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Comparative Statics

In many problems we are interested in how endogenously deter-
mined variables are affected by exogenously given parameters.
Here we study problems in which the variables of interest are
characterized as solutions to a parameterized family of equa-
tions.

To formalize, let X C R"and A C RP beopen,andlet f: XxA —

R™. For a given a € A, consider solutions z € X to the family of

equations o~ Q@bma:P:gﬁS
\J\_,r\K_J\Cb\—LJAQ

r,a) =0 -

f(z,a) N

We want to characterize the set of solutions and study how this
set depends on the parameter a.



An Example

Consider the function f: (0,27) x R — R defined by
f(x,a) =sinxz + a
Let X = (0,27). For fixed a, let
fa(x) = f(x,a) =sinx + a
We look for solutions z € (0,2n) to the equation
fa(x) = f(z,a) =sinz+a =20
that is, the x € (0,27) such that

£ Lola:’ﬁ\ AT

Sine = —a

Let W : A — 2% denote the solution correspondence, soO

W(a) ={x € (0,27) : fo(x) =sinx 4+ a = 0}



An Example

Start with a = 0. For x € (0,27),

fo(x) =sinz =0 <— z=n
so W(0) = {=}.

Notice that for x near =, for example in the neighborhood (7 /2,37 /2),
and for a near O, sin_l(a,) remains single-valued and depends
" smoothly on a.

In addition, we can predict the direction of change: x is increasing
in a.
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An Example

Now consider a = 1. For =z € (0,27),

fi(x) = sinz4+1=0
<— Sihx = -1
3T
< T = —
2 L
So V(1) =4{3n/2}. OE?D- _ oo
(1) = {37/2} ek e

But note that for o’ > 1, W(a') = 0, while for a < 1 close to
1, there are two solutions near 37w/2, one above and one below
3m/2.

WV is not lower hemicontinuous at a = 1.



f, (x) =sinx+a’

a > |

f, (X) =sinx+1

f,(x)=sinx+a
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Regular and Critical Points and Values

Suppose X C R"™ is open. Suppose f : X — R™ is differentiable
at z € X, and let W = {eq,...,en} denote the standard basis of
R™. Then df; € L(R",R™), and

Rankdf; = dimIm (dfz)
— dimspan {dfs(e1),...,dfe(en)}  (Lomemriny Rer enl
= dimspan{Df(z)e1, ..., DFizx)en} bt Gor )Y
= dimspan{column 1 of Df(x),...,column n of Df(x)}
= Rank Df(z)

Thus,

Rank df; < min{m,n}

We say df; has full rank if Rankdf; = min{m,n}, that is, is dfy

has maximum possible rank. .
(= Ro O () = W\\""“{M)hg
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Regular and Critical Points and Values

Definition 1. Suppose X C R" is open. Suppose f . X — R™ is
differentiable on X.

e x /S a regular point of f if Rankdfy = min{m,n}.

d.’(; e L\cn—& ‘P“)*’U\' 4 s JM\‘"\

e x is a critical point of f if Rankdf; < min{m,n}. ‘
=y Ronr~\ WOE ) < vn iw\/ﬁ‘s

e y Iis a critical value of f if there exists x € f_l(y) such that
x IS a critical point of f.

e y IS a regular value of f ify is not a critical value of f
\S \I{_%MG—J* Nalkeee CSS\Y "; Q——”? 5%3’)(_6—?—‘[‘3\) d‘gy_ \J\Q-S MTWL
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Example: Consider the function g : (0,27) — R defined by

9(z)(= fo(z)) =sinz

Note that ¢/(x) = cosz, so ¢'(x) =0 <= x =n/2 or x = 3w/2.
Dg(z) is the 1 x 1 matrix (¢'(x)), sO - C, O

4W\'M

Rankdg: = RankDg(z) =1 «<— ¢(z) #0
critical points of g: w/2 and 37/2

regular points of g: <O,g) U <g,3§) U <377T,27r)

critical values of ¢g: g¢g(n/2) = sin(r/2) = 1 and g¢g(37/2) =
sin(3r/2) = —1

regular values of g: (—oo,—1)U(—-1,1)U(1,00)
10



In particular, notice that O is not a critical value of g.

Given a € R, as above consider the perturbed function

fa(z) = g(z) +a

Notice that f/(z) = ¢'(x), so the critical points of f, are the
same as those of g, w/2 and 3x/2.

