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1. Second Order Linear Differential Equations

2. Inhomogeneous Linear Differential Equations

3. Nonlinear Differential Equations - Linearization
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Higher Order Differential Equations

A differential equation of order n is an equation of the form

y(n)(t) = F (y(t), y′(t), . . . , y(n−1)(t), t)

We can always rewrite an nth order equation as a system of n

first-order equations by redefining variables.

2



Second Order Linear Differential Equations

Consider the second order differential equation y′′ = cy+by′ with

b, c ∈ R.

Rewrite this as a first order linear differential equation in two

variables:

Define

ȳ(t) =

(

y(t)
y′(t)

)
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Then

ȳ′(t) =

(

y′(t)
y′′(t)

)

=

(

0 1
c b

)(

y(t)
y′(t)

)

=

(

0 1
c b

)

ȳ

The eigenvalues are the roots of the equation λ2 − bλ − c = 0,

which are b±
√

b2+4c
2 .

The qualitative behavior of the solutions can be explicitly de-

scribed from the coefficients b and c, by determining whether

the eigenvalues are real or complex, and whether the real parts

are negative, zero, or positive.



Example Consider the second order linear differential equation

y′′ = 2y + y′

As above, let

ȳ =

(

y
y′

)

so the equation becomes

ȳ′ =
(

0 1
2 1

)

ȳ

The eigenvalues are the roots of the characteristic polynomial

λ2 − λ − 2 = 0

Eigenvalues and corresponding eigenvectors are given by

λ1 = 2 v1 = (1,2)
λ2 = −1 v2 = (1,−1)
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From this information alone, we know the qualitative properties

of the solutions are as given in the phase plane diagram
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• Solutions are roughly hyperbolic in shape with asymptotes

along the eigenvectors. Along the eigenvector v1, the solu-

tions flow off to infinity; along the eigenvector v2, the solu-

tions converge to zero.

• Solutions flow in directions consistent with flows along asymp-

totes

• On the y-axis, we have y′ = 0, which means that everywhere

on the y-axis (except at the stationary point 0), the solution

must have a vertical tangent.

• On the y′-axis, we have y = 0, so we have

y′′ = 2y + y′ = y′
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Thus, above the y-axis, y′′ = y′ > 0, so y′ is increasing along

the direction of the solution; below the y-axis, y′′ = y′ < 0,

so y′ is decreasing along the direction of the solution.

• Along the line y′ = −2y, y′′ = 2y − 2y = 0, so y′ achieves a

minimum or maximum where it crosses that line.



The general solution is given by
(

y(t)
y′(t)

)

= MtxU,V (id)

(

e2(t−t0) 0

0 e−(t−t0)

)

MtxV,U(id)

(

y(t0)
y′(t0)

)

=

(

1 1
2 −1

)(

e2(t−t0) 0

0 e−(t−t0)

)(

1/3 1/3
2/3 −1/3

)(

y(t0)
y′(t0)

)

=











e2(t−t0)+2e−(t−t0)

3
e2(t−t0)−e−(t−t0)

3

2e2(t−t0)−2e−(t−t0)

3
2e2(t−t0)+e−(t−t0)

3

















y(t0)

y′(t0)







=









y(t0)+y′(t0)
3 e2(t−t0) + 2y(t0)−y′(t0)

3 e−(t−t0)

2y(t0)+2y′(t0)
3 e2(t−t0) + −2y(t0)+y′(t0)

3 e−(t−t0)









The general solution has two real degrees of freedom; a specific
solution is determined by specifying initial conditions y(t0) and
y′(t0).
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Because

ȳ =

(

y
y′

)

it is easier to find the general solution by setting

y(t) = C1e2(t−t0) + C2e−(t−t0)

Then

y(t0) = C1 + C2

y′(t) = 2C1e2(t−t0) − C2e−(t−t0)

y′(t0) = 2C1 − C2

C1 =
y(t0) + y′(t0)

3

C2 =
2y(t0) − y′(t0)

3

y(t) =
y(t0) + y′(t0)

3
e2(t−t0) +

2y(t0) − y′(t0)
3

e−(t−t0)



Inhomogeneous Linear Differential
Equations with Nonconstant Coefficients

Consider the inhomogeneous linear differential equation

y′ = M(t)y + H(t) (1)

where M is continuous function from t to the set of n×n matrices;

and H is continuous function from t to Rn.

