Econ 204 2023

Lecture 13

Outline

- 1. Fixed Points for Functions
- 2. Brouwer's Fixed Point Theorem
- 3. Fixed Points for Correspondences
- 4. Kakutani's Fixed Point Theorem
- 5. Separating Hyperplane Theorems

Recall:

Fixed Points for Functions

Definition 1. Let X be a nonempty set and $f: X \rightarrow X$. A point $x^* \in X$ is a fixed point of f if $f(x^*) = x^*$.

 x^* is a fixed point of f if it is "fixed" by the map f.

 $\sim 10^7$

Fixed Points for Functions

Examples:

- 1. Let $X = \mathbf{R}$ and $f : \mathbf{R} \to \mathbf{R}$ be given by $f(x) = 2x$. Then $x = 0$ is a fixed point of f (and is the unique fixed point of f). $\mathcal{L}(\mathsf{x}) = \mathsf{a} \mathsf{x} = \mathsf{x}$ $\mathsf{a} = \mathsf{b}$
- 2. Let $X = \mathbf{R}$ and $f : \mathbf{R} \to \mathbf{R}$ be given by $f(x) = x$. Then every point in R is a fixed point of f (in particular, fixed points need not be unique). XZ COIL F=X-TR

3. Let $X = \mathbf{R}$ and $f : \mathbf{R} \to \mathbf{R}$ be given by $f(x) = x + 1$. Then f has no fixed points.

$$
f(x) = x+1 + x + 4x \in \mathbb{R}
$$

4. Let $X = [0,2]$ and $f: X \to X$ be given by $f(x) = \frac{1}{2}(x+1)$. Then

$$
f(x) = \frac{1}{2}(x+1) = x
$$

$$
\iff x+1 = 2x
$$

$$
\iff x = 1
$$

So $x = 1$ is the unique fixed point of f. Notice that f is a contraction (why?), so we already knew that f must have a unique fixed point on R from the Contraction Mapping Theorem.

5. Let $X=[0,\frac{1}{4}]$ $\frac{1}{4}$] \cup $\left[\frac{3}{4}\right]$ $\frac{3}{4}$, 1] and $f: X \to X$ be given by $f(x) = 1-x$. Then f has no fixed points.

$$
f(x) = 1-x = x
$$

\n $f(x) = 1-x = x$
\n $f(x) = x^2 + y^2 + z^2 = 0$

- 6. Let $X = [-2, 2]$ and $f: X \to X$ be given by $f(x) = \frac{1}{2}x^2$. Then f has two fixed points, $x = 0$ and $x = 2$. If instead $X' = (0, 2)$, then $f : X' \to X'$ but f has no fixed points on X^{\prime} .
- 7. Let $X = \{1, 2, 3\}$ and $f : X \to X$ be given by $f(1) = 2, f(2) =$ $3, f(3) = 1$ (so f is a permutation of X). Then f has no fixed points.
- 8. Let $X = [0,2]$ and $f: X \rightarrow X$ be given by $f(x) = \begin{cases} x+1 & \text{if } x \leq 1 \\ x-1 & \text{if } x > 1 \end{cases}$ $x-1$ if $x>1$

Then f has no fixed points.

A Simple Fixed Point Theorem

Theorem 1. Let $X = [a, b]$ for $a, b \in \mathbb{R}$ with $a < b$ and let $f : X \to Y$ X be continuous. Then f has a fixed point.

Proof. Let
$$
g : [a, b] \to \mathbb{R}
$$
 be given by
\n
$$
g(x) = f(x) - x
$$
\n
$$
g(x) = 0 \Leftrightarrow x \Leftrightarrow a \Leftrightarrow x \Leftrightarrow a \Leftrightarrow x \Leftrightarrow a \Lef
$$

g is continuous, so by the Intermediate Value Theorem, $\exists x^* \in$ (a, b) such that $g(x^*) = 0$, that is, such that $f(x^*) = x^*$.

 $S < C < L$

Brouwer's Fixed Point Theorem

Theorem 2 (Thm. 3.2. Brouwer's Fixed Point Theorem). Let $X \subseteq \mathbf{R}^n$ be nonempty, compact, and convex, and let $f : X \to X$ be continuous. Then f has a fixed point.

