;) is

an eigenvector of Mtxy, (1) corresponding to A;.

Y
So an eigenvectorf(corresponding to Aj is wj, since crdy (w;) = e;,
the jth standard basis vector in R".
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Thus Mtxy (T) is diagonal if and only if W = {w1,...,wn} where
w; IS an eigenvector of 1" corresponding to >\j for each j.

Then the action of T' is clear: it stretches each basis element w;
by the factor \;.



Diagonalization

Theorem 7 (Thm. 6.7'). Let X be an n-dimensional vector
space, T € L(X,X), U any basis of X, and A = Mtxy(T). Then
the following are equivalent:

1. A can be diagonalized
2. there is a basis W for X consisting of eigenvectors of T

3. there is a basis V for R™ consisting of eigenvectors of A

Proof. Follows from Theorem 6.7 in de la Fuente and Theorem
4 from the Handout. [ ]
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Diagonalization
Theorem 8 (Thm. 6.8"). Let X be a vector space and T €

L(X,X).

1. If \q,..., A\m are distinct eigenvalues of T' with corresponding
eigenvectors v1,...,vm, then {v1,...,vm} is linearly indepen-
dent.

2. IfdimX = n and T' has n distinct eigenvalues, then X has
a basis consisting of eigenvectors of I'; consequently, if U is
any basis of X, then Mtxy;(T) is diagonalizable.

Proof. This is an adaptation of the proof of Theorem 6.8 in de
la Fuente. [ ]
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How Might This Matter
= \O\\(JJO-% \0\& L-k,

Coyy =
Ny
e Why does diagonalizability matter? Kaon = oy g o oS

Consider a two-dimensional linear difference equation:

Ct+1 | — ( P11 D12 “t ) vt=0,1,2.3,...

ki41 bo1 b2o k¢ T
given an initial condition cq, kg, or, setting

Ct b11 b12
= VYVt and B =
v (kt> (1921 bzz)

we can rewrite this more compactly as

Yi+1 = Byr Vi
where b;; € R each 1, j.



We want to find a solution y, t = 1,2,3,... given initial
condition yg. (Why?)

Such a dynamical system will arise for example as a character-
ization of the solution to a standard infinite-horizon optimal
growth problem (202a, lecture 2).

—
k If B is diagonalizablebthis can be easily solved after a change

of basis. If B is diagonalizable, choose an invertible 2 x 2 real
matrix P such that

P_lBP:D:<d1 O)

0 do
Then

Yyi+1 = By Vi <— P_lyt—l—l = P_lByt vt (onutee- \'315\:) 5

— P_lyH_l =QP_1B§@_1yt> Vit Pe X
<~ Y+1 = Dyr V¢

A, O \ < o
: (‘O A a O )&"*FP&%



where 7y = P~ 1y, Vt.

Since D is diagonal, after a change of basis to y;, we need to
solve two independent linear univariate difference equations,
which is easy:

— | —
Yit = d;y;0 Vt

Not all real n x n matrices are diagonalizable (not even all
invertible n xn matrices are)...so can we identify some classes
that are? ¢ bhasiy o @lgen Vedkert (<)

e N AlskAct Q_/\\,SU\\JG_\u&,S L:-W)

Some types of matrices appear more frequently than oth-
ers — especially real symmetric n x n matrices (matrix rep-
resentation of second derivatives of (2 functions, quadratic
forms...). e.q. sRcend order condiMonm “opRmizanen,

Q/\_,\Q_”c_'\c@:-f"\g QS’\L%\J;A"‘D oA Qo;\\)Q_X.:Arb)

Toq:\\ or el RPPI:}#’:\ oSO ﬁg\"sf\"“"‘t\“‘m



e Recall that an n X n real matrix A is symmetric if a;; = aj;
for all 4,3, where a;; is the (i,5)t" entry of A.
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Orthonormal Bases

Definition 1. Let
s o1 ifi=j
W) 0 if i _
\ o=y
A basis V.= {v1,...,vp} of R" is orthonormal if v;-v; = 6;;.= | o 4

In other words, a basis is orthonormal if each basis element has
unit length ( ||v||2 = v; - v; = 1 Vi), and distinct basis elements
are perpendicular (v; -v; = 0 for ¢ # j).

v X
Q _ LX‘X—\A
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Orthonormal Bases

Remark: Suppose that z = ;;,:1 a;v; where {vi1,...,vp} iS an
orthonormal basis of R™. Then

|
Q.
S
g
Q
Q.
c
<O
N—
c
P

x - U
mn
— Z o (vj - v)
j=1
mn \ ’:_l;:
— Z aj5]k: = > ;&’4\
j=1
pr— ak
SO
mn
r= > (z V)V,



Orthonormal Bases

Example: The standard basis of R™ is orthonormal.