For a close to zero, the solution to the equation

fa(x) =0
near r = m moves“smoothlyj’with respect to changes in a. The
direction the solution moves is determined by the sign of f;.

Now let a = 1. Since 37 /2 is a critical point of f1, 0 is a critical
value of f1.



Inverse Function Theorem

Theorem 1 (Thm. 4.6, Inverse Function Theorem). Suppose
X CR"isopen, f: X - R"isCl on X, and z9 € X. If
detDf(xg) = 0 (i.e. xzg is a regular point of f) then there are
‘open neighborhoods U of xg and V of f(xg) such that

f:U—YV Is one-to-one and onto
flrvouUu is ¢t
Df ' (f(z0)) = [Df(xo)]™"
If in addition f € C*, then f~1 ¢ Ck.

Remark: f is one-to-one only on U, it need not be one-to-one
globally. Thus f_1 IS only a local inverse.
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Proof. Read the proof in de la Fuente. This is pretty hard. The
idea is that since det Df(zg) # O, then dfy, : R® — R" is one-
to-one and onto. You need to find a neighbornhood U of xg
sufficiently small such that the Contraction Mapping Theorem
implies that f is one-to-one and onto. n

To see the formula for Df_l, let idy denote the identity function
from U to U and I denote the n X n identity matrix. Then

Df~1(f(20))Df(z0) D(f~t o f)(zo)
D( idgXzo)§
1

[Df(x0)] ™"

= Df 1(f(z0))
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Inverse Function Theorem

Example: Let g : (0,27) — R be given by ¢g(x) = sinxz. Let

TO = T.
e

Then ¢'(zg) = cosm = —1 # 0, so by the Inverse Function
Theorem there exists an open set U C (0,27) with w € U, an
open set V C R with 0 = g(n) € V and a C1 function h : V — U
such that g(h(v)) = v for all v € V.

At x = 3n/2, ¢'(z) = cos(37/2) = 0, and g has no local inverse
function there: for every open neighborhood U of 37/2 and every
open neighborhood V of —1 = ¢(37/2), there exists v € V and
x1 #= xo € U such that

g(x1) =sinxy = v =sinxs = g(xo)

12
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Implicit Function Theorem

Theorem 2 (Thm. 2.2, Implicit Function Theorem). Suppose
X CR"and ACRP areopenand f : X xA— R"is Cl. Suppose
f(xg,ag) = 0 and det(Dyf(xg,ag)) 7= 0, i.e. xg is a regular point
of f(-,ag). Then there are open neighborhoods U of zg (U C X)
and W of ag such that

Vae W dlzeU s.t. f(x,a) =0

For each a € W let g(a) be that unique x. Then g . W — X is
cl and

Dg(ag) = — [Duf(z0,a0)] ™" [Daf(z0, ao)]
If in addition f € Ck, then g € CF.

NAN (e - ODKQQ\:—\'LQ 14



Proof. Use the Inverse Function Theorem in the right way).k Why
is the formula for Dg correct? Assuming the implicit function
exists and is differentiable, ot W ERAAVN

Df(g(a),a)(ag) (= Wt )
Dy f(xo,a0)Dg(ag) + Daf(z0,ag)
~[Def(z0,a0)] "t Daf(z0, ag)

\\C&:‘.—-gt ta\)@\:o ___.@ O
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Dg(ag)
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Implicit Function Theorem

Corollary 1. Suppose X C R"™ and A C RP are open and f :
X xA—R"iscCl If 0is a regular value of f(-,ag), then the
correspondence

a— {r e X : f(x,a) =0} = Wl
Is lower hemicontinuous at ag.

( ALt ~)
Proof.f\If O is a regular value of f(-,ag), then given any zg €

{x € X : f(x,ag) = 0}, we can find a local implicit function
g, in other words, if a is sufficiently close to ag, then g(a) €
{x € X : f(x,a) = 0}, the continuity of g then shows that the
correspondence {z € X : f(z,a) = 0} is lower hemicontinuous at

ag. L
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Implicit Function Theorem

Example: Back to our opening example: f: (0,27r) x R — R
given by f(z,a) =sinx 4+ a. Let g =7 and ag = 0.