There is a close relationship between solutions of the inhomoge-

neous linear differential equation (1) and the associated homo-

geneous linear differential equation

y′ = M(t)y (2)

8



Inhomogeneous Linear Differential
Equations with Nonconstant Coefficients

Theorem 1. The general solution of the inhomogeneous linear

differential equation (1) is

yh + yp

where yh is the general solution of the homogeneous linear dif-

ferential equation (2) and yp is any particular solution of the

inhomogeneous linear differential equation (1).

Proof. Fix any particular solution yp of inhomogeneous equation

(1). Suppose yh is any solution of the corresponding homoge-
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neous equation (2). Let yi(t) = yh(t) + yp(t).

y′i(t) = y′h(t) + y′p(t)
= M(t)yh(t) + M(t)yp(t) + H(t)

= M(t)(yh(t) + yp(t)) + H(t)

= M(t)yi(t) + H(t)

so yi is solution of inhomogeneous equation (1).

Conversely, suppose yi is any solution of inhomogenous equation

(1). Let yh(t) = yi(t)− yp(t).

y′h(t) = y′i(t)− y′p(t)
= M(t)yi(t) + H(t) − M(t)yp(t)− H(t)

= M(t)(yi(t) − yp(t))

= M(t)yh(t)



so yh is solution of homogeneous equation (2) and yi = yh + yp.



Remark: To find general solution of inhomogeneous equation:

1. Find general solution of homogeneous equation;

2. Find a particular solution of inhomogeneous equation;

3. Add these to get general solution of inhomogeneous equation
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Theorem 2.Consider the inhomogeneous linear differential equa-

tion (1), and suppose that M(t) is a constant matrix M , indepen-

dent of t. A particular solution of the inhomogeneous linear dif-

ferential equation (1), satisfying the initial condition yp(t0) = y0,

is given by

yp(t) = e(t−t0)My0 +

∫ t

t0
e(t−s)MH(s) ds (3)
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Matrix Exponentials

Here for an n × n matrix M , we define

eM =
∞
∑

k=0

Mk

k!
= I + M +

M2

2
+ · · ·

and

etM =
∞
∑

k=0

tkMk

k!

• if D is a diagonal matrix with diagonal d1, . . . , dn,

eD =













ed1 0 · · · 0

0 ed2 · · · 0
... ... . . . ...

0 0 · · · edn












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• eA+B = eAeB if AB = BA

• eP−1AP = P−1eAP

• g(t) = etM is differentiable and g′(t) = MetM



Proof. We verify that yp solves (1):

yp(t) = e(t−t0)My0 +
∫ t

t0
e(t−s)MH(s) ds

= e(t−t0)My0 +
∫ t

t0
e(t−t0)Me−(s−t0)MH(s) ds

= e(t−t0)M

(

y0 +

∫ t

t0
e−(s−t0)MH(s) ds

)

y′p(t) = Me(t−t0)M

(

y0 +
∫ t

t0
e−(s−t0)MH(s) ds

)

+e(t−t0)M
(

e−(t−t0)MH(t)
)

= Myp(t) + H(t)

yp(t0) = e(t0−t0)My0 +
∫ t0

t0
e(s−t0)MH(s) ds

= y0
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Example Consider the inhomogeneous linear differential equa-

tion
(

y1
y2

)′
=

(

1 0
0 −1

)(

y1
y2

)

+

(

sin t
cos t

)

By Theorem 2, a particular solution is given by

yp(t) = e(t−t0)My0 +
∫ t

t0
e(t−s)MH(s) ds

=

(

et 0

0 e−t

)(

1
1

)

+

∫ t

0

(

e(t−s) 0

0 e−(t−s)

)(

sin s
cos s

)

ds

=

(

et

e−t

)

+
∫ t

0

(

et−s sin s
es−t cos s

)

ds

=





et
(

1 +
∫ t
0 e−s sin s ds

)

e−t
(

1 +
∫ t
0 es cos s ds

)




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Thus, the general solution of the original inhomogeneous equa-

tion is given by

(

y1
y2

)

=

(

C1et

C2e−t

)

+





et
(

1 +
∫ t
0 e−s sin s ds

)

e−t
(

1 +
∫ t
0 es cos s ds

)





=

(

D1et − sin t+cos t
2

D2e−t + sin t+cos t
2

)

(after much simplification)

where D1 and D2 are arbitrary real constants.
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Nonlinear Differential Equations -
Linearization

• Nonlinear differential equations are very difficult to solve in

closed form.

