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Lecture 13

Outline

1. Fixed Points for Functions

2. Brouwer’s Fixed Point Theorem

3. Fixed Points for Correspondences

4. Kakutani’s Fixed Point Theorem

5. Separating Hyperplane Theorems
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Fixed Points for Functions

Definition 1. Let X be a nonempty set and f : X → X. A point

x∗ ∈ X is a fixed point of f if f(x∗) = x∗.

x∗ is a fixed point of f if it is “fixed” by the map f .
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Fixed Points for Functions

Examples:

1. Let X = R and f : R → R be given by f(x) = 2x. Then

x = 0 is a fixed point of f (and is the unique fixed point of

f).

2. Let X = R and f : R → R be given by f(x) = x. Then every

point in R is a fixed point of f (in particular, fixed points

need not be unique).

3. Let X = R and f : R → R be given by f(x) = x + 1. Then f

has no fixed points.
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4. Let X = [0,2] and f : X → X be given by f(x) = 1
2(x + 1).

Then

f(x) =
1

2
(x + 1) = x

⇐⇒ x + 1 = 2x

⇐⇒ x = 1

So x = 1 is the unique fixed point of f . Notice that f is a

contraction (why?), so we already knew that f must have

a unique fixed point on R from the Contraction Mapping

Theorem.

5. Let X = [0, 1
4]∪ [34,1] and f : X → X be given by f(x) = 1−x.

Then f has no fixed points.



6. Let X = [−2,2] and f : X → X be given by f(x) = 1
2x2.

Then f has two fixed points, x = 0 and x = 2. If instead

X′ = (0,2), then f : X′ → X′ but f has no fixed points on

X′.

7. Let X = {1,2,3} and f : X → X be given by f(1) = 2, f(2) =

3, f(3) = 1 (so f is a permutation of X). Then f has no

fixed points.

8. Let X = [0,2] and f : X → X be given by

f(x) =

{

x + 1 if x ≤ 1
x − 1 if x > 1

Then f has no fixed points.



A Simple Fixed Point Theorem

Theorem 1. Let X = [a, b] for a, b ∈ R with a < b and let f : X →

X be continuous. Then f has a fixed point.

Proof. Let g : [a, b] → R be given by

g(x) = f(x) − x

If either f(a) = a or f(b) = b, we’re done. So assume f(a) > a

and f(b) < b. Then

g(a) = f(a) − a > 0

g(b) = f(b) − b < 0

g is continuous, so by the Intermediate Value Theorem, ∃x∗ ∈

(a, b) such that g(x∗) = 0, that is, such that f(x∗) = x∗.
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Brouwer’s Fixed Point Theorem

Theorem 2 (Thm. 3.2. Brouwer’s Fixed Point Theorem). Let

X ⊆ Rn be nonempty, compact, and convex, and let f : X → X

be continuous. Then f has a fixed point.
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Sketch of Proof of Brouwer

Consider the case when the set X is the unit ball in Rn, i.e.

X = B1[0] = B = {x ∈ Rn : ‖x‖ ≤ 1}. Let f : B → B be a

continuous function. Recall that ∂B denotes the boundary of B,

so ∂B = {x ∈ Rn : ‖x‖ = 1}.

Fact: Let B be the unit ball in Rn. Then there is no continuous

function h : B → ∂B such that h(x′) = x′ for every x′ ∈ ∂B.

See J. Franklin, Methods of Mathematical Economics, for an

elementary (but long) proof.
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Now to establish Brouwer’s theorem, suppose, by way of contra-

diction, that f has no fixed points in B. Thus for every x ∈ B,

x 6= f(x).

Since x 6= f(x) for every x, we can carry out the following con-

struction. For each x ∈ B, construct the line segment originating

at f(x) and going through x. Let g(x) denote the intersection

of this line segment with ∂B.

This construction is well-defined, and gives a continuous function

g : B → ∂B. Furthermore, if x′ ∈ ∂B, then x′ = g(x′). That is,

g|∂B = id∂B. Since there are no such functions by the fact

above, we have a contradiction. Therefore there exists x∗ ∈ B

such that f(x∗) = x∗, that is, f has a fixed point in B.
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Fixed Points for Correspondences

Definition 2. Let X be nonempty and Ψ : X → 2X be a corre-

spondence. A point x∗ ∈ X is a fixed point of Ψ if x∗ ∈ Ψ(x∗).

Note here that we do not require Ψ(x∗) = {x∗}, that is Ψ need

not be single-valued at x∗. So x∗ can be a fixed point of Ψ but

there may be other elements of Ψ(x∗) different from x∗.
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Examples:

1. Let X = [0,4] and Ψ : X → 2X be given by

Ψ(x) =











[x + 1, x + 2] if x < 2
[0,4] if x = 2

[x − 2, x − 1] if x > 2

Then x = 2 is the unique fixed point of Ψ.

2. Let X = [0,4] and Ψ : X → 2X be given by

Ψ(x) =











[x + 1, x + 2] if x < 2
[0,1] ∪ [3,4] if x = 2
[x − 2, x − 1] if x > 2

Then Ψ has no fixed points.
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Kakutani’s Fixed Point Theorem

Theorem 3. (Thm. 3.4’. Kakutani’s Fixed Point Theorem)

Let X ⊆ Rn be a non-empty, compact, convex set and Ψ :

X → 2X be an upper hemi-continuous correspondence with non-

empty, convex, compact values. Then Ψ has a fixed point in

X.