T —

Then f(xzg,ag) = sinm = 0 and D, f(xg,ag) = cosm = —1 # 0.
So xg = 7 is a regular point of f(-,ag). = fa._¢)

By the Implicit Function Theorem, 4 open neighborhoods U > «
and W 3 0 and a C! function h : W — U such that f(h(a),a) =0
for every a € W, and

Dh(ag) = —[cosn] ™ 1-1=1

So the local solution is increasing in a near ag (as we saw above).

16



Again at x =3n/2 and a =1, Dy f(x,a) = 0 and no local implicit
function exists:

for every open neighborhood U of 3n/2 and W of 1, for any
a’ > 1 there is no 2’ € U such that f(a/,a’) =sinz’ + a4’ = 0.
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Lebesgue Measure Zero

Definition 2. Suppose A C R". A has Lebesgue measure zero
if for every € > 0 there is a countable collection of rectangles
I1,1>,... such that

©.@) ©.@)
Y Vol (Iy)<eand AC ] I

Here by a rectangle we mean [, = x?zl(aﬁ,bﬁ) for some

aé‘-’<b§?€R, and S e® e xde@z )":—3\ “K\g
n
deline Vol (1) = [T IbF — aF|
j=1
Notice that this defines Lebesgue measure zero without defining
Lebesgue measure. ~
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Lebesgue Measure Zero

Examples:

1. “Lower-dimensional’ sets have Lebesgue measure zero. For
example,

A:{xERzixQZO}

has measure zero.
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2. Any finite set has Lebesgue measure zero in R™.

3. If An has Lebesgue measure zero Vn then U,,.yAn has Lebesgue
measure zero.

&

e

4. Q and every countable set has Lebesgue measure zero.
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5. No‘gpen set in R™ has Lebesgue measure zero.

If O Cc R"™ is open, then there exists a rectangle R such

that R C O and such that Vol (R) =r > 0. If {I;} is any
collection of rectangles such that O C U;?;llj, then RC O C

Us=11;, so 352, Vol (I;) > Vol (R) =1r> 0.
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Genericity

Lebesgue measure zero is a natural formulation of the notion
that A is a small set. Without specifying a probability measure
explicitly, this expresses the idea that if x € R" is chosen at
random, then the probability that x € A is zero.

A function may have many critical points; for example, if a func-
tion is constant on an interval, then every element of the interval
IS a critical point. But it can’t have many critical values.

a Su~NClcie fd(\J\j wedk ~ el ovka  Loenclon
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f(x)

few critical
values

many critical points
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Sard’s T heorem

Theorem 3 (Thm. 2.4, Sard’'s Theorem). Let X C R"™ be open,
and f: X — R"™ beC" withr > 14+ max{0,n—m}. Then the set
of all critical values of f has Lebesgue measure zero.

Proof. First, we give a false proof that conveys the essential idea

as to why the theorem is true; it can be turned into a correct

proof.\é@p\ose m :a Let C' be the set of critical points of f,
€ (cy=V the set of critical values. Then

Vol (F(O)) = Jegey" =%
/C|deth(a;)| dr (equality if f is one-to-one)

/Oda;
C
0

Vol (V)

Il IA
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Now, we outline how to turn this into a proof. First, show that
we can write X = UjeNXj' where each Xj IS @ compact subset
of [—4,7]". Let C; =CnNX,. Fix j for now. Since f is C1,

T r, —x = detDf(xr) — detDf(x)

: we S= {zx} CCj iz —x = detDf(z) =0=z€Cj
SO Cj iIs closed, hence compact. Since X is open and Cj IS
compact, there exists 67 > 0 such that

B51 [C]] — UZCECjB51 [$] C X

B51[Cj] iIs bounded, and, using the compactnhess of Cj, one can
show it is closed, so it is compact. Since det Df(x) is continuous
on B51[Cj], it is uniformly continuous on B51[Cj]. Then given
e > 0, we can find § < §;1 such that Bs[C;] C [-27,25]" and

€
2. 4njn

T € B(;[Cj] = |det Df(x)| <



T hen

f(C;) < f(BslC;])
g
( \ay = Vol (F(BsICD) < /[—zj,zj]nz- g 0
*(%&E'QB €

2

Since f is C1, show that f(C;) can be covered by a countable
collection of rectangles of total volume less than . Since € > 0
is arbitrary, f(C;) has Lebesgue measure zero. Then

\ = £(0) = £ (UjenG)) = Ugenf(C))
is a countable union of sets of Lebesgue measure zero, so f(C)
has Lebesgue measure zero. [ ]



Sard’s T heorem

Remark: Sard’'s Theorem has a number of powerful implica-
tions. Given a randomly chosen function f, it is very unlikely
that zero will be a critical value of f. If by some fluke zero is
a critical value of f, then a slight perturbation of f will make
zero a regular value. We return to a more wide-ranging version
of this statement below.