C.= L:::'] AR Q)F,_Ib\ C=\, —-5 N

(Why?)

2 . B
e.q. ™ ¢ e = (1> = €a= (=,

\ \ oo X
s < > s
Dk\,\e,rg? e.3- \g\':.. (_(a.) S;\J \‘a,"k \ra) )

oS0 WG \QCL%Q_S '\(\\9&_* S ONAE SYERNA VYNNG ”\GV\J
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Unitary Matrices

Recall that for a real n x m matrix A, Al denotes the transpose
of A: the (i,5)" entry of AT is the (4,7)!" entry of A.

So the it" row of AT is the " column of A.

Definition 2. A real n x n matrix A is unitary if AT = A~1,
AV =
Notice that by definition every unitary matrix is invertible.



Unitary Matrices

Theorem 1. A real n x n matrix A is unitary if and only if the
columns of A are orthonormal.

Proof. Let v; denote the j* column of A. Coo

AT = A1 e ATa=7 = L3S0) ~» o%
> UV = 57;]' Vi, 9
< {v1,...,vn} is orthonormal



A (e uD — Wy o)

P
AW L\"J. .
TSN Unitary Matrices

BTN
If A is unitary, let V/be the set of columns of A and W be the
standard basis of R™. Since A is unitary, it is invertible, so V is
a basis of R?. (Vi - v r} Uneorly ndegende )
Al = A7 = Mtayyw(id) _ Gaonge & s &

s W A= N
a $

| | | Standprd. kasu
Since V is orthonormal, the transformation between bases W

and V preserves all geometry, including lengths and angles.
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Diagonalization of Real Symmetric Matrices

Theorem 2. lLet T ¢ L(R",R") and W be the standard ba-

sis of R"™. Suppose that Mtxy (T) is symmetric. Then the
eigenvectors of 1T' are all real, and there is an orthonormal basis

V = {vq,...,vn} of R™ consisting of eigenvectors of T, so that
Mtxy (T) is diagonalizable:

Mtxw(T) — Mth’V(id) . Mth(T) . Mth,W(id)

where Mtxy/T is diagonal and the change of basis matrices
Mtxy y(id) and Mtxyyy(id) are unitary.

The proof of the theorem requires a lengthy digression into the

linear algebra of complex vector spaces. A brief outline is in the
notes.
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Quadratic Forms

=2
Example: Let +°@ & 7W

f(z) = a4 Briwo + Yo

weike  as FOy = ="' A

A:%‘g
5

Let

S

?Q\,VAJ\EJ\A-\ G\X \U‘k\'\ Q\KJ\ —\:{"‘r‘”\& GQ

MML‘S‘ <
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so A is symmetric and

N Q

g
z! Az = (21, 72) ( 2 ) ( Tl )
gl 2
= (x1,75) ary + ng
- y L2
: o1 4 y2

ozx% + Bxri1x0 + Wx%

/(@)

Wkte Ty = ©
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Quadratic Forms

QBA_(MO\J\ S—QJ’N\ .
Consider a quadratic form

n
2
f@1,..,zn) = ) ogxy + > Bijwix; (1)
i=1 i<
Let N \
ﬁij if 4 . oboNL < 3
) = 1<)
= g
Let
a11 ot Qlp
A= S so f(z) =z ' Ax

V<o g)a_w\md‘f{c.
12



Quadratic Forms

A is symmetric, so let V = {vq,...,v,} be an orthonormal basis
of eigenvectors of A with corresponding eigenvalues \1,..., An.
Then A = U'DU = W OW

A O - O

where D = O >‘:2 o O

_\ O 0 --- A\
A

\ind U = Mtzyy(id) is unitary

The columns of U (the rows of U) are the coordinates of
v1,...,Un, €xpressed in terms of the standard basis W. Given
x € R", recall

n
x = Z v;v; where v, = x - v;
1=1
13



So

%) = f(=)

Quadratic Forms

[ e )

\DCL'_SA'LS. J\,\G;*\f O S\—(QW\

W A=

S5 UL TEl TN
14



Quadratic Forms e T A

This proves the following corollary of Theorem 2.