Sketch of Proof of Brouwer

Consider the case when the set X is the unit ball in \mathbb{R}^n , i.e. $X = B_1[0] = B = \{x \in \mathbb{R}^n : ||x|| \le 1\}.$ Let $f : B \to B$ be a continuous function. Recall that ∂B denotes the boundary of B, so $\partial B = \{x \in \mathbb{R}^n : ||x|| = 1\}.$

Fact: Let B be the unit ball in \mathbb{R}^n . Then there is no continuous function $h: B \to \partial B$ such that $h(x') = x'$ for every $x' \in \partial B$.

See J. Franklin, Methods of Mathematical Economics, for an

elementary (but long) proof.
Calso y. Kennai, Am. Mathe Marthly, April 1981, pp. 264-268.) 10

Now to establish Brouwer's theorem, suppose, by way of contradiction, that f has no fixed points in B. Thus for every $x \in B$, $x \neq f(x)$.

 $\pmb{\iota}$

Since $x \neq f(x)$ for every x, we can carry out the following construction. For each $x \in B$, construct the line segment originating at $f(x)$ and going through x. Let $g(x)$ denote the intersection of this line segment with ∂B .

This construction is well-defined, and gives a continuous function $g : B \to \partial B$. Furthermore, if $x' \in \partial B$, then $x' = g(x')$. That is, $g|_{\partial B}$ = id_{∂B}. Since there are no such functions by the fact above, we have a contradiction. Therefore there exists $x^* \in B$ such that $f(x^*) = x^*$, that is, f has a fixed point in B.

Fixed Points for Correspondences

Definition 2. Let X be nonempty and $\Psi : X \to 2^X$ be a correspondence. A point $x^* \in X$ is a fixed point of Ψ if $x^* \in \Psi(x^*)$.

Note here that we do *not* require $\Psi(x^*) = \{x^*\}$, that is Ψ need not be single-valued at x^* . So x^* can be a fixed point of Ψ but there may be other elements of $\Psi(x^*)$ different from x^* .

Examples:

1. Let $X = [0, 4]$ and $\Psi : X \rightarrow 2^X$ be given by \int $[x+1, x+2]$ if $x < 2$ \int $\Psi(x) =$ $[0, 4]$ if $x = 2$ $[x-2, x-1]$ if $x > 2$ $\overline{\mathcal{L}}$ Then $x = 2$ is the unique fixed point of Ψ .

a.e. Ψ (x-1,x+2)

Let $X = [0,4]$ and $\Psi : X \rightarrow 2^X$ be given by
 $\Rightarrow x \notin \Psi(x)$
 $\Rightarrow x \notin \Psi(x)$ $Q \in \mathcal{U}(\mathcal{S}) = \lceil O, \mathcal{H} \rceil$ 2. Let $X = [0, 4]$ and $\Psi : X \rightarrow 2^X$ be given by $\sqrt{ }$ $[x+1, x+2]$ if $x < 2$ \int $\Psi(x) =$ $[0, 1] \cup [3, 4]$ if $x = 2$ $[x - 2, x - 1]$ if $x > 2$ $\overline{\mathcal{L}}$

Then Ψ has no fixed points.

$$
2\notin \psi(x) = [3,1] \cup [3,4]
$$

$$
4
$$

\n $3^{57^{45}}^{2}$
\n $3^{57^{45}}$
\n17

Kakutani's Fixed Point Theorem

Theorem 3. (Thm. 3.4'. Kakutani's Fixed Point Theorem) Let $X \subseteq \mathbb{R}^n$ be a non-empty, compact, convex set and Ψ : $X \rightarrow 2^X$ be an upper hemi-continuous correspondence with nonempty, convex, compact values. Then Ψ has a fixed point in X .