Proof. (sketch) Here, the idea is to use Brouwer’s theorem after

appropriately approximating the correspondence with a function.

The catch is that there won’t necessarily exist a continuous se-

lection from Ψ, that is, a continuous function f : X → X such

that f(x) ∈ Ψ(x) for every x ∈ X. If such a function existed, then

by applying Brouwer to f we would have a fixed point of Ψ (be-

cause if ∃x∗ ∈ X such that x∗ = f(x∗), then x∗ = f(x∗) ∈ Ψ(x∗)).
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Instead, we look for a weaker type of approximation. Let X ⊂ Rn

be a non-empty, compact, convex set, and let Ψ : X → 2X be

an uhc correspondence with non-empty, compact, convex values.

For every ε > 0, define the ε ball about graph Ψ to be

Bε( graph Ψ) =
{

z ∈ X × X : d(z, graph Ψ) = inf
(x,y)∈ graph Ψ

d(z, (x, y)) < ε

}

Here d denotes the ordinary Euclidean distance. Since Ψ is uhc

and convex-valued, for every ε > 0 there exists a continuous

function fε : X → X such that graph fε ⊆ Bε( graph Ψ).
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Now by letting ε → 0, this means that we can find a sequence of

continuous functions {fn} such that graph fn ⊆ B1
n
( graph Ψ)

for each n. By Brouwer’s Fixed Point Theorem, each function

fn has a fixed point x̂n ∈ X, and

(x̂n, x̂n) = (x̂n, fn(x̂n)) ∈ graph fn ⊆ B1
n
( graph Ψ) for each n

So for each n there exists (xn, yn) ∈ graph Ψ such that

d(x̂n, xn) <
1

n
and d(x̂n, yn) <

1

n

Since X is compact, {x̂n} has a convergent subsequence {x̂nk},

with x̂nk → x̂ ∈ X. Then xnk → x̂ and ynk → x̂. Since Ψ is

uhc and closed-valued, it has closed graph, so (x̂, x̂) ∈ graph Ψ.

Thus x̂ ∈ Ψ(x̂), that is, x̂ is a fixed point of Ψ.



Separating Hyperplane Theorems

Theorem 4 (1.26, Separating Hyperplane Theorem). Let A, B ⊆

Rn be nonempty, disjoint convex sets. Then there exists a

nonzero vector p ∈ Rn such that

p · a ≤ p · b ∀a ∈ A, b ∈ B
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Separating a Point from a Set
Theorem 5. Let Y ⊆ Rn be a nonempty convex set and x 6∈ Y .

Then there exists a nonzero vector p ∈ Rn such that

p · x ≤ p · y ∀y ∈ Y

Proof. We sketch the proof in the special case that Y is compact.

We will see that in this case we actually get a stronger conclusion:

∃p ∈ R
n, p 6= 0 s.t. p · x < p · y ∀y ∈ Y

Choose y0 ∈ Y such that |y0 − x| = inf{|y − x| : y ∈ Y }; such

a point exists because Y is compact, so the distance function

g(y) = |y − x| assumes its minimum on Y . Since x 6∈ Y , x 6= y0,

so y0 − x 6= 0. Let p = y0 − x. The set

H = {z ∈ R
n : p · z = p · y0}
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is the hyperplane perpendicular to p through y0. See Figure 12.

Then

p · y0 = (y0 − x) · y0

= (y0 − x) · (y0 − x + x)

= (y0 − x) · (y0 − x) + (y0 − x) · x

= |y0 − x|2 + p · x

> p · x

We claim that

y ∈ Y ⇒ p · y ≥ p · y0

If not, suppose there exists y ∈ Y such that p · y < p · y0. Given

α ∈ (0,1), let

wα = αy + (1 − α)y0



Since Y is convex, wα ∈ Y . Then for α sufficiently close to zero,

|x − wα|
2 = |x − αy − (1 − α)y0|

2

= |x − y0 + α(y0 − y)|2

= | − p + α(y0 − y)|2

= |p|2 − 2αp · (y0 − y) + α2|y0 − y|2

= |p|2 + α
(

−2p · (y0 − y) + α|y0 − y|2
)

< |p|2 for α close to 0, as p · y0 > p · y

= |y0 − x|2

Thus for α sufficiently close to zero,

|wα − x| < |y0 − x|

which implies y0 is not the closest point in Y to x, contradiction.
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The general version of the Separating Hyperplane Theorem can

be derived from this special case by noting that if A ∩ B = ∅,

then 0 6∈ A − B = {a − b : a ∈ A, b ∈ B}.
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Strict Separation

For the special case of Y compact and X = {x}, we actually

could strictly separate Y and X:

∃p ∈ R
n, p 6= 0 s.t. p · x < p · y ∀y ∈ Y

When can we do this in general? Will require additional assump-

tions...
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Strict Separation

Theorem 6. (Strict Separating Hyperplane Theorem) Let

A, B ⊆ Rn be nonempty, disjoint, convex sets with A closed and

B compact. Then there exists a nonzero vector p ∈ Rn such that

p · a < p · b ∀a ∈ A, b ∈ B
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