## Econ 2042023

Lecture 13

Outline

1. Fixed Points for Functions
2. Brouwer's Fixed Point Theorem
3. Fixed Points for Correspondences
4. Kakutani's Fixed Point Theorem
5. Separating Hyperplane Theorems

## Fixed Points for Functions

Definition 1. Let $X$ be a nonempty set and $f: X \rightarrow X$. A point $x^{*} \in X$ is a fixed point of $f$ if $f\left(x^{*}\right)=x^{*}$.
$x^{*}$ is a fixed point of $f$ if it is "fixed" by the map $f$.


## Fixed Points for Functions

## Examples:

1. Let $X=\mathbf{R}$ and $f: \mathbf{R} \rightarrow \mathbf{R}$ be given by $f(x)=2 x$. Then $x=0$ is a fixed point of $f$ (and is the unique fixed point of $f)$.
2. Let $X=\mathbf{R}$ and $f: \mathbf{R} \rightarrow \mathbf{R}$ be given by $f(x)=x$. Then every point in $\mathbf{R}$ is a fixed point of $f$ (in particular, fixed points need not be unique).
3. Let $X=\mathbf{R}$ and $f: \mathbf{R} \rightarrow \mathbf{R}$ be given by $f(x)=x+1$. Then $f$ has no fixed points.
4. Let $X=[0,2]$ and $f: X \rightarrow X$ be given by $f(x)=\frac{1}{2}(x+1)$. Then

$$
\begin{aligned}
f(x) & =\frac{1}{2}(x+1)=x \\
& \Longleftrightarrow x+1=2 x \\
& \Longleftrightarrow x=1
\end{aligned}
$$

So $x=1$ is the unique fixed point of $f$. Notice that $f$ is a contraction (why?), so we already knew that $f$ must have a unique fixed point on $\mathbf{R}$ from the Contraction Mapping Theorem.
5. Let $X=\left[0, \frac{1}{4}\right] \cup\left[\frac{3}{4}, 1\right]$ and $f: X \rightarrow X$ be given by $f(x)=1-x$. Then $f$ has no fixed points.
6. Let $X=[-2,2]$ and $f: X \rightarrow X$ be given by $f(x)=\frac{1}{2} x^{2}$. Then $f$ has two fixed points, $x=0$ and $x=2$. If instead $X^{\prime}=(0,2)$, then $f: X^{\prime} \rightarrow X^{\prime}$ but $f$ has no fixed points on $X^{\prime}$.
7. Let $X=\{1,2,3\}$ and $f: X \rightarrow X$ be given by $f(1)=2, f(2)=$ $3, f(3)=1$ (so $f$ is a permutation of $X$ ). Then $f$ has no fixed points.
8. Let $X=[0,2]$ and $f: X \rightarrow X$ be given by

$$
f(x)= \begin{cases}x+1 & \text { if } x \leq 1 \\ x-1 & \text { if } x>1\end{cases}
$$

Then $f$ has no fixed points.

## A Simple Fixed Point Theorem

Theorem 1. Let $X=[a, b]$ for $a, b \in \mathbf{R}$ with $a<b$ and let $f: X \rightarrow$ $X$ be continuous. Then $f$ has a fixed point.

Proof. Let $g:[a, b] \rightarrow \mathbf{R}$ be given by

$$
g(x)=f(x)-x
$$

If either $f(a)=a$ or $f(b)=b$, we're done. So assume $f(a)>a$ and $f(b)<b$. Then

$$
\begin{aligned}
g(a) & =f(a)-a>0 \\
g(b) & =f(b)-b<0
\end{aligned}
$$

$g$ is continuous, so by the Intermediate Value Theorem, $\exists x^{*} \in$ ( $a, b$ ) such that $g\left(x^{*}\right)=0$, that is, such that $f\left(x^{*}\right)=x^{*}$.