Corollary 1. Consider the quadratic form (1). L< N, L Ve \9%_ o
Dr)'(\-'\o we N\o-«\ N ecs '\5 QJ( e,; 32',\ \]Q();-Q,rg é"ﬁ f_\\ U\_{\X\J\ (> rres ‘;a:\ é_\_,/\s

e,lqzse_nﬂo\%a*&% %_\‘) -, ,\“3

1.\ff has a global minimum at O if and only if \; > 0 for all i, the
level sets of f are ellipsoids with principal axes aligned with
the orthonormal eigenvectors vq,...,vn.

2.\1? has a global maximum at O if and only if \; < O for a@
the level sets of f are ellipsoids with principal axes aligned
with the orthonormal eigenvectors vy, ..., vn.

18



3/ If\; < 0 for somei and \; > O for some j, then f has a saddlg
point at O, the level sets of f are hyperboloids with principal
axes aligned with the orthonormal eigenvectors v1,...,vn.
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Bounded Linear Maps &)

Definition 3. Suppose X,Y are normed vector spacesl\and
T e L(X,Y). We say T is bounded if

B eR st [[T()lly < Bllzlx VoeX

Note this implies that T' is Lipschitz with constant §.

\J\)\N\S (AN gAd

)
\ Ce®Roax WTmn & & Noxeh

- W\ <~ (ax\l = &\ \WT 6o\l

19



Bounded Linear Maps

Much more is true:

Theorem 3 (Thms. 4.1, 4.3). Let X and Y be normed vector
spaces and T € L(X,Y). Then

T is continuous at some point xg € X
T is continuous at every x € X
T is uniformly continuous on X
T is Lipschitz

T is bounded

1Tty

Proof. Suppose T' is continuous at xg. Fix € > 0. Then there
exists 6 > 0 such that

Iz —zoll <6 = [|T(2) = T(zo)l| <e

20



Now suppose z is any element of X. If ||y — x| < 6, let z =

2= y—z+30, 50 |lz— o = Ily —all <.

. ITC) ~ T(@)]
= ITy - (7 enear )
= [|T(y—xz+ xzg—x0))|| =1l 7C2 >\
= |T(2) - T(zo)|
< €

which proves that T is continuous at every zx, and uniformly
continuous.

We claim that 7T is bounded if and only if T is continuous at O.
Suppose T is not bounded. Then

Hzn} s.t. ||T(zn)|| > nllzn|| VYn



M
Note that z,, #0. Let e = 1. Fix
% < 0. Let

I
Ly —

el =

v —o\\ = x| <
1T () — TOIl =
O =

d > 0 and choose n

\

NI

— 3
8
3

B
s

N3 | =3

17 (7)) |

S S

M =3

L @) |

such that
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Since this is true for every 6, T is not continuous at 0. Therefore,
T continuous at O implies T" is bounded. Now, suppose T' is
bounded, so find M?scﬂch that ||T(x)| < M||x| for every x € X.
Given € > 0, let § =¢/M. Then

_ O
|l —0]|<d = |z|| <9 P

= | T(x) =T = |IT(x)|| < M§ (45 & M)
= [[T(z) —TO)| <e =wS

so T' is continuous at O.

Thus, we have shown that continuity at some point xg implies
uniform continuity, which implies continuity at every point, which
implies T' is continuous at 0, which implies that 7' is bounded,
which implies that 7' is continuous at O, which implies that 7' is



continuous at some xg, so all of the statements except possibly
the Lipschitz statement are equivalent.

> L®)
Suppose T' is bounded, with constant M, Then
|1T(z) =T = ||IT(z -1 (T Gncac )
< Mz -y

so 1" is Lipschitz with constant M:; conversely, if T is Lipschitz
with constant M, then T is bounded with constant M. So all
the statements are equivalent. [ ]

et \\rean =Ty = W £ A= o\
= (AN



Bounded Linear Maps

Every linear map on a finite-dimensional normed vector space is
bounded (and thus continuous, uniformly continuous, and Lips-
chitz continuous).