Example: Let g : (0,27r) — R be given by ¢g(z) = sinx. We
calculated by hand above that the set of critical values of g is
{—1,1}. Since this set is finite, it has Lebesgue measure zero.
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Transversality

Let g : R — R" be Cl. Consider the family of n equations in n
variables:

g(z) =0

Suppose for some x such that g(z) = 0, rank (Dg(xz)) < n. That
is, some z € ¢g—1(0) is a critical point of g, thus 0 is a critical
value of g.

By Sard’s Theorem, almost every a = 0 is a regular value of g.
So for a outside a set of Lebesgue measure 0, Dg(x) has full rank
for every z solving g(z) = a. For any such a and any z € ¢~ 1(a),
we can use the Inverse Function Theorem to show that a local
inverse x(a) exists, and give a formula for Dxz(a).

25
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Transversality

Suppose f : R" x RP — R™. We care about the parameterized
family of equations

flz,a) =0

where, as above, we interpret a € RP to be a vector of parameters
that indexes the function f(-,a).

For a given a, we are interested in the set of solutions

blay={z € X : f(z,a) =0}

and the way that this correspondence depends on a.

If f is separable in a, that is, f(x,a) = g(x) + a, then we can use
Sard’s Theorem (PS6 2010).
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Transversality T heorem

&’L‘)(J} &\: 3(.)“)—\' Co
,{>
Separability is strong, and not required: If f depends on a in

a nonseparable fashion, it is enough that from any solution
f(x,a) = 0, any directional change in f can be achieved byjibi—
trarily small changes in x and a.

Theorem 4 (Thm. 2.5', Transversality Theorem). Let X C R"
and A C RP be open, and f : X x A — R™ be C" with r >
1+ max{0,n—m}. Suppose that O is a regular value of f. Then
there is a set Ag C A such that A\ Ag has Lebesgue measure
zero and for all a € Ag, 0 is a regular value of fo, = f(-,a).
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Remark: Notice the important difference between the statement
that O is a regular value of f (one of the assumptions of the
Transversality Theorem), and the statement that 0 is a regular
value of f, for a fixed a € Ay (part of the conclusion of the
Transversality Theorem). 0 is a regular value of f if and only
if Df(x,a) has full rank for every (x,a) such that f(x,a) = O.
Instead, for fixed ag € Ag, O is a regular value of fqqy = f(-,ap) if
and only if Dy f(x,ag) has full rank for every z such that fu,(x) =

f(z,a0) = 0.
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Remark: Consider the important special case in whichm
so we have as many equations (m) as endogenous variables (n).
In this case, suppose f is C'1 (note that 1 =1 4+ max{0,n — n}).
If O is a regular value of f, that is, Df(x,a) has rank n = m
for every (x,a) such that f(x,a) = 0, then by the Transversality
Theorem there is a set Ag C A such that A\ Ag has Lebesgue
measure zero and for every ag € Ag, Dzf(x,ag) has rank n = m
for all x such that f(x,ag) = 0.

Fix ag € Apg and zg such that f(xg,ag) = 0. By the Implicit
Function Theorem, there exist open sets A* containing ag and
X* containing zg, and a C! function z : A* — X* such that

e x(apg) = xg
30



e f(x(a),a) =0 for every a € A*

o if (x,a) € X* x A* then

f(x,a) =0 <— z = x(a)

that is, xg is locally unique, and z(a) is locally unique for
each a € A*

e Dx(ag) = —[Daf(x0,a0)] L Daf(zg,a0)



Transversality

Example: Back to the opening example: f: (0,27) x R — R
given by f(x,a) =sinz + a.

For any (x,a) such that f(x,a) =0, Df(x,a) = (cosx,1) which
has rank 1 = min{2,1}. Thus 0 is a regular value of f.

Set Ag = R\{—1,1}. Since {—1,1} is a finite set, it has Lebesgue
measure zero in R.

Again we have already calculated by hand that for any a € Ag, O
is a regular value of fo = f(-,a).
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