## Brouwer's Fixed Point Theorem

Theorem 2 (Thm. 3.2. Brouwer's Fixed Point Theorem). Let $X \subseteq \mathbf{R}^{n}$ be nonempty, compact, and convex, and let $f: X \rightarrow X$ be continuous. Then $f$ has a fixed point.

## Sketch of Proof of Brouwer

Consider the case when the set $X$ is the unit ball in $\mathbf{R}^{n}$, i.e. $X=B_{1}[0]=B=\left\{x \in \mathbf{R}^{n}:\|x\| \leq 1\right\}$. Let $f: B \rightarrow B$ be a continuous function. Recall that $\partial B$ denotes the boundary of $B$, so $\partial B=\left\{x \in \mathbf{R}^{n}:\|x\|=1\right\}$.

Fact: Let $B$ be the unit ball in $\mathbf{R}^{n}$. Then there is no continuous function $h: B \rightarrow \partial B$ such that $h\left(x^{\prime}\right)=x^{\prime}$ for every $x^{\prime} \in \partial B$.

See J. Franklin, Methods of Mathematical Economics, for an elementary (but long) proof.

Now to establish Brouwer's theorem, suppose, by way of contradiction, that $f$ has no fixed points in $B$. Thus for every $x \in B$, $x \neq f(x)$.

Since $x \neq f(x)$ for every $x$, we can carry out the following construction. For each $x \in B$, construct the line segment originating at $f(x)$ and going through $x$. Let $g(x)$ denote the intersection of this line segment with $\partial B$.

This construction is well-defined, and gives a continuous function $g: B \rightarrow \partial B$. Furthermore, if $x^{\prime} \in \partial B$, then $x^{\prime}=g\left(x^{\prime}\right)$. That is, $\left.g\right|_{\partial B}=\mathrm{id}_{\partial B}$. Since there are no such functions by the fact above, we have a contradiction. Therefore there exists $x^{*} \in B$ such that $f\left(x^{*}\right)=x^{*}$, that is, $f$ has a fixed point in $B$.



## Fixed Points for Correspondences

Definition 2. Let $X$ be nonempty and $\Psi: X \rightarrow 2^{X}$ be a correspondence. A point $x^{*} \in X$ is a fixed point of $\psi$ if $x^{*} \in \Psi\left(x^{*}\right)$.

Note here that we do not require $\Psi\left(x^{*}\right)=\left\{x^{*}\right\}$, that is $\Psi$ need not be single-valued at $x^{*}$. So $x^{*}$ can be a fixed point of $\Psi$ but there may be other elements of $\Psi\left(x^{*}\right)$ different from $x^{*}$.

## Examples:

1. Let $X=[0,4]$ and $\Psi: X \rightarrow 2^{X}$ be given by

$$
\Psi(x)=\left\{\begin{array}{cc}
{[x+1, x+2]} & \text { if } x<2 \\
{[0,4]} & \text { if } x=2 \\
{[x-2, x-1]} & \text { if } x>2
\end{array}\right.
$$

Then $x=2$ is the unique fixed point of $\Psi$.
2. Let $X=[0,4]$ and $\Psi: X \rightarrow 2^{X}$ be given by

$$
\Psi(x)=\left\{\begin{array}{cc}
{[x+1, x+2]} & \text { if } x<2 \\
{[0,1] \cup[3,4]} & \text { if } x=2 \\
{[x-2, x-1]} & \text { if } x>2
\end{array}\right.
$$

Then $\Psi$ has no fixed points.



## Kakutani's Fixed Point Theorem

Theorem 3. (Thm. 3.4'. Kakutani's Fixed Point Theorem) Let $X \subseteq \mathbf{R}^{n}$ be a non-empty, compact, convex set and $\psi$ : $X \rightarrow 2^{X}$ be an upper hemi-continuous correspondence with nonempty, convex, compact values. Then $\Psi$ has a fixed point in $X$.