Theorem 4 (Thm. 4.5). Let X andY be normed vector spaces,
with dmX =n. Every T € L(X,Y) is bounded.
CV\G:L\S\

Proof. See de la Fuente. [ ]

21



Topological Isomorphism

Definition 4. A topological isomorphism between normed vector
spaces X and Y is a linear transformation T € L(X,Y) that is
invertible (one-to-one, onto), continuous, and has a continuous
inverse.

Two normed vector spaces X andY are topologically isomorphic
if there is a topological isomorphism T : X — Y.

22
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The Space B(X,Y)

—

W W\

e FO
Suppose X and Y are normed vector spaces. We define
B(X,Y) = {T e L(X,Y):T is bounded}
Delive & [Tlpxy)y = sup { Hﬂgjl)XHY;x € X,xr # O}
= sup{[|T(2)|ly : llzllx = 1}
K etet = LT L 2 BT W dx e X by ddiamiRen

We sKip the proofs of the rest of these results — read dIF.

23



The Space B(X,Y)

Theorem 5 (Thm. 4.8). Let X,Y be normed vector spaces.
T hen

(B, Ipexy))
IS a normed vector space.

24



Q,QJ
" The Space B(R",R™)
Theorem\6 (Thm. 4.9).Let T ¢ L(R", R™) (= B(R"*,R™))
with matrix 'A = (a;;) with respect to the standard bases. Let
M = max{|a;j| : 1 <i<m,1<j<n}
T hen
M < |IT|| < My/mn

25



Compositions

Theorem 7 (Thm. 4.10). Let Re L(R™,R") and S € L(R"™,RP).
Then

1S o Rl < [IS][|IR]]

26



Invertibility

Define Q(R™) ={T € L(R™,R"™) : T is invertible}

Theorem 8 (Thm. 4.11"). Suppose T € L(R",R"™) and FE is the
standard basis of R™. Then

T is invertible A~ e

111

oMl Cans

kerT = {0}
det (Mtzg(T)) # O
det <Mth,V(T)) # 0 for every basis V

det <Mta;V7W(T)) # 0 for every pair of bases V,W

27



Invertibility

Theorem 9 (Thm. 4.12).If S, T €¢ Q(R"™), then SoT € Q(R")
and

(So T)_l =7 1og571!

28



Invertibility

Theorem 10 (Thm. 4.14). Let S, T ¢ L(R™, R"™). If T is invert-
ible and

then S is invertible. In particular, Q2(R™) is open in L(R",R") =
B(R™ R™).

Theorem 11 (Thm. 4.15). The function (1)1 : Q(R") —
Q(R™) that assigns T—1 to each T € Q(R") is continuous.

29



Quadratic Forms

The equation for a level set of f is

T ¥e = o QLX\ZC%Z{WER”:'Z)\WE:C} C e B

=1

oLIf Aj > Om the level set is an ellipsoid, with principal
axes in the directions v1,...,v,. The length of the principal

axis along wv; is /C/X; if C > 0 (if \; = 0, the level set is
a degenerate ellipsoid with principal axis of infinite length in
that direction). The level set is empty if C < 0.

=) F hes ablell Wi aF D FG) 20 Nx

o \If X; < 0 for all 4, the level set is an ellipsoid, with principal
axes in the directions v1,...,vn. The length of the principal

=) 'R’ \nos %\Q\Q@‘k ot X 6\ L) L0 159 <




axis along wv; is WCV&; if C <0 (if \; = 0, the level set is
a degenerate ellipsoid with principal axis of infinite length in
that direction). The level set is empty if C > 0.

:Llf A; > 0 for some ¢ and >\j < 0 for some j3,) the level set is
a hyperboloid. For example, suppose n = 2, A\1 > 0, A>» < O.
The equation is

C = M7f+ A3
(\/771 + /|22 72) (\/771 — /|2 72)

im N vetgeeX A ML
WO uo;)‘('\'\ \je_,g?tacﬂ? Ao \r‘g



This is a hyperbola with asymptotes
0 = /A171 + /A2l

| A2|
=71 = A\ 2
A1
0 = (\/M%— |>\2|72)
A2
=71 = 2 |72

A1



A,>0,A,>0

Ve,

Tue®R ¥ 0= c,g

§ has o %\Q\QG"S\ VANERE. e 16



A,>0,A, <0

vi=V 21, Yy

__g, oy o S&M\L PD;\»}? o’S\T Q)

Uxe R - ‘?L?“\;C-E
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