Proof. (sketch) Here, the idea is to use Brouwer's theorem after appropriately approximating the correspondence with a function. The catch is that there won't necessarily exist a continuous selection from Ψ , that is, a continuous function $f: X \to X$ such that $f(x) \in \Psi(x)$ for every $x \in X$. If such a function existed, then by applying Brouwer to f we would have a fixed point of Ψ (because if $\exists x^* \in X$ such that $x^* = f(x^*)$, then $x^* = f(x^*) \in \Psi(x^*)$).

 $\psi(x)$ convert $\forall x \in X, \psi$ whe

Instead, we look for a weaker type of approximation. Let $X \subset \mathbb{R}^n$ be a non-empty, compact, convex set, and let $\Psi: X \to 2^X$ be an uhc correspondence with non-empty, compact, convex values. For every $\varepsilon > 0$, define the ε ball about graph Ψ to be

$$
B_{\varepsilon}(\text{ graph }\Psi) =
$$
\n
$$
\left\{ z \in X \times X : d(z, \text{ graph }\Psi) = \inf_{(x,y)\in \text{ graph }\Psi} d(z,(x,y)) < \varepsilon \right\}
$$

Here d denotes the ordinary Euclidean distance. Since Ψ is uhc and convex-valued, for every $\varepsilon > 0$ there exists a continuous function $f_{\varepsilon}: X \to X$ such that graph $f_{\varepsilon} \subseteq B_{\varepsilon}$ (graph Ψ).

Now by letting $\varepsilon \to 0$, this means that we can find a sequence of continuous functions $\{f_n\}'$ such that graph $f_n\subseteq B_{\underline{1}}($ graph $\Psi)$ \overline{n} for each n . By Brouwer's Fixed Point Theorem, each function f_n has a fixed point $\widehat{x}_n \in X$, and

 $(\widehat{x}_n, \widehat{x}_n) = (\widehat{x}_n, f_n(\widehat{x}_n)) \in$ graph $f_n \subseteq B_{\underline{1}}($ graph $\Psi)$ for each n \overline{n} So for each n there exists $(x_n, y_n) \in$ graph Ψ such that

$$
d(\widehat{x}_n,x_n)<\frac{1}{n}\text{ and }d(\widehat{x}_n,y_n)<\frac{1}{n}
$$

Since X is compact, $\{\widehat{x}_n\}$ has a convergent subsequence $\{\widehat{x}_{n_k}\},$ with $\hat{x}_{n_k} \to \hat{x} \in X$. Then $x_{n_k} \to \hat{x}$ and $y_{n_k} \to \hat{x}$. Since Ψ is uhc and closed-valued, it has closed graph, so $(\hat{x}, \hat{x}) \in \mathbb{R}$ graph Ψ . Thus $\hat{x} \in \Psi(\hat{x})$, that is, \hat{x} is a fixed point of Ψ .

Separating Hyperplane Theorems

Theorem 4 (1.26, Separating Hyperplane Theorem). Let $A, B \subseteq$ \mathbb{R}^n be nonempty, disjoint convex sets. Then there exists a nonzero vector $p \in \mathbf{R}^n$ such that

 $p \cdot a \leq p \cdot b \quad \forall a \in A, b \in B$

hyperplane: { ZER : v-Z = c} for some vER vtg

 $cos\Theta = \frac{x \cdot y}{\sqrt{\frac{y \cdot y \cdot y}{\sqrt{y \cdot y}}}}$

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}) = \mathcal{L}(\mathcal{L}) \mathcal{L}(\mathcal{L}) = \mathcal{L}(\mathcal{L})$ \mathcal{L}_{max} and \mathcal{L}_{max} . The \mathcal{L}_{max}

 $\mathbf{c} = \mathbf{0} \in \mathbb{R}^N$

 P^2 \overline{B} \overline{A} γP Convexity important : me hyperplane separates 21

 $\lambda_{\rm{B}}$

Separating a Point from a Set

Theorem 5. Let $Y \subseteq \mathbb{R}^n$ be a nonempty convex set and $x \notin Y$. Then there exists a nonzero vector $p \in \mathbb{R}^n$ such that

 $p \cdot x \leq p \cdot y \quad \forall y \in Y$

Proof. We sketch the proof in the special case that Y is compact. We will see that in this case we actually get a stronger conclusion:

$$
\exists p \in \mathbf{R}^n, \ p \neq 0 \text{ s.t. } p \cdot x < p \cdot y \quad \forall y \in Y
$$