Proof. (sketch) Here, the idea is to use Brouwer's theorem after appropriately approximating the correspondence with a function. The catch is that there won't necessarily exist a continuous selection from $\Psi$, that is, a continuous function $f: X \rightarrow X$ such that $f(x) \in \Psi(x)$ for every $x \in X$. If such a function existed, then by applying Brouwer to $f$ we would have a fixed point of $\Psi$ (because if $\exists x^{*} \in X$ such that $x^{*}=f\left(x^{*}\right)$, then $\left.x^{*}=f\left(x^{*}\right) \in \Psi\left(x^{*}\right)\right)$.


Instead, we look for a weaker type of approximation. Let $X \subset \mathbf{R}^{n}$ be a non-empty, compact, convex set, and let $\psi: X \rightarrow 2^{X}$ be an uhc correspondence with non-empty, compact, convex values. For every $\varepsilon>0$, define the $\varepsilon$ ball about graph $\psi$ to be

$$
\begin{aligned}
& B_{\varepsilon}(\operatorname{graph} \Psi)= \\
& \left\{z \in X \times X: d(z, \text { graph } \psi)=\inf _{(x, y) \in \operatorname{graph} \psi} d(z,(x, y))<\varepsilon\right\}
\end{aligned}
$$

Here $d$ denotes the ordinary Euclidean distance. Since $\Psi$ is uhc and convex-valued, for every $\varepsilon>0$ there exists a continuous function $f_{\varepsilon}: X \rightarrow X$ such that graph $f_{\varepsilon} \subseteq B_{\varepsilon}($ graph $\psi)$.


Now by letting $\varepsilon \rightarrow 0$, this means that we can find a sequence of continuous functions $\left\{f_{n}\right\}$ such that graph $f_{n} \subseteq B_{\frac{1}{n}}$ (graph $\Psi$ ) for each $n$. By Brouwer's Fixed Point Theorem, each function $f_{n}$ has a fixed point $\widehat{x}_{n} \in X$, and

$$
\left(\widehat{x}_{n}, \widehat{x}_{n}\right)=\left(\widehat{x}_{n}, f_{n}\left(\widehat{x}_{n}\right)\right) \in \operatorname{graph} f_{n} \subseteq B_{\frac{1}{n}}(\operatorname{graph} \Psi) \text { for each } n
$$

So for each $n$ there exists $\left(x_{n}, y_{n}\right) \in$ graph $\psi$ such that

$$
d\left(\widehat{x}_{n}, x_{n}\right)<\frac{1}{n} \text { and } d\left(\widehat{x}_{n}, y_{n}\right)<\frac{1}{n}
$$

Since $X$ is compact, $\left\{\hat{x}_{n}\right\}$ has a convergent subsequence $\left\{\hat{x}_{n_{k}}\right\}$, with $\widehat{x}_{n_{k}} \rightarrow \hat{x} \in X$. Then $x_{n_{k}} \rightarrow \widehat{x}$ and $y_{n_{k}} \rightarrow \hat{x}$. Since $\psi$ is uhc and closed-valued, it has closed graph, so $(\hat{x}, \hat{x}) \in$ graph $\Psi$. Thus $\hat{x} \in \Psi(\hat{x})$, that is, $\hat{x}$ is a fixed point of $\Psi$.

## Separating Hyperplane Theorems

Theorem 4 (1.26, Separating Hyperplane Theorem). Let $A, B \subseteq$ $\mathbf{R}^{n}$ be nonempty, disjoint convex sets. Then there exists a nonzero vector $p \in \mathbf{R}^{n}$ such that

$$
p \cdot a \leq p \cdot b \quad \forall a \in A, b \in B
$$




## Separating a Point from a Set

Theorem 5. Let $Y \subseteq \mathbf{R}^{n}$ be a nonempty convex set and $x \notin Y$. Then there exists a nonzero vector $p \in \mathbf{R}^{n}$ such that

$$
p \cdot x \leq p \cdot y \quad \forall y \in Y
$$

Proof. We sketch the proof in the special case that $Y$ is compact. We will see that in this case we actually get a stronger conclusion:

$$
\exists p \in \mathbf{R}^{n}, p \neq 0 \text { s.t. } p \cdot x<p \cdot y \quad \forall y \in Y
$$