• Specific techniques solve special classes of equations.

• Numerical methods compute numerical solutions of any or-

dinary differential equation.

• Linearization can provide qualitative information about the

solutions of nonlinear autonomous equations.
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Nonlinear Differential Equations - Stability

Linearization provides information about qualitative properties of

solutions of nonlinear differential equations near the stationary

points. Suppose ys is a stationary point:

• If eigenvalues of linearized equation at ys all have strictly

negative real parts, there exists ε > 0 such that

|y(0) − ys| < ε ⇒ limt→∞ y(t) = ys. All solutions of the orig-

inal nonlinear equation which start sufficiently close to the

stationary point ys converge to ys.

• If eigenvalues of the linearized equation at ys all have strictly

positive real parts, no solution of the original nonlinear equa-

tion converges to ys.
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• If eigenvalues of the linearized equation at ys all have real

part zero, then the solutions of linearized equation are closed

curves around ys. This tells us little about the solutions of

nonlinear equation. They may

– follow closed curves around ys

– converge to ys

– converge to a limit closed curve around ys

– diverge from ys

– converge to ys along certain directions and diverge from

ys along other directions.



Example: Pendulum The equation of motion of a frictionless

pendulum is a nonlinear autonomous differential equation

y′′ = −α2 sin y, α > 0

Here, y is the angle between the pendulum and a vertical line.

The fact that the motion follows this differential equation is

obtained by resolving the downward force of gravity into two

components, one tangent to the curve the pendulum follows

and one which is parallel to the pendulum; the latter component

is canceled by the pendulum rod.
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Define

ȳ(t) =

(

y(t)
y′(t)

)

so differential equation becomes

ȳ′(t) =

(

y2(t)

−α2 sin y1(t)

)

Let

F (ȳ) =

(

y2

−α2 sin y1

)
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Solve for stationary points: points ȳ such that F (ȳ) = 0:

F (ȳ) = 0 ⇒
(

y2

−α2 sin y1

)

=

(

0
0

)

⇒ sin y1 = 0 and y2 = 0

⇒ y1 = nπ and y2 = 0

so set of stationary points is

{(nπ,0) : n ∈ Z}

Linearize the equation around each of the stationary points:



Take the first order Taylor polynomial for F :

F (nπ + h,0 + k) + o(|h| + |k|) = F (nπ, 0) +











∂F1
∂y1

∂F1
∂y2

∂F2
∂y1

∂F2
∂y2

















h

k







=

(

0
0

)

+

(

0 1

−α2 cosnπ 0

)(

h
k

)

=

(

0 1

(−1)n+1α2 0

)(

h
k

)

• For n even, the eigenvalues are solutions to

λ2 + α2 = 0

so λ1 = iα, λ2 = −iα



Close to (nπ, 0) for n even, the solutions spiral around the

stationary point. For y2 = y′1 > 0, y1 is increasing, so the

solutions move in a clockwise direction.

• For n odd, the eigenvalues solve λ2 − α2 = 0, so the eigen-

values and eigenvectors are

λ1 = α, λ2 = −α

v1 = (1, α), v2 = (1,−α)

Close to (nπ, 0) for n odd, the solutions are roughly hyper-

bolic in shape; along v2, they converge to the stationary

point, while along v1, they diverge from the stationary point.

The solutions of the linearized equation tend to infinity along

v1. The stationary point (nπ, 0) with n odd corresponds to

the pendulum pointing vertically upwards.



• From this information alone, we know the qualitative prop-

erties of the solutions of the linearized equation are as given

in the phase plane diagram in Figure 2; the solutions of

the original equation will closely follow these near the stable

points:

– On the y-axis, we have y′ = 0, which means that every-

where on the y-axis (except at the stationary points), the

solution must have a vertical tangent.

– Solve y′′ = −α2 sin y = 0, so y = nπ; thus, at y = nπ,

the derivative of y′ is zero, so the tangent to the curve is

horizontal.

• If the initial value of |y2| is sufficiently large, the solutions

of the original equation no follow longer closed curves; this



corresponds to the pendulum going “over the top” rather

than oscillating back and forth.
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