Choose $y_0 \in Y$ such that $||y_0 - x|| = \inf{||y - x|| : y \in Y}$; such a point exists because Y is compact, so the distance function $g(y) = ||y - x||$ assumes its minimum on Y. Since $x \notin Y$, $x \neq y_0$, so $y_0 - x \neq 0$. Let $p = y_0 - x$. The set

$$
H = \{ z \in \mathbb{R}^n : p \cdot z = p \cdot y_0 \}
$$

is the hyperplane perpendicular to p through y_0 . See Figure 12. Then

$$
p \cdot y_0 = (y_0 - x) \cdot y_0
$$

= $(y_0 - x) \cdot (y_0 - x + x)$
= $(y_0 - x) \cdot (y_0 - x) + (y_0 - x) \cdot x$
= $||y_0 - x||^2 + p \cdot x$
> $p \cdot x$

We claim that

$$
\underbrace{\hspace{2.3cm} \fbox{\star} \quad y \in Y \Rightarrow p \cdot y \geq p \cdot y_0 \quad \Rightarrow \quad \, \uparrow \quad \, \searrow \quad \, \searrow \quad \, \bigwedge}
$$

If not, suppose there exists $y \in Y$ such that $p \cdot y \leq p \cdot y_0$. Given $\alpha \in (0,1)$, let

$$
w_{\alpha} = \alpha y + (1 - \alpha) y_0
$$

Since Y is convex, $w_{\alpha} \in Y$. Then for α sufficiently close to zero,

$$
||x - w_{\alpha}||^{2} = ||x - \alpha y - (1 - \alpha)y_{0}||^{2}
$$
\n
$$
= |x - y_{0} + \alpha(y_{0} - y)|^{2}
$$
\n
$$
= |-p + \alpha(y_{0} - y)|^{2}
$$
\n
$$
= |p|^{2} - 2\alpha p \cdot (y_{0} - y) + \alpha^{2}|y_{0} - y|^{2}
$$
\n
$$
= |p|^{2} + \alpha \left(-2p \cdot (y_{0} - y) + \alpha|y_{0} - y|^{2}\right)
$$
\n
$$
= |p|^{2} + \alpha \left(-2p \cdot (y_{0} - y) + \alpha|y_{0} - y|^{2}\right)
$$
\n
$$
< |p|^{2}
$$
 for α $\sqrt{2}$ $\$

Thus for α sufficiently close to zero,

$$
||w_{\alpha}-x||<||y_0-x||
$$

which implies y_0 is not the closest point in Y to x, contradiction.

 ϵ

The general version of the Separating Hyperplane Theorem can be derived from this special case by noting that if $A \cap B = \emptyset$, then $0 \not\in A - B = \{a - b : a \in A, b \in B\}.$

A-B not closed if
A, B closed
vot recessaring bodd

Strict Separation

For the special case of Y compact and $X = \{x\}$, we actually could strictly separate Y and X :

$$
\times \notin \mathcal{A} \implies \exists p \in \mathbf{R}^n, p \neq 0 \text{ s.t. } p \cdot x < p \cdot y \quad \forall y \in Y
$$

When can we do this in general? Will require additional assumptions...

A,B
$$
unsympty
$$
, $disjoint$, $conver \Rightarrow$

\nLet $\exists p \in \mathbb{R}^n$, $p \neq 0$ st . $p \neq 0 \neq p$ \Rightarrow $\forall b \in B$

\nBut $p \cdot \overline{a} = p \cdot \overline{b}$ for some $\overline{a} \in A$ and $\overline{b} \in B$

\n($\forall x \in \mathbb{R}^n$) such p)

Strict Separation

Theorem 6. (Strict Separating Hyperplane Theorem) Let $A, B \subseteq \mathbb{R}^n$ be nonempty, disjoint, convex sets with A closed and B compact. Then there exists a nonzero vector $p \in \mathbb{R}^n$ such that

 $p \cdot a < p \cdot b \quad \forall a \in A, b \in B$