Choose $y_{0} \in Y$ such that $\left|y_{0}-x\right|=\inf \{|y-x|: y \in Y\}$; such a point exists because $Y$ is compact, so the distance function $g(y)=|y-x|$ assumes its minimum on $Y$. Since $x \notin Y, x \neq y_{0}$, so $y_{0}-x \neq 0$. Let $p=y_{0}-x$. The set

$$
H=\left\{z \in \mathbf{R}^{n}: p \cdot z=p \cdot y_{0}\right\}
$$

is the hyperplane perpendicular to $p$ through $y_{0}$. See Figure 12. Then

$$
\begin{aligned}
p \cdot y_{0} & =\left(y_{0}-x\right) \cdot y_{0} \\
& =\left(y_{0}-x\right) \cdot\left(y_{0}-x+x\right) \\
& =\left(y_{0}-x\right) \cdot\left(y_{0}-x\right)+\left(y_{0}-x\right) \cdot x \\
& =\left|y_{0}-x\right|^{2}+p \cdot x \\
& >p \cdot x
\end{aligned}
$$

We claim that

$$
y \in Y \Rightarrow p \cdot y \geq p \cdot y_{0}
$$

If not, suppose there exists $y \in Y$ such that $p \cdot y<p \cdot y_{0}$. Given $\alpha \in(0,1)$, let

$$
w_{\alpha}=\alpha y+(1-\alpha) y_{0}
$$

Since $Y$ is convex, $w_{\alpha} \in Y$. Then for $\alpha$ sufficiently close to zero,

$$
\begin{aligned}
\left|x-w_{\alpha}\right|^{2} & =\left|x-\alpha y-(1-\alpha) y_{0}\right|^{2} \\
& =\left|x-y_{0}+\alpha\left(y_{0}-y\right)\right|^{2} \\
& =\left|-p+\alpha\left(y_{0}-y\right)\right|^{2} \\
& =|p|^{2}-2 \alpha p \cdot\left(y_{0}-y\right)+\alpha^{2}\left|y_{0}-y\right|^{2} \\
& =|p|^{2}+\alpha\left(-2 p \cdot\left(y_{0}-y\right)+\alpha\left|y_{0}-y\right|^{2}\right) \\
& <|p|^{2} \text { for } \alpha \text { close to } 0, \text { as } p \cdot y_{0}>p \cdot y \\
& =\left|y_{0}-x\right|^{2}
\end{aligned}
$$

Thus for $\alpha$ sufficiently close to zero,

$$
\left|w_{\alpha}-x\right|<\left|y_{0}-x\right|
$$

which implies $y_{0}$ is not the closest point in $Y$ to $x$, contradiction.


The general version of the Separating Hyperplane Theorem can be derived from this special case by noting that if $A \cap B=\emptyset$, then $0 \notin A-B=\{a-b: a \in A, b \in B\}$.

## Strict Separation

For the special case of $Y$ compact and $X=\{x\}$, we actually could strictly separate $Y$ and $X$ :

$$
\exists p \in \mathbf{R}^{n}, p \neq 0 \text { s.t. } p \cdot x<p \cdot y \quad \forall y \in Y
$$

When can we do this in general? Will require additional assumptions...


## Strict Separation

Theorem 6. (Strict Separating Hyperplane Theorem) Let $A, B \subseteq \mathbf{R}^{n}$ be nonempty, disjoint, convex sets with $A$ closed and $B$ compact. Then there exists a nonzero vector $p \in \mathbf{R}^{n}$ such that

$$
p \cdot a<p \cdot b \quad \forall a \in A, b \in B